Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge
Abstract
1. Introduction
2. Antibiotics
3. Antitumor Compounds
4. Antiparasitic Compounds
5. Antioxidants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chassagne, F.; Cabanac, G.; Hubert, G.; David, B.; Marti, G. The landscape of natural product diversity and their pharmacological relevance from a focus on the Dictionary of Natural Products (R). Phytochem. Rev. 2019, 18, 601–622. [Google Scholar] [CrossRef]
- Hui, M.L.; Tan, L.T.; Letchumanan, V.; He, Y.W.; Fang, C.M.; Chan, K.G.; Law, J.W.; Lee, L.H. The extremophilic actinobacteria: From microbes to medicine. Antibiotics 2021, 10, 682. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaibani, M.M.; Radin Mohamed, R.M.S.; Sidik, N.M.; El Enshasy, H.A.; Al-Gheethi, A.; Noman, E.; Al-Mekhlafi, N.A.; Zin, N.M. Biodiversity of secondary metabolites compounds isolated from phylum actinobacteria and its therapeutic applications. Molecules 2021, 26, 4504. [Google Scholar] [CrossRef]
- Lee, N.; Kim, W.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.K. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci. Data 2020, 7, 55. [Google Scholar] [CrossRef]
- Ul Hassan, S.S.; Shaikh, A.L. Marine actinobacteria as a drug treasure house. Biomed. Pharmacother. 2017, 87, 46–57. [Google Scholar] [CrossRef]
- Seipke, R.F.; Kaltenpoth, M.; Hutchings, M.I. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 2012, 36, 862–876. [Google Scholar] [CrossRef]
- Chater, K.F. Recent advances in understanding Streptomyces. F1000Research 2016, 5, 2795. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.A.; Banat, A.M.; Abdelhameed, A.M.; Banat, I.M. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J. Med. Microbiol. 2020, 69, 1040–1048. [Google Scholar] [CrossRef]
- Kanini, G.S.; Katsifas, E.A.; Savvides, A.L.; Hatzinikolaou, D.G.; Karagouni, A.D. Greek indigenous streptomycetes as biocontrol agents against the soil-borne fungal plant pathogen Rhizoctonia solani. J. Appl. Microbiol. 2013, 114, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Kanini, G.S.; Katsifas, E.A.; Savvides, A.L.; Karagouni, A.D. Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f. sp. lycopersici. Biomed. Res. Int. 2013, 2013, 387230. [Google Scholar] [CrossRef]
- Meidani, C.; Savvidis, A.; Lampropoulou, E.; Sagia, A.; Katsifas, E.; Monokrousos, N.; Hatzinikolaou, D.G.; Karagouni, A.D.; Giannoutsou, E.; Adamakis, I.S.; et al. The nematicidal potential of bioactive Streptomyces strains isolated from Greek rhizosphere soils tested on Arabidopsis plants of varying susceptibility to Meloidogyne spp. Plants 2020, 9, 699. [Google Scholar] [CrossRef]
- Rab, E.; Kekos, D.; Roussis, V.; Ioannou, E. α-Pyrone Polyketides from Streptomyces ambofaciens BI0048, an Endophytic Actinobacterial Strain Isolated from the Red Alga Laurencia glandulifera. Mar. Drugs 2017, 15, 389. [Google Scholar] [CrossRef]
- Baur, S.; Niehaus, J.; Karagouni, A.D.; Katsifas, E.A.; Chalkou, K.; Meintanis, C.; Jones, A.L.; Goodfellow, M.; Ward, A.C.; Beil, W.; et al. Fluostatins C∼E, novel members of the fluostatin family produced by Streptomyces strain Acta 1383. J. Antibiot. 2006, 59, 293–297. [Google Scholar] [CrossRef][Green Version]
- Paululat, T.; Katsifas, E.A.; Karagouni, A.D.; Fiedler, H.P. Grecoketides A and B: New naphthoquinones from Streptomyces sp. acta 1362. Eur. J. Org. Chem. 2008, 2008, 5283–5288. [Google Scholar] [CrossRef]
- Paululat, T.; Kulik, A.; Hausmann, H.; Karagouni, A.D.; Zinecker, H.; Imhoff, J.F.; Fiedler, H.P. Grecocyclines: New angucyclines from Streptomyces sp. acta 1362. Eur. J. Org. Chem. 2010, 2010, 2344–2350. [Google Scholar] [CrossRef]
- Jagannathan, S.V.; Manemann, E.M.; Rowe, S.E.; Callender, M.C.; Soto, W. Marine actinomycetes, new sources of biotechnological products. Mar. Drugs 2021, 19, 365. [Google Scholar] [CrossRef]
- Watve, M.G.; Tickoo, R.; Jog, M.M.; Bhole, B.D. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 2001, 176, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Mast, Y.; Stegmann, E. Actinomycetes: The antibiotics producers. Antibiotics 2019, 8, 105. [Google Scholar] [CrossRef]
- De Simeis, D.; Serra, S. Actinomycetes: A never-ending source of bioactive compounds—An overview on antibiotics production. Antibiotics 2021, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Jose, P.A.; Maharshi, A.; Jha, B. Actinobacteria in natural products research: Progress and prospects. Microbiol. Res. 2021, 246, 126708. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Vijayakumar, E.K.; Franco, C.M.; Maurya, R.; Blumbach, J.; Ganguli, B.N. Phencomycin, a new antibiotic from a Streptomyces species HIL Y-9031725. J. Antibiot. 1995, 48, 1353–1354. [Google Scholar] [CrossRef][Green Version]
- Cheng, C.; Othman, E.M.; Fekete, A.; Krischke, M.; Stopper, H.; Edrada-Ebel, R.; Mueller, M.J.; Hentschel, U.; Abdelmohsen, U.R. Strepoxazine A, a new cytotoxic phenoxazin from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett. 2016, 57, 4196–4199. [Google Scholar] [CrossRef]
- Geiger, A.; Keller-Schierlein, W.; Brandl, M.; Zahner, H. Metabolites of microorganisms. 247. Phenazines from Streptomyces antibioticus, strain Tu 2706. J. Antibiot. 1988, 41, 1542–1551. [Google Scholar] [CrossRef]
- Cheng, C.; Othman, E.M.; Reimer, A.; Grune, M.; Kozjak-Pavlovic, V.; Stopper, H.; Hentschel, U.; Abdelmohsen, U.R. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett. 2016, 57, 2786–2789. [Google Scholar] [CrossRef]
- Cheng, C.; Balasubramanian, S.; Fekete, A.; Krischke, M.; Mueller, M.J.; Hentschel, U.; Oelschlaeger, T.A.; Abdelmohsen, U.R. Inhibitory potential of strepthonium A against Shiga toxin production in enterohemorrhagic Escherichia coli (EHEC) strain EDL933. Nat. Prod. Res. 2017, 31, 2818–2823. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Othman, E.M.; Kampik, D.; Stopper, H.; Hentschel, U.; Ziebuhr, W.; Oelschlaeger, T.A.; Abdelmohsen, U.R. Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Front. Microbiol. 2017, 8, 236. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Skaf, J.; Holzgrabe, U.; Bharti, R.; Forstner, K.U.; Ziebuhr, W.; Humeida, U.H.; Abdelmohsen, U.R.; Oelschlaeger, T.A. A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation. Front. Microbiol. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef]
- Perry, J.A.; Koteva, K.; Verschoor, C.P.; Wang, W.; Bowdish, D.M.; Wright, G.D. A macrophage-stimulating compound from a screen of microbial natural products. J. Antibiot. 2015, 68, 40–46. [Google Scholar] [CrossRef]
- Yamada, H.; Aoyagi, S.; Kibayashi, C. Stereoselective total synthesis of natural (+)-streptazolin via a palladium-catalyzed enyne bicyclization approach. J. Am. Chem. Soc. 1996, 118, 1054–1059. [Google Scholar] [CrossRef]
- Chattopadhyay, A.K.; Hanessian, S. Cyclic enaminones. Part II: Applications as versatile intermediates in alkaloid synthesis. Chem. Commun. 2015, 51, 16450–16467. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.; Shi, M.; Yuan, F.; Wang, H.; Jia, X.; Sun, J.; Liu, T.; Yang, K.; Zhang, Y.; et al. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci. China Life Sci. 2017, 60, 992–999. [Google Scholar] [CrossRef]
- Nikolakopoulou, T.L.; Egan, S.; van Overbeek, L.S.; Guillaume, G.; Heuer, H.; Wellington, E.M.; van Elsas, J.D.; Collard, J.M.; Smalla, K.; Karagouni, A.D. PCR detection of oxytetracycline resistance genes otr(A) and otr(B) in tetracycline-resistant streptomycete isolates from diverse habitats. Curr. Microbiol. 2005, 51, 211–216. [Google Scholar] [CrossRef]
