Antimicrobial Activity and the Synergy Potential of Cinnamomum aromaticum Nees and Syzygium aromaticum (L.) Merr. et Perry Essential Oils with Antimicrobial Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and EOs Extraction
2.2. GC/MS Analysis
2.3. Antimicrobial Assay
2.3.1. Microorganism Strains
2.3.2. Disc Diffusion Assay
2.3.3. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Microbicidal Concentration (MMC)
2.3.4. Synergistic Effect of EOs with Standard Antimicrobials
3. Results and Discussion
3.1. Yield and Chemical Composition of the EOs
3.2. Antimicrobial Activity
3.3. Synergistic Effect of EOs with Standard Antibiotics
3.4. Synergistic Effect of EOs with Standard Antifungals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.S.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Taibi, M.; Laaraj, S.; Loukili, E.H.; Haddou, M.; El Hachlafi, N.; Naceiri Mrabti, H.; Baraich, A.; Bellaouchi, R.; Asehraou, A.; et al. Chemical profiling of volatile compounds of the essential oil of grey-leaved rockrose (Cistus albidus L.) and its antioxidant, anti-inflammatory, antibacterial, antifungal, and anticancer activity in vitro and in silico. Front. Chem. 2024, 12, 1334028. [Google Scholar] [CrossRef]
- Simbu, S.; Orchard, A.; Vuuren, S.v. Essential Oil Compounds in Combination with Conventional Antibiotics for Dermatology. Molecules 2024, 29, 1225. [Google Scholar] [CrossRef] [PubMed]
- Tayyaba, U.; Ahmed, S. Epidemiology and Prevalence of Beta-Lactamases and Recent Resistance Pattern in Gram-Negative Bacteria from Environmental Reservoirs. In Beta-Lactam Resistance in Gram-Negative Bacteria: Threats and Challenges; Springer Nature: Singapore, 2022; pp. 219–236. [Google Scholar]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.; Yiap, B.C.; Ping, H.C.; Lim, S.H. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Harris, R. Synergism in the essential oil world. Int. J. Aromather. 2002, 12, 179–186. [Google Scholar] [CrossRef]
- Si, H.; Hu, J.; Liu, Z.; Zeng, Z.L. Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum beta-lactamase-producing Escherichia coli. FEMS Immunol. Med. Microbiol. 2008, 53, 190–194. [Google Scholar] [CrossRef] [PubMed]
- van Vuuren, S.F.; Suliman, S.; Viljoen, A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol. 2009, 48, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Fadli, M.; Saad, A.; Sayadi, S.; Chevalier, J.; Mezrioui, N.-E.; Pagès, J.-M.; Hassani, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection—Bacteria and their synergistic potential with antibiotics. Phytomedicine 2012, 19, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, J.H. In vitro inhibitory activities of essential oils from two Korean thymus species against antibiotic-resistant pathogens. Arch. Pharm. Res. 2005, 28, 897–901. [Google Scholar] [CrossRef]
- Rosato, A.; Piarulli, M.; Corbo, F.; Muraglia, M.; Carone, A.; Vitali, M.E.; Vitali, C. In vitro synergistic antibacterial action of certain combinations of gentamicin and essential oils. Curr. Med. Chem. 2010, 17, 3289–3295. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Sun, J.; Ford, P. Differentiation of the four major species of cinnamons (C. burmannii, C. verum, C. cassia, and C. loureiroi) using a flow injection mass spectrometric (FIMS) fingerprinting method. J. Agric. Food Chem. 2014, 62, 2516–2521. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, N.; Rosiak, A.; Kałużna-Czaplińska, J. The Potential Role of Cinnamon in Human Health. Forests 2021, 12, 648. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed]
- El amrani, S.; El Ouali Lalami, A.; Ez zoubi, Y.; Moukhafi, K.; Bouslamti, R.; Lairini, S. Evaluation of antibacterial and antioxidant effects of cinnamon and clove essential oils from Madagascar. Mater. Today Proc. 2019, 13, 762–770. [Google Scholar] [CrossRef]
- Pandey, V.K.; Srivastava, S.; Ashish; Dash, K.K.; Singh, R.; Dar, A.H.; Singh, T.; Farooqui, A.; Shaikh, A.M.; Kovacs, B. Bioactive properties of clove (Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review. Heliyon 2024, 10, e22437. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Gill, A.O.; Holley, R.A. Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 2004, 70, 5750–5755. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Feng, H.; Lu, J.; Xiang, H.; Wang, D.; Dong, J.; Wang, J.; Wang, X.; Liu, J.; Deng, X. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl. Environ. Microbiol. 2010, 76, 5846–5851. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimi-Crobial Disk Susceptibility Tests, 12th ed.; Approved Standard M02-A12; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Suseptibility Tests for Bacteria That Grow Aerobically, 10th ed.; Approved Standard M07-A10; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts Approved Standard M27-A3, 3rd ed.; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, Standard M100, 30th ed.; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Bonapace, C.R.; Bosso, J.A.; Friedrich, L.V.; White, R.L. Comparison of methods of interpretation of checkerboard synergy testing. Diagn. Microbiol. Infect. Dis. 2002, 44, 363–366. [Google Scholar] [CrossRef] [PubMed]
- El-Azizi, M. Novel Microdilution Method to Assess Double and Triple Antibiotic Combination Therapy In Vitro. Int. J. Microbiol. 2016, 2016, 4612021. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. European Committee for Antimicrobial Susceptibility Testing: Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000, 6, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Sontakke, M.D.; Syed, H.M.; Sawate, A.R. Studies on extraction of essential oils from spices (Cardamom and Cinnamon). Int. J. Chem. Stud. 2018, 6, 2787–2789. [Google Scholar]
- Geng, S.; Cui, Z.; Huang, X.; Chen, Y.; Xu, D.; Xiong, P. Variations in essential oil yield and composition during Cinnamomum cassia bark growth. Ind. Crops Prod. 2011, 33, 248–252. [Google Scholar] [CrossRef]
- Razafimamonjison, D.E.N.G.; Jahiel, M.; Ramanoelina, P.; Fawbush, F.; Danthu, P. Effects of phenological stages on yield and composition of essential oil of Syzygium aromaticum buds from Madagascar. Int. J. Basic Appl. Sci. 2013, 2, 312–318. [Google Scholar]
- Hossain, M.A.; Harbi, S.R.A.L.; Weli, A.M.; Al-Riyami, Q.; Al-Sabahi, J.N. Comparