Comparative Genome-Wide Analysis Underscores the Rapid Expansion of Cytochrome P450s for Secondary Metabolism in the Mycoparasite Pezizomycetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species and Database
2.2. Genome Mining of Mycoparasites for P450s
2.3. Assigning P450 Family and Subfamily
2.4. Phylogenetic Analysis
Species Name | Genome Version | Phylum | Class | Species Code | Genome Database Link | Reference |
---|---|---|---|---|---|---|
Ampelomyces quisqualis HMLAC05119 | v1.0 | Ascomycota | Pezizomycotina | Ampqui1 | https://mycocosm.jgi.doe.gov/Ampqui1 | [5] |
Clonostachys rosea IK726 | Ascomycota | Pezizomycotina | Cloros1 | https://mycocosm.jgi.doe.gov/Cloros1 | [7] | |
Escovopsis weberi CC031208-10 | Ascomycota | Pezizomycotina | Escweb1 | https://mycocosm.jgi.doe.gov/Escweb1 | [12] | |
Naematelia encephela UCDFST 68-887.2 | v1.0 | Ascomycota | Pezizomycotina | Treen1 | https://mycocosm.jgi.doe.gov/Treen1 | [7] |
Trichoderma arundinaceum IBT 40837 | Ascomycota | Pezizomycotina | Triaru1 | https://mycocosm.jgi.doe.gov/Triaru1 | [16] | |
Trichoderma asperelloides T203 | v1.0 | Ascomycota | Pezizomycotina | Triasper1 | https://mycocosm.jgi.doe.gov/Triasper1 | [17] |
Trichoderma asperellum CBS 433.97 | v1.0 | Ascomycota | Pezizomycotina | Trias1 | https://mycocosm.jgi.doe.gov/Trias1 | [19] |
Trichoderma atroviride | v2.0 | Ascomycota | Pezizomycotina | Triat2 | https://mycocosm.jgi.doe.gov/Triat2 | [17] |
Trichoderma citrinoviride TUCIM 6016 | v4.0 | Ascomycota | Pezizomycotina | Trici4 | https://mycocosm.jgi.doe.gov/Trici4 | [23] |
Trichoderma gamsii T6085 | Ascomycota | Pezizomycotina | Trigam1 | https://mycocosm.jgi.doe.gov/Trigam1 | [17] | |
Trichoderma guizhouense NJAU 4742 | Ascomycota | Pezizomycotina | Trigui1 | https://mycocosm.jgi.doe.gov/Trigui1 | [25] | |
Trichoderma hamatum GD12 | Ascomycota | Pezizomycotina | Triham1 | https://mycocosm.jgi.doe.gov/Triham1 | [17] | |
Trichoderma harzianum CBS 226.95 | v1.0 | Ascomycota | Pezizomycotina | Triha1 | https://mycocosm.jgi.doe.gov/Triha1 | [17] |
Trichoderma longibrachiatum ATCC 18648 | v3.0 | Ascomycota | Pezizomycotina | Trilo3 | https://mycocosm.jgi.doe.gov/Trilo3 | [53] |
Trichoderma pleuroti TPhu1 | Ascomycota | Pezizomycotina | Triple1 | https://mycocosm.jgi.doe.gov/Triple1 | [19] | |
Trichoderma virens Gv29-8 | v2.0 | Ascomycota | Pezizomycotina | TriviGv29_8_2 | https://mycocosm.jgi.doe.gov/TriviGv29_8_2 | [19] |
Tremella mesenterica Fries | v1.0 | Basidiomycota | Agaricomycotina | Treme1 | https://mycocosm.jgi.doe.gov/Treme1 | [15] |
Caulochytrium protostelioides ATCC 52028 single-cell | v1.0 | Caulochytriomycota | Caulochytriomycotina | Caupr_SCcomb | https://mycocosm.jgi.doe.gov/Caupr_Sccomb | [7] |
Caulochytrium protostelioides ATCC 52028 | v1.0 | Caulochytriomycota | Caulochytriomycotina | Caupr1 | https://mycocosm.jgi.doe.gov/Caupr1 | [8] |
Dimargaris cristalligena RSA 468 single-cell | v1.0 | Kickxellomycota | Kickxellomycotina | DimcrSC1 | https://mycocosm.jgi.doe.gov/DimcrSC1 | [10] |
Piptocephalis cylindrospora RSA 2659 single-cell | v3.0 | Zoopagomycota | Zoopagomycotina | Pipcy3_1 | https://mycocosm.jgi.doe.gov/Pipcy3_1 | [54] |
Syncephalis pseudoplumigaleata Benny S71-1 single-cell | v1.0 | Zoopagomycota | Zoopagomycotina | Synps1 | https://mycocosm.jgi.doe.gov/Synps1 | [7] |
Thamnocephalis sphaerospora RSA 1356 single-cell | v1.0 | Zoopagomycota | Zoopagomycotina | Thasp1 | https://mycocosm.jgi.doe.gov/Thasp1 | [7] |
Rozella allomycis CSF55 | Rozellomycota | Rozal1_1 | https://mycocosm.jgi.doe.gov/Rozal1_1 | [7] |
2.5. Identification of P450s That Are Part of Secondary-Metabolite BGCs (SMBGCs)
2.6. Saprophytic and Ectomycorrhizal Pezizomycete P450s and SMBGCs
2.7. Functional Prediction of P450s
3. Results and Discussion
3.1. Pezizomycete Mycoparasites Have More P450s in Their Genomes
3.2. Pezizomycete Mycoparasites Have Highly Diverse P450 Families and Subfamilies
3.3. Mycoparasites Have a Large and Diverse Number of SMBGCs
3.4. Mycoparasites Have a Large Number of P450s as Part of Their SMBGCs
3.5. Mycoparasite P450s Are Indeed Involved in the Synthesis of Secondary Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, T.N.; Hass, H.; Kerp, H.; Krings, M.; Hanlin, R. Perithecial ascomycetes from the 400 million year old Rhynie chert: An example of ancestral polymorphism. Mycologia 2005, 97, 269–285. [Google Scholar] [CrossRef]
- Verena, S.; Susanne, Z. Secondary Metabolites of Mycoparasitic Fungi. In Secondary Metabolites; Ramasamy, V., Suresh, S.S.R., Eds.; IntechOpen: Rijeka, Croatia, 2018; p. Ch. 3. [Google Scholar]
- Van Den Boogert, P.H. Mycoparasitism and biocontrol. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control; Springer: Berlin/Heidelberg, Germany, 1996; pp. 485–493. [Google Scholar]
- Malmierca, M.; Cardoza, R.; Alexander, N.; McCormick, S.; Hermosa, R.; Monte, E.; Gutiérrez, S. Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl. Environ. Microbiol. 2012, 78, 4856–4868. [Google Scholar] [CrossRef] [PubMed]
- Haridas, S.; Albert, R.; Binder, M.; Bloem, J.; LaButti, K.; Salamov, A.; Andreopoulos, B.; Baker, S.E.; Barry, K.; Bills, G.; et al. 101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens. Stud. Mycol. 2020, 96, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.K.; Raizada, M.N. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective. Front. Microbiol. 2013, 4, 65. [Google Scholar] [CrossRef] [PubMed]
- Ahrendt, S.R.; Quandt, C.A.; Ciobanu, D.; Clum, A.; Salamov, A.; Andreopoulos, B.; Cheng, J.F.; Woyke, T.; Pelin, A.; Henrissat, B.; et al. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 2018, 3, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Durling, M.B.; Choi, J.; Kosawang, C.; Lackner, G.; Tzelepis, G.D.; Nygren, K.; Dubey, M.K.; Kamou, N.; Levasseur, A.; et al. Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biol. Evol. 2015, 7, 465–480. [Google Scholar] [CrossRef]
- Tabima, J.F.; Trautman, I.A.; Chang, Y.; Wang, Y.; Mondo, S.; Kuo, A.; Salamov, A.; Grigoriev, I.V.; Stajich, J.E.; Spatafora, J.W. Phylogenomic analyses of non-dikarya fungi supports horizontal gene transfer driving diversification of secondary metabolism in the amphibian gastrointestinal symbiont, Basidiobolus. G3 Genes Genomes Genet. 2020, 10, 3417–3433. [Google Scholar] [CrossRef]
- de Man, T.J.; Stajich, J.E.; Kubicek, C.P.; Teiling, C.; Chenthamara, K.; Atanasova, L.; Druzhinina, I.S.; Levenkova, N.; Birnbaum, S.S.; Barribeau, S.M.; et al. Small genome of the fungus Escovopsis weberi, a specialized disease agent of ant agriculture. Proc. Natl. Acad. Sci. USA 2016, 113, 3567–3572. [Google Scholar] [CrossRef]
- Dhodary, B.; Schilg, M.; Wirth, R.; Spiteller, D. Secondary metabolites from Escovopsis weberi and their role in attacking the garden fungus of leaf-cutting ants. Chem.–A Eur. J. 2018, 24, 4445–4452. [Google Scholar] [CrossRef]
- Mondo, S.J.; Dannebaum, R.O.; Kuo, R.C.; Louie, K.B.; Bewick, A.J.; LaButti, K.; Haridas, S.; Kuo, A.; Salamov, A.; Ahrendt, S.R.; et al. Widespread adenine N6-methylation of active genes in fungi. Nat. Genet. 2017, 49, 964–968. [Google Scholar] [CrossRef] [PubMed]
- James, T.Y.; Pelin, A.; Bonen, L.; Ahrendt, S.; Sain, D.; Corradi, N.; Stajich, J.E. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 2013, 23, 1548–1553. [Google Scholar] [CrossRef]
- Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martinez, A.T.; Otillar, R.; Spatafora, J.W.; Yadav, J.S.; et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336, 1715–1719. [Google Scholar] [CrossRef]
- Proctor, R.H.; McCormick, S.P.; Kim, H.S.; Cardoza, R.E.; Stanley, A.M.; Lindo, L.; Kelly, A.; Brown, D.W.; Lee, T.; Vaughan, M.M.; et al. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog. 2018, 14, e1006946. [Google Scholar] [CrossRef]
- Gortikov, M.; Wang, Z.; Steindorff, A.S.; Grigoriev, I.V.; Druzhinina, I.S.; Townsend, J.P.; Yarden, O. Sequencing and Analysis of the Entire Genome of the Mycoparasitic Bioeffector Fungus Trichoderma asperelloides Strain T 203 (Hypocreales). Microbiol. Resour. Announc. 2022, 11, e0099521. [Google Scholar] [CrossRef] [PubMed]
- Druzhinina, I.S.; Chenthamara, K.; Zhang, J.; Atanasova, L.; Yang, D.; Miao, Y.; Rahimi, M.J.; Grujic, M.; Cai, F.; Pourmehdi, S.; et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet. 2018, 14, e1007322. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-F.; Li, G.-H.; Zhang, K.-Q. Non-volatile metabolites from Trichoderma spp. Metabolites 2019, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Kubicek, C.P.; Herrera-Estrella, A.; Seidl-Seiboth, V.; Martinez, D.A.; Druzhinina, I.S.; Thon, M.; Zeilinger, S.; Casas-Flores, S.; Horwitz, B.A.; Mukherjee, P.K.; et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011, 12, R40. [Google Scholar] [CrossRef] [PubMed]
- Brunner, K.; Zeilinger, S.; Ciliento, R.; Woo, S.L.; Lorito, M.; Kubicek, C.P.; Mach, R.L. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Appl. Environ. Microbiol. 2005, 71, 3959–3965. [Google Scholar] [CrossRef]
- Fan, H.; Yao, M.; Wang, H.; Zhao, D.; Zhu, X.; Wang, Y.; Liu, X.; Duan, Y.; Chen, L. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiol. 2020, 20, 299. [Google Scholar] [CrossRef]
- Park, Y.-H.; Mishra, R.C.; Yoon, S.; Kim, H.; Park, C.; Seo, S.-T.; Bae, H. Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J. Ginseng Res. 2019, 43, 408–420. [Google Scholar] [CrossRef]
- Baroncelli, R.; Zapparata, A.; Piaggeschi, G.; Sarrocco, S.; Vannacci, G. Draft Whole-Genome Sequence of Trichoderma gamsii T6085, a Promising Biocontrol Agent of Fusarium Head Blight on Wheat. Genome Announc. 2016, 4, e01747-15. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, J.; Shao, J.; Feng, H.; Zhang, R.; Shen, Q. Extracellular proteins of Trichoderma guizhouense elicit an immune response in maize (Zea mays) plants. Plant Soil 2020, 449, 133–149. [Google Scholar] [CrossRef]
- Studholme, D.J.; Harris, B.; Le Cocq, K.; Winsbury, R.; Perera, V.; Ryder, L.; Ward, J.L.; Beale, M.H.; Thornton, C.R.; Grant, M. Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. Front. Plant Sci. 2013, 4, 258. [Google Scholar] [CrossRef]
- Mironenka, J.; Różalska, S.; Soboń, A.; Bernat, P. Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism: Metabolomic and proteomic studies. Microbiol. Res. 2021, 249, 126770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gan, Y.; Xu, B.; Xue, Y. The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae. Biol. Control 2014, 72, 1–8. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Horwitz, B.A.; Kenerley, C.M. Secondary metabolism in Trichoderma—A genomic perspective. Microbiology 2012, 158, 35–45. [Google Scholar] [CrossRef]
- Zeilinger, S.; Gruber, S.; Bansal, R.; Mukherjee, P.K. Secondary metabolism in Trichoderma—Chemistry meets genomics. Fungal Biol. Rev. 2016, 30, 74–90. [Google Scholar] [CrossRef]
- Bai, B.; Liu, C.; Zhang, C.; He, X.; Wang, H.; Peng, W.; Zheng, C. Trichoderma species from plant and soil: An excellent resource for biosynthesis of terpenoids with versatile bioactivities. J. Adv. Res. 2023, 49, 81–102. [Google Scholar] [CrossRef]
- Bansal, R.; Mukherjee, P.K. The terpenoid biosynthesis toolkit of Trichoderma. Nat. Prod. Commun. 2016, 11, 1934578X1601100401. [Google Scholar] [CrossRef]
- Bansal, R.; Pachauri, S.; Gururajaiah, D.; Sherkhane, P.D.; Khan, Z.; Gupta, S.; Banerjee, K.; Kumar, A.; Mukherjee, P.K. Dual role of a dedicated GAPDH in the biosynthesis of volatile and non-volatile metabolites-novel insights into the regulation of secondary metabolism in Trichoderma virens. Microbiol. Res. 2021, 253, 126862. [Google Scholar] [CrossRef]
- Isozaki, S.; Konishi, H.; Tanaka, H.; Yamamura, C.; Moriichi, K.; Ogawa, N.; Fujiya, M. Probiotic-derived heptelidic acid exerts antitumor effects on extraintestinal melanoma through glyceraldehyde-3-phosphate dehydrogenase activity control. BMC Microbiol. 2022, 22, 110. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, L.; Crom, S.L.; Gruber, S.; Coulpier, F.; Seidl-Seiboth, V.; Kubicek, C.P.; Druzhinina, I.S. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genom. 2013, 14, 121. [Google Scholar] [CrossRef]
- Ye, W.; Liu, T.; Zhang, W.; Zhang, W. The toxic mechanism of gliotoxins and biosynthetic strategies for toxicity prevention. Int. J. Mol. Sci. 2021, 22, 13510. [Google Scholar] [CrossRef] [PubMed]
- Cardoza, R.E.; McCormick, S.P.; Lindo, L.; Kim, H.-S.; Olivera, E.R.; Nelson, D.R.; Proctor, R.H.; Gutiérrez, S. A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Appl. Microbiol. Biotechnol. 2019, 103, 8087–8103. [Google Scholar] [CrossRef]
- Cardoza, R.E.; Mayo-Prieto, S.; Martínez-Reyes, N.; McCormick, S.P.; Carro-Huerga, G.; Campelo, M.P.; Rodríguez-González, Á.; Lorenzana, A.; Proctor, R.H.; Casquero, P.A. Effects of trichothecene production by Trichoderma arundinaceum isolates from bean-field soils on the defense response, growth and development of bean plants (Phaseolus vulgaris). Front. Plant Sci. 2022, 13, 1005906. [Google Scholar] [CrossRef] [PubMed]
- Cardoza, R.; Malmierca, M.; Hermosa, M.; Alexander, N.; McCormick, S.; Proctor, R.; Tijerino, A.; Rumbero, A.; Monte, E.; Gutiérrez, S. Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl. Environ. Microbiol. 2011, 77, 4867–4877. [Google Scholar] [CrossRef]
- Ngcobo, P.E.; Nkosi, B.V.Z.; Chen, W.; Nelson, D.R.; Syed, K. Evolution of cytochrome P450 enzymes and their redox partners in Archaea. Int. J. Mol. Sci. 2023, 24, 4161. [Google Scholar] [CrossRef]
- Nelson, D.R. Cytochrome P450 nomenclature, 2004. Methods Mol. Biol. 2006, 320, 1–10. [Google Scholar] [CrossRef]
- Ramírez-Valdespino, C.A.; Porras-Troncoso, M.D.; Corrales-Escobosa, A.R.; Wrobel, K.; Martínez-Hernández, P.; Olmedo-Monfil, V. Functional characterization of TvCyt2, a member of the p450 monooxygenases from Trichoderma virens relevant during the association with plants and mycoparasitism. Mol. Plant-Microbe Interact. 2018, 31, 289–298. [Google Scholar] [CrossRef]