- Djinni, I.; Defant, A.; Kecha, M.; Mancini, I. Actinobacteria derived from Algerian ecosystems as a prominent source of antimicrobial molecules. Antibiotics 2019, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Busi, S.; Pattnaik, S.S. Current Status and Applications of Actinobacteria in the Production of Anticancerous Compounds; Elsevier Science Bv: Amsterdam, The Netherlands, 2018; pp. 137–153. [Google Scholar]
- Grabley, S.; Hammann, P.; Kluge, H.; Wink, J.; Kricke, P.; Zeeck, A. Secondary metabolites by chemical screening. 4. Detection, isolation and biological activities of chiral synthons from Streptomyces. J. Antibiot. 1991, 44, 797–800. [Google Scholar] [CrossRef] [PubMed]
- Enders, D.; Hundertmark, T. Asymmetric synthesis of (+)- and (-)-streptenol A. Eur. J. Org. Chem. 1999, 1999, 751–756. [Google Scholar] [CrossRef]
- Groenhagen, U.; Maczka, M.; Dickschat, J.S.; Schulz, S. Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5. Beilstein J. Org. Chem. 2014, 10, 1421–1432. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Z.; Li, S.; Lu, Y.; Chen, Y.; Zhang, H.; Zhang, G.; Zhu, Y.; Liu, J.; Zhang, C. Fluostatins I-K from the South China Sea-derived Micromonospora rosaria SCSIO N160. J. Nat. Prod. 2012, 75, 1937–1943. [Google Scholar] [CrossRef]
- Yu, M.; Danishefsky, S.J. A direct route to fluostatin C by a fascinating Diels-Alder reaction. J. Am. Chem. Soc. 2008, 130, 2783–2785. [Google Scholar] [CrossRef] [PubMed]
- Mehta, G.; Kumar, Y.C.S.; Das, M. A de novo Diels-Alder strategy toward the novel pentacyclic natural product fluostatin C: A concise synthesis of 6-deoxyfluostatin C. Tetrahedron Lett. 2011, 52, 3505–3508. [Google Scholar] [CrossRef]
- Yang, C.; Huang, C.; Zhang, W.; Zhu, Y.; Zhang, C. Heterologous expression of fluostatin gene cluster leads to a bioactive heterodimer. Org. Lett. 2015, 17, 5324–5327. [Google Scholar] [CrossRef]
- Bilyk, O.; Sekurova, O.N.; Zotchev, S.B.; Luzhetskyy, A. Cloning and heterologous expression of the grecocycline biosynthetic gene cluster. PLoS ONE 2016, 11, e0158682. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Othman, E.M.; Stopper, H.; Edrada-Ebel, R.; Hentschel, U.; Abdelmohsen, U.R. Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium Streptomyces sp. SBT348. Mar. Drugs 2017, 15, 383. [Google Scholar] [CrossRef] [PubMed]
- Kappagoda, S.; Singh, U.; Blackburn, B.G. Antiparasitic therapy. Mayo Clin. Proc. 2011, 86, 561–583. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Solecka, J.; Zajko, J.; Postek, M.; Rajnisz, A. Biologically active secondary metabolites from Actinomycetes. Cent. Eur. J. Biol. 2012, 7, 373–390. [Google Scholar] [CrossRef]
- Cheng, C.; MacIntyre, L.; Abdelmohsen, U.R.; Horn, H.; Polymenakou, P.N.; Edrada-Ebel, R.; Hentschel, U. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE 2015, 10, e0138528. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Tan, L.T.; Mahendra, C.K.; Yow, Y.Y.; Chan, K.G.; Khan, T.M.; Lee, L.H.; Goh, B.H. Streptomyces sp. MUM273b: A mangrove-derived potential source for antioxidant and UVB radiation protectants. MicrobiologyOpen 2017, 8, e859. [Google Scholar] [CrossRef]
- Horn, H.; Cheng, C.; Edrada-Ebel, R.; Hentschel, U.; Abdelmohsen, U.R. Draft genome sequences of three chemically rich actinomycetes isolated from Mediterranean sponges. Mar. Genom. 2015, 24 Pt 3, 285–287. [Google Scholar] [CrossRef]
