Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge
Abstract
:1. Introduction
2. Antibiotics
3. Antitumor Compounds
4. Antiparasitic Compounds
5. Antioxidants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chassagne, F.; Cabanac, G.; Hubert, G.; David, B.; Marti, G. The landscape of natural product diversity and their pharmacological relevance from a focus on the Dictionary of Natural Products (R). Phytochem. Rev. 2019, 18, 601–622. [Google Scholar] [CrossRef]
- Hui, M.L.; Tan, L.T.; Letchumanan, V.; He, Y.W.; Fang, C.M.; Chan, K.G.; Law, J.W.; Lee, L.H. The extremophilic actinobacteria: From microbes to medicine. Antibiotics 2021, 10, 682. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaibani, M.M.; Radin Mohamed, R.M.S.; Sidik, N.M.; El Enshasy, H.A.; Al-Gheethi, A.; Noman, E.; Al-Mekhlafi, N.A.; Zin, N.M. Biodiversity of secondary metabolites compounds isolated from phylum actinobacteria and its therapeutic applications. Molecules 2021, 26, 4504. [Google Scholar] [CrossRef]
- Lee, N.; Kim, W.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.K. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci. Data 2020, 7, 55. [Google Scholar] [CrossRef]
- Ul Hassan, S.S.; Shaikh, A.L. Marine actinobacteria as a drug treasure house. Biomed. Pharmacother. 2017, 87, 46–57. [Google Scholar] [CrossRef]
- Seipke, R.F.; Kaltenpoth, M.; Hutchings, M.I. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 2012, 36, 862–876. [Google Scholar] [CrossRef]
- Chater, K.F. Recent advances in understanding Streptomyces. F1000Research 2016, 5, 2795. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.A.; Banat, A.M.; Abdelhameed, A.M.; Banat, I.M. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J. Med. Microbiol. 2020, 69, 1040–1048. [Google Scholar] [CrossRef]
- Kanini, G.S.; Katsifas, E.A.; Savvides, A.L.; Hatzinikolaou, D.G.; Karagouni, A.D. Greek indigenous streptomycetes as biocontrol agents against the soil-borne fungal plant pathogen Rhizoctonia solani. J. Appl. Microbiol. 2013, 114, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Kanini, G.S.; Katsifas, E.A.; Savvides, A.L.; Karagouni, A.D. Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f. sp. lycopersici. Biomed. Res. Int. 2013, 2013, 387230. [Google Scholar] [CrossRef]
- Meidani, C.; Savvidis, A.; Lampropoulou, E.; Sagia, A.; Katsifas, E.; Monokrousos, N.; Hatzinikolaou, D.G.; Karagouni, A.D.; Giannoutsou, E.; Adamakis, I.S.; et al. The nematicidal potential of bioactive Streptomyces strains isolated from Greek rhizosphere soils tested on Arabidopsis plants of varying susceptibility to Meloidogyne spp. Plants 2020, 9, 699. [Google Scholar] [CrossRef]
- Rab, E.; Kekos, D.; Roussis, V.; Ioannou, E. α-Pyrone Polyketides from Streptomyces ambofaciens BI0048, an Endophytic Actinobacterial Strain Isolated from the Red Alga Laurencia glandulifera. Mar. Drugs 2017, 15, 389. [Google Scholar] [CrossRef]
- Baur, S.; Niehaus, J.; Karagouni, A.D.; Katsifas, E.A.; Chalkou, K.; Meintanis, C.; Jones, A.L.; Goodfellow, M.; Ward, A.C.; Beil, W.; et al. Fluostatins C∼E, novel members of the fluostatin family produced by Streptomyces strain Acta 1383. J. Antibiot. 2006, 59, 293–297. [Google Scholar] [CrossRef]
- Paululat, T.; Katsifas, E.A.; Karagouni, A.D.; Fiedler, H.P. Grecoketides A and B: New naphthoquinones from Streptomyces sp. acta 1362. Eur. J. Org. Chem. 2008, 2008, 5283–5288. [Google Scholar] [CrossRef]
- Paululat, T.; Kulik, A.; Hausmann, H.; Karagouni, A.D.; Zinecker, H.; Imhoff, J.F.; Fiedler, H.P. Grecocyclines: New angucyclines from Streptomyces sp. acta 1362. Eur. J. Org. Chem. 2010, 2010, 2344–2350. [Google Scholar] [CrossRef]
- Jagannathan, S.V.; Manemann, E.M.; Rowe, S.E.; Callender, M.C.; Soto, W. Marine actinomycetes, new sources of biotechnological products. Mar. Drugs 2021, 19, 365. [Google Scholar] [CrossRef]
- Watve, M.G.; Tickoo, R.; Jog, M.M.; Bhole, B.D. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 2001, 176, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Mast, Y.; Stegmann, E. Actinomycetes: The antibiotics producers. Antibiotics 2019, 8, 105. [Google Scholar] [CrossRef]
- De Simeis, D.; Serra, S. Actinomycetes: A never-ending source of bioactive compounds—An overview on antibiotics production. Antibiotics 2021, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Jose, P.A.; Maharshi, A.; Jha, B. Actinobacteria in natural products research: Progress and prospects. Microbiol. Res. 2021, 246, 126708. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Vijayakumar, E.K.; Franco, C.M.; Maurya, R.; Blumbach, J.; Ganguli, B.N. Phencomycin, a new antibiotic from a Streptomyces species HIL Y-9031725. J. Antibiot. 1995, 48, 1353–1354. [Google Scholar] [CrossRef]
- Cheng, C.; Othman, E.M.; Fekete, A.; Krischke, M.; Stopper, H.; Edrada-Ebel, R.; Mueller, M.J.; Hentschel, U.; Abdelmohsen, U.R. Strepoxazine A, a new cytotoxic phenoxazin from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett. 2016, 57, 4196–4199. [Google Scholar] [CrossRef]
- Geiger, A.; Keller-Schierlein, W.; Brandl, M.; Zahner, H. Metabolites of microorganisms. 247. Phenazines from Streptomyces antibioticus, strain Tu 2706. J. Antibiot. 1988, 41, 1542–1551. [Google Scholar] [CrossRef]
- Cheng, C.; Othman, E.M.; Reimer, A.; Grune, M.; Kozjak-Pavlovic, V.; Stopper, H.; Hentschel, U.; Abdelmohsen, U.R. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett. 2016, 57, 2786–2789. [Google Scholar] [CrossRef]
- Cheng, C.; Balasubramanian, S.; Fekete, A.; Krischke, M.; Mueller, M.J.; Hentschel, U.; Oelschlaeger, T.A.; Abdelmohsen, U.R. Inhibitory potential of strepthonium A against Shiga toxin production in enterohemorrhagic Escherichia coli (EHEC) strain EDL933. Nat. Prod. Res. 2017, 31, 2818–2823. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Othman, E.M.; Kampik, D.; Stopper, H.; Hentschel, U.; Ziebuhr, W.; Oelschlaeger, T.A.; Abdelmohsen, U.R. Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Front. Microbiol. 2017, 8, 236. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Skaf, J.; Holzgrabe, U.; Bharti, R.; Forstner, K.U.; Ziebuhr, W.; Humeida, U.H.; Abdelmohsen, U.R.; Oelschlaeger, T.A. A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation. Front. Microbiol. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef]
- Perry, J.A.; Koteva, K.; Verschoor, C.P.; Wang, W.; Bowdish, D.M.; Wright, G.D. A macrophage-stimulating compound from a screen of microbial natural products. J. Antibiot. 2015, 68, 40–46. [Google Scholar] [CrossRef]
- Yamada, H.; Aoyagi, S.; Kibayashi, C. Stereoselective total synthesis of natural (+)-streptazolin via a palladium-catalyzed enyne bicyclization approach. J. Am. Chem. Soc. 1996, 118, 1054–1059. [Google Scholar] [CrossRef]
- Chattopadhyay, A.K.; Hanessian, S. Cyclic enaminones. Part II: Applications as versatile intermediates in alkaloid synthesis. Chem. Commun. 2015, 51, 16450–16467. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.; Shi, M.; Yuan, F.; Wang, H.; Jia, X.; Sun, J.; Liu, T.; Yang, K.; Zhang, Y.; et al. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci. China Life Sci. 2017, 60, 992–999. [Google Scholar] [CrossRef]
- Nikolakopoulou, T.L.; Egan, S.; van Overbeek, L.S.; Guillaume, G.; Heuer, H.; Wellington, E.M.; van Elsas, J.D.; Collard, J.M.; Smalla, K.; Karagouni, A.D. PCR detection of oxytetracycline resistance genes otr(A) and otr(B) in tetracycline-resistant streptomycete isolates from diverse habitats. Curr. Microbiol. 2005, 51, 211–216. [Google Scholar] [CrossRef]
- Djinni, I.; Defant, A.; Kecha, M.; Mancini, I. Actinobacteria derived from Algerian ecosystems as a prominent source of antimicrobial molecules. Antibiotics 2019, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Busi, S.; Pattnaik, S.S. Current Status and Applications of Actinobacteria in the Production of Anticancerous Compounds; Elsevier Science Bv: Amsterdam, The Netherlands, 2018; pp. 137–153. [Google Scholar]
- Grabley, S.; Hammann, P.; Kluge, H.; Wink, J.; Kricke, P.; Zeeck, A. Secondary metabolites by chemical screening. 4. Detection, isolation and biological activities of chiral synthons from Streptomyces. J. Antibiot. 1991, 44, 797–800. [Google Scholar] [CrossRef] [PubMed]
- Enders, D.; Hundertmark, T. Asymmetric synthesis of (+)- and (-)-streptenol A. Eur. J. Org. Chem. 1999, 1999, 751–756. [Google Scholar] [CrossRef]
- Groenhagen, U.; Maczka, M.; Dickschat, J.S.; Schulz, S. Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5. Beilstein J. Org. Chem. 2014, 10, 1421–1432. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Z.; Li, S.; Lu, Y.; Chen, Y.; Zhang, H.; Zhang, G.; Zhu, Y.; Liu, J.; Zhang, C. Fluostatins I-K from the South China Sea-derived Micromonospora rosaria SCSIO N160. J. Nat. Prod. 2012, 75, 1937–1943. [Google Scholar] [CrossRef]
- Yu, M.; Danishefsky, S.J. A direct route to fluostatin C by a fascinating Diels-Alder reaction. J. Am. Chem. Soc. 2008, 130, 2783–2785. [Google Scholar] [CrossRef] [PubMed]
- Mehta, G.; Kumar, Y.C.S.; Das, M. A de novo Diels-Alder strategy toward the novel pentacyclic natural product fluostatin C: A concise synthesis of 6-deoxyfluostatin C. Tetrahedron Lett. 2011, 52, 3505–3508. [Google Scholar] [CrossRef]
- Yang, C.; Huang, C.; Zhang, W.; Zhu, Y.; Zhang, C. Heterologous expression of fluostatin gene cluster leads to a bioactive heterodimer. Org. Lett. 2015, 17, 5324–5327. [Google Scholar] [CrossRef]
- Bilyk, O.; Sekurova, O.N.; Zotchev, S.B.; Luzhetskyy, A. Cloning and heterologous expression of the grecocycline biosynthetic gene cluster. PLoS ONE 2016, 11, e0158682. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Othman, E.M.; Stopper, H.; Edrada-Ebel, R.; Hentschel, U.; Abdelmohsen, U.R. Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium Streptomyces sp. SBT348. Mar. Drugs 2017, 15, 383. [Google Scholar] [CrossRef] [PubMed]
- Kappagoda, S.; Singh, U.; Blackburn, B.G. Antiparasitic therapy. Mayo Clin. Proc. 2011, 86, 561–583. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Solecka, J.; Zajko, J.; Postek, M.; Rajnisz, A. Biologically active secondary metabolites from Actinomycetes. Cent. Eur. J. Biol. 2012, 7, 373–390. [Google Scholar] [CrossRef]
- Cheng, C.; MacIntyre, L.; Abdelmohsen, U.R.; Horn, H.; Polymenakou, P.N.; Edrada-Ebel, R.; Hentschel, U. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE 2015, 10, e0138528. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Tan, L.T.; Mahendra, C.K.; Yow, Y.Y.; Chan, K.G.; Khan, T.M.; Lee, L.H.; Goh, B.H. Streptomyces sp. MUM273b: A mangrove-derived potential source for antioxidant and UVB radiation protectants. MicrobiologyOpen 2017, 8, e859. [Google Scholar] [CrossRef]
- Horn, H.; Cheng, C.; Edrada-Ebel, R.; Hentschel, U.; Abdelmohsen, U.R. Draft genome sequences of three chemically rich actinomycetes isolated from Mediterranean sponges. Mar. Genom. 2015, 24 Pt 3, 285–287. [Google Scholar] [CrossRef]
- Sousa, M.; Ousingsawat, J.; Seitz, R.; Puntheeranurak, S.; Regalado, A.; Schmidt, A.; Grego, T.; Jansakul, C.; Am-aral, M.D.; Schreiber, R.; et al. An extract from the medicinal plant Phyllanthus acidus and its isolated com-pounds induce airway chloride secretion: A potential treatment for cystic fibrosis. Mol. Pharmacol. 2007, 71, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.I.; Naheed, N.; Abbaskhan, A.; Musharraf, S.G.; Siddiqui, H.; Atta Ur, R. Phenolic and other con-stituents of fresh water fern Salvinia molesta. Phytochemistry 2008, 69, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, Y.; Hirota, A. New potent DPPH radical scavengers from a marine-derived actinomycete strain USF-TC31. Biosci. Biotechnol. Biochem. 2009, 73, 2731–2734. [Google Scholar] [CrossRef]
- Ravikumar, S.; Fredimoses, M.; Gnanadesigan, M. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines. Asian Pac. J. Trop. Biomed. 2012, 2, 92–96. [Google Scholar] [CrossRef]
- Mohammadipanah, F.; Wink, J. Actinobacteria from arid and desert habitats: Diversity and biological activity. Front. Microbiol. 2016, 6, 1541. [Google Scholar] [CrossRef]
- Sivalingam, P.; Hong, K.; Pote, J.; Prabakar, K. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int. J. Microbiol. 2019, 2019, 5283948. [Google Scholar] [CrossRef] [PubMed]
- Edrada-Ebel, R.; AEvarsson, A.; Polymenakou, P.; Hentschel, U.; Carettoni, D.; Day, J.; Green, D.; Hreggvidsson, G.O.; Harvey, L.; McNeil, B. SeaBioTech: From seabed to test-bed: Harvesting the potential of marine biodiversity for industrial biotechnology. In Grand Challenges in Marine Biotechnology; Rampelotto, P.H., Trincone, A., Eds.; Grand Challenges in Biology and Biotechnology; Springer International Publishing Ag: Cham, Switzerland, 2018; pp. 451–504. [Google Scholar]
- German Collection of Microorganisms and Cell Cultures. Available online: https://www.dsmz.de/collection/catalogue/details/culture/DSM-100667 (accessed on 30 October 2021).
Strain | Source | Compound | Activity | Reference |
---|---|---|---|---|
Streptomyces luteogriseus FH-S 1307 | soil | streptazolin | antibiotic | [29] |
streptenol A | antitumor | [36] | ||
SS20846A | antibiotic | [31] | ||
S. sp. ACTA 1383 | Ebenus sibthorpii rhizosphere | fluostatin C | antitumor | [13] |
S. sp. ACTA 1362 | Pinus brutia rhizosphere | grecocycline A | antitumor | [15] |
grecocycline B | antitumor | [15] | ||
S. sp. SBT343 | sponge | unidentified | biofilm inhibitor | [26] |
S. sp. SBT344 | sponge | unidentified | antiparasitic | [48] |
S. sp. SBT345 | sponge | ageloline A | antibiotic | [24] |
phencomycin | antibiotic | [22] | ||
strepoxazine A | antitumor | [22] | ||
strepthonium A | toxin production inhibitor | [25] | ||
tubermycin B | antibiotic | [22] | ||
S. sp. SBT348 | sponge | 2,3-dihydroxybenzoic acid | antioxidant | [44] |
2,3-dihydroxybenzamide | antioxidant | [44] | ||
petrocidin A | antitumor | [44] | ||
SKC3 | biofilm inhibitor | [27] | ||
unidentified | antiparasitic | [48] | ||
S. sp. SBT349 | sponge | unidentified | antioxidant | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laskaris, P.; Karagouni, A.D. Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge. Microbiol. Res. 2021, 12, 840-846. https://doi.org/10.3390/microbiolres12040061
Laskaris P, Karagouni AD. Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge. Microbiology Research. 2021; 12(4):840-846. https://doi.org/10.3390/microbiolres12040061
Chicago/Turabian StyleLaskaris, Paris, and Amalia D. Karagouni. 2021. "Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge" Microbiology Research 12, no. 4: 840-846. https://doi.org/10.3390/microbiolres12040061
APA StyleLaskaris, P., & Karagouni, A. D. (2021). Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge. Microbiology Research, 12(4), 840-846. https://doi.org/10.3390/microbiolres12040061