- Chang, S.-L.; Chiang, Y.-M.; Yeh, H.-H.; Wu, T.-K.; Wang, C.C. Reconstitution of the early steps of gliotoxin biosynthesis in Aspergillus nidulans reveals the role of the monooxygenase GliC. Bioorganic Med. Chem. Lett. 2013, 23, 2155–2157. [Google Scholar] [CrossRef]
- Cardoza, R.E.; McCormick, S.P.; Martínez-Reyes, N.; Rodríguez-Fernández, J.; Busman, M.; Proctor, R.H.; Gutiérrez, S. Analysis of substrate specificity of cytochrome P450 monooxygenases involved in trichothecene toxin biosynthesis. Appl. Microbiol. Biotechnol. 2024, 108, 152. [Google Scholar] [CrossRef] [PubMed]
- Chadha, S.; Mehetre, S.T.; Bansal, R.; Kuo, A.; Aerts, A.; Grigoriev, I.V.; Druzhinina, I.S.; Mukherjee, P.K. Genome-wide analysis of cytochrome P450s of Trichoderma spp.: Annotation and evolutionary relationships. Fungal Biol. Biotechnol. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.; Salamov, A.; Korzeniewski, F.; Nordberg, H.; Shabalov, I.; Dubchak, I.; Otillar, R.; Riley, R.; Ohm, R.; Nikitin, R.; et al. MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Res. 2013, 42, D699–D704. [Google Scholar] [CrossRef]
- Crous, P.W.; Gams, W.; Stalpers, J.A.; Robert, V.; Stegehuis, G. MycoBank: An online initiative to launch mycology into the 21st century. Stud. Mycol. 2004, 50, 19–22. [Google Scholar]
- Nsele, N.N.; Padayachee, T.; Nelson, D.R.; Syed, K. Pezizomycetes genomes reveal diverse P450 complements characteristic of saprotrophic and ectomycorrhizal lifestyles. J. Fungi 2023, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 1992, 267, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Syed, K.; Mashele, S.S. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: Identification of evolutionarily conserved amino acid patterns characteristic of P450 family. PLoS ONE 2014, 9, e95616. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Boc, A.; Diallo, A.B.; Makarenkov, V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 2012, 40, W573–W579. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef]
- Marik, T.; Urbán, P.; Tyagi, C.; Szekeres, A.; Leitgeb, B.; Vágvölgyi, M.; Manczinger, L.; Druzhinina, I.S.; Vágvölgyi, C.; Kredics, L. Diversity Profile and Dynamics of Peptaibols Produced by Green Mould Trichoderma Species in Interactions with Their Hosts Agaricus bisporus and Pleurotus ostreatus. Chem. Biodivers. 2017, 14, e1700033. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, Z.; Lin, R.; Li, E.; Mao, Z.; Ling, J.; Yang, Y.; Yin, W.B.; Xie, B. Biosynthesis of Antibiotic Leucinostatins in Bio-control Fungus Purpureocillium lilacinum and Their Inhibition on Phytophthora Revealed by Genome Mining. PLoS Pathog. 2016, 12, e1005685. [Google Scholar] [CrossRef] [PubMed]
- Mlambo, G.; Padayachee, T.; Nelson, D.R.; Syed, K. Genome-Wide Analysis of the Cytochrome P450 Monooxygenases in the Lichenized Fungi of the Class Lecanoromycetes. Microorganisms 2023, 11, 2590. [Google Scholar] [CrossRef] [PubMed]
- Syed, K.; Shale, K.; Pagadala, N.S.; Tuszynski, J. Systematic identification and evolutionary analysis of catalytically versatile cytochrome P450 monooxygenase families enriched in model basidiomycete fungi. PLoS ONE 2014, 9, e86683. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.; Skrede, I.; Moody, S.C. Cytochrome P450 complement may contribute to niche adaptation in serpula wood-decay fungi. J. Fungi 2022, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lee, M.-K.; Jefcoate, C.; Kim, S.-C.; Chen, F.; Yu, J.-H. Fungal cytochrome p450 monooxygenases: Their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 2014, 6, 1620–1634. [Google Scholar] [CrossRef]