- Sousa, M.; Ousingsawat, J.; Seitz, R.; Puntheeranurak, S.; Regalado, A.; Schmidt, A.; Grego, T.; Jansakul, C.; Am-aral, M.D.; Schreiber, R.; et al. An extract from the medicinal plant Phyllanthus acidus and its isolated com-pounds induce airway chloride secretion: A potential treatment for cystic fibrosis. Mol. Pharmacol. 2007, 71, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.I.; Naheed, N.; Abbaskhan, A.; Musharraf, S.G.; Siddiqui, H.; Atta Ur, R. Phenolic and other con-stituents of fresh water fern Salvinia molesta. Phytochemistry 2008, 69, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, Y.; Hirota, A. New potent DPPH radical scavengers from a marine-derived actinomycete strain USF-TC31. Biosci. Biotechnol. Biochem. 2009, 73, 2731–2734. [Google Scholar] [CrossRef]
- Ravikumar, S.; Fredimoses, M.; Gnanadesigan, M. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines. Asian Pac. J. Trop. Biomed. 2012, 2, 92–96. [Google Scholar] [CrossRef]
- Mohammadipanah, F.; Wink, J. Actinobacteria from arid and desert habitats: Diversity and biological activity. Front. Microbiol. 2016, 6, 1541. [Google Scholar] [CrossRef]
- Sivalingam, P.; Hong, K.; Pote, J.; Prabakar, K. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int. J. Microbiol. 2019, 2019, 5283948. [Google Scholar] [CrossRef] [PubMed]
- Edrada-Ebel, R.; AEvarsson, A.; Polymenakou, P.; Hentschel, U.; Carettoni, D.; Day, J.; Green, D.; Hreggvidsson, G.O.; Harvey, L.; McNeil, B. SeaBioTech: From seabed to test-bed: Harvesting the potential of marine biodiversity for industrial biotechnology. In Grand Challenges in Marine Biotechnology; Rampelotto, P.H., Trincone, A., Eds.; Grand Challenges in Biology and Biotechnology; Springer International Publishing Ag: Cham, Switzerland, 2018; pp. 451–504. [Google Scholar]
- German Collection of Microorganisms and Cell Cultures. Available online: https://www.dsmz.de/collection/catalogue/details/culture/DSM-100667 (accessed on 30 October 2021).
Strain | Source | Compound | Activity | Reference |
---|---|---|---|---|
Streptomyces luteogriseus FH-S 1307 | soil | streptazolin | antibiotic | [29] |
streptenol A | antitumor | [36] | ||
SS20846A | antibiotic | [31] | ||
S. sp. ACTA 1383 | Ebenus sibthorpii rhizosphere | fluostatin C | antitumor | [13] |
S. sp. ACTA 1362 | Pinus brutia rhizosphere | grecocycline A | antitumor | [15] |
grecocycline B | antitumor | [15] | ||
S. sp. SBT343 | sponge | unidentified | biofilm inhibitor | [26] |
S. sp. SBT344 | sponge | unidentified | antiparasitic | [48] |
S. sp. SBT345 | sponge | ageloline A | antibiotic | [24] |
phencomycin | antibiotic | [22] | ||
strepoxazine A | antitumor | [22] | ||
strepthonium A | toxin production inhibitor | [25] | ||
tubermycin B | antibiotic | [22] | ||
S. sp. SBT348 | sponge | 2,3-dihydroxybenzoic acid | antioxidant | [44] |
2,3-dihydroxybenzamide | antioxidant | [44] | ||
petrocidin A | antitumor | [44] | ||
SKC3 | biofilm inhibitor | [27] | ||
unidentified | antiparasitic | [48] | ||
S. sp. SBT349 | sponge | unidentified | antioxidant | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laskaris, P.; Karagouni, A.D. Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge. Microbiol. Res. 2021, 12, 840-846. https://doi.org/10.3390/microbiolres12040061
Laskaris P, Karagouni AD. Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge. Microbiology Research. 2021; 12(4):840-846. https://doi.org/10.3390/microbiolres12040061
Chicago/Turabian StyleLaskaris, Paris, and Amalia D. Karagouni. 2021. "Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge" Microbiology Research 12, no. 4: 840-846. https://doi.org/10.3390/microbiolres12040061
APA StyleLaskaris, P., & Karagouni, A. D. (2021). Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge. Microbiology Research, 12(4), 840-846. https://doi.org/10.3390/microbiolres12040061