- Moktali, V.; Park, J.; Fedorova-Abrams, N.D.; Park, B.; Choi, J.; Lee, Y.-H.; Kang, S. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genom. 2012, 13, 525. [Google Scholar] [CrossRef] [PubMed]
- Lepesheva, G.I.; Friggeri, L.; Waterman, M.R. CYP51 as drug targets for fungi and protozoan parasites: Past, present and future. Parasitology 2018, 145, 1820–1836. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.L.; Lamb, D.C.; Baldwin, B.C.; Corran, A.J.; Kelly, D.E. Characterization of Saccharomyces cerevisiae CYP61, sterol delta22-desaturase, and inhibition by azole antifungal agents. J. Biol. Chem. 1997, 272, 9986–9988. [Google Scholar] [CrossRef]
- Jordá, T.; Puig, S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef]
- Keller, N.P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 2019, 17, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Greule, A.; Stok, J.E.; De Voss, J.J.; Cryle, M.J. Unrivalled diversity: The many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat. Prod. Rep. 2018, 35, 757–791. [Google Scholar] [CrossRef]
- Yan, Y.; Zang, X.; Jamieson, C.S.; Lin, H.-C.; Houk, K.; Zhou, J.; Tang, Y. Biosynthesis of the fungal glyceraldehyde-3-phosphate dehydrogenase inhibitor heptelidic acid and mechanism of self-resistance. Chem. Sci. 2020, 11, 9554–9562. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; Van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
Species Name | Information | Reference |
---|---|---|
Ampelomyces quisqualis HMLAC05119 | Ampelomyces is an ecologically and economically valuable hyperparasite that can parasitize the hypha, conidiophore, conidium, and perithecium of powdery mildew fungi. Ampelomyces species were among the first fungi used as plant parasitic fungi biocontrol agents. Ampelomyces species produce secondary metabolites such as quinones, phenolic compounds, and lytic enzymes inhibiting fungi or bacteria and have potential antibiotic use against human pathogens. | [5,6] |
Caulochytrium protostelioides ATCC 52028 single-cell | This species is a mycoparasite of Sordaria species and the first example of zoosporic true fungi having aerial sporangia, a unique trait within the Chytridiomycota. The hyphae secrete hydrophobin, a small cysteine-rich protein that develops aerial hyphae. This is the only fungus identified to produce hydrophobins outside the Dikarya (Ascomycota and Basidiomycota). | [7] |
Clonostachys rosea IK726 | This species is known for its biocontrol capabilities against a wide variety of plant pathogenic fungi, and various commercial products based on this fungus are available for use in biocontrol applications worldwide. This fungus effectively controls plant diseases caused by fungal and oomycete pathogens such as Alternaria spp., Bipolaris sorokiniana, Botrytis cinerea, Fusarium spp., Helminthosporium solani, Pythium tracheiphilum, and Zymoseptoria tritici. | [8] |
Dimargaris cristalligena RSA 468 single-cell | This fungus is a mycoparasite from the subphylum Kickxellomycotina (formerly of the Zygomycota). It is primarily a haustorial parasite of Mucorales and is known to produce various secondary metabolites. | [7,9] |
Escovopsis weberi CC031208-10 | This fungus is a parasite of Leucoagaricus spp., a garden fungus of leaf-cutting ants. It has adapted to mycoparasitism to the extent that it has lost plant-material-degrading enzymes. This fungus secretes various secondary metabolites that have antifungal and antibacterial activity. | [10,11] |
Naematelia encephela UCDFST 68-887.2 | This fugus is a parasite of Stereum sanguinolentum. This fungus has a worldwide presence. | [12] |
Piptocephalis cylindrospora RSA 2659 single-cell | P. cylindrospora is an obligatory parasite of Mucorales that infects the host with specialized haustoria. Haustoria are branched, walled cells that penetrate host cell walls to absorb energy. Strain RSA2659 is grown on the mucoraceous mould Cokeromyces recurvatus. This fungus is distinguished by the presence of relatively large, brownish sporophores with three-dimensional dichotomous branching. | [7] |
Rozella allomycis CSF55 | R. allomycis is an obligate parasite of the Blastocladiomycotan fungus Allomyces. | [13] |
Syncephalis pseudoplumigaleata Benny S71-1 single-cell | This fungus is an obligate parasite of zygomycetes. | [7] |
Thamnocephalis sphaerospora RSA 1356 single-cell | This fungus is believed to be a weak parasite of other fungi and can be cultivated on Cokeromyces (a Mucoralean). | [7] |
Tremella mesenterica Fries | This species is a parasite of the Peniophora fungus and has a deceptive appearance as if it is growing on wood. However, it grows on the crust of fungal mycelium. | [14] |
Trichoderma arundinaceum IBT 40837 | This species produces the biotechnologically valuable compound harzianum A. Harzianum A is used as a biocontrol agent against plant fungal pathogens and promotes plant defence. | [15] |
Trichoderma asperelloides T203 | This fungus was one of the earliest models for understanding Trichoderma mycoparasitism and rhizosphere interactions. It enhanced plant growth potential and tolerance to abiotic stressors and induced systemic resistance to fungal and bacterial disease-causing pathogens. As a result, T. asperelloides strain T203 was the subject of several laboratory, greenhouse, and large-scale field investigations. It was incorporated into commercial agricultural preparations to improve plant development and as a biocontrol agent for plant diseases. | [16] |
Trichoderma asperellum CBS 433.97 | T. asperellum is a potent antifungal agent because it can parasitize or hinder the growth and development of other fungi. As a result, this species is used as a biological control agent against a wide range of plant-pathogenic fungi and fungi-like protozoa, including Phytophthora megakarya and nematodes. T. asperellum has also exhibited antibacterial activity via the synthesis of trichotoxin peptaibols and produces various secondary metabolites. | [17,18] |
Trichoderma atroviride | This fungus is a biocontrol agent for many economically significant airborne and soilborne plant diseases. Its mycoparasitic activity is due to successful food competition, cell-wall-degrading enzyme synthesis, and antibiosis. This fungus also produces different types of secondary metabolites. | [19,20] |
Trichoderma citrinoviride TUCIM 6016 | T. citrinoviride has antifungal activities and nematode resistance, and its use as a biological control of plant fungal pathogens and nematodes has been elucidated. | [17,21,22] |
Trichoderma gamsii T6085 | One of the most promising agents for controlling Fusarium head blight (FHB) symptoms and mycotoxin accumulations, combined with mycoparasitic, antagonistic, and competitive activity against Fusarium graminearum, one of the primary causal agents of FHB. | [23] |
Trichoderma guizhouense NJAU 4742 | A mycoparasite of F. oxysporum, it has the potential to develop into a novel biofertilizer and biofungicide. | [17,24] |
Trichoderma hamatum GD12 | This fungus is unique because it can promote plant growth, activate biocontrol against pre- and post-emergence soil pathogens, and induce systemic resistance to foliar pathogens. | [25] |
Trichoderma harzianum CBS 226.95 | T. harzianum is extensively researched due to its plant protection properties. It produces secondary metabolites with antibiotic characteristics, including peptaibols, harzianic acid, trichoharzianin, and trichodermin. This fungus is used for foliar application, seed, and soil treatments to suppress diseases caused by pathogens such as Botrytis, Fusarium, and Penicillium sp. | [17,26] |
Trichoderma longibrachiatum ATCC 18648 | T. longibrachiatum’s parasitic and deadly effects on the cysts of the worm Heterodera avenae have led to its proposed use as a biocontrol agent. Because of its mycoparasitism, it has been investigated for reducing crop fungal diseases. | [17,27] |
Trichoderma virens Gv29-8 | This species produces many secondary metabolites with potential biotechnological values, including gliotoxin and gliovirin, which have potential biocontrol activity against Rhizoctonia solani. | [19] |
Species Name | P450 Family and Subfamily | Count |
---|---|---|
Clonostachys rosea IK726 | CYP51F | 2 |
CYP61A | 3 | |
Trichoderma virens Gv29-8 | CYP61A | 2 |
Thamnocephalis sphaerospora RSA 1356 single-cell | CYP51F | 2 |
Trichoderma longibrachiatum ATCC 18648 | CYP61A | 2 |
Trichoderma hamatum GD12 | CYP51F | 2 |
CYP61A | 2 | |
Trichoderma atroviride | CYP51F | 2 |
Trichoderma gamsii T6085 | CYP51F | 2 |
CYP61A | 2 | |
Trichoderma asperellum CBS 433.97 | CYP61A | 2 |
Trichoderma citrinoviride TUCIM 6016 | CYP61A | 2 |
Trichoderma asperelloides T203 | CYP61A | 2 |
Trichoderma pleuroti TPhu1 | CYP61A | 2 |
Trichoderma arundinaceum IBT 40837 | CYP51F | 2 |
CYP61A | 2 | |
Trichoderma guizhouense NJAU 4742 | CYP51F | 2 |
CYP61A | 3 | |
Trichoderma harzianum CBS 226.95 | CYP51F | 2 |
CYP61A | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, P.R.; Padayachee, T.; Gamede, P.; Nkosi, B.V.Z.; Nelson, D.R.; Karpoormath, R.; Syed, K. Comparative Genome-Wide Analysis Underscores the Rapid Expansion of Cytochrome P450s for Secondary Metabolism in the Mycoparasite Pezizomycetes. Microbiol. Res. 2024, 15, 1251-1268. https://doi.org/10.3390/microbiolres15030084
Syed PR, Padayachee T, Gamede P, Nkosi BVZ, Nelson DR, Karpoormath R, Syed K. Comparative Genome-Wide Analysis Underscores the Rapid Expansion of Cytochrome P450s for Secondary Metabolism in the Mycoparasite Pezizomycetes. Microbiology Research. 2024; 15(3):1251-1268. https://doi.org/10.3390/microbiolres15030084
Chicago/Turabian StyleSyed, Puleng Rosinah, Tiara Padayachee, Philasande Gamede, Bridget Valeria Zinhle Nkosi, David R. Nelson, Rajshekhar Karpoormath, and Khajamohiddin Syed. 2024. "Comparative Genome-Wide Analysis Underscores the Rapid Expansion of Cytochrome P450s for Secondary Metabolism in the Mycoparasite Pezizomycetes" Microbiology Research 15, no. 3: 1251-1268. https://doi.org/10.3390/microbiolres15030084
APA StyleSyed, P. R., Padayachee, T., Gamede, P., Nkosi, B. V. Z., Nelson, D. R., Karpoormath, R., & Syed, K. (2024). Comparative Genome-Wide Analysis Underscores the Rapid Expansion of Cytochrome P450s for Secondary Metabolism in the Mycoparasite Pezizomycetes. Microbiology Research, 15(3), 1251-1268. https://doi.org/10.3390/microbiolres15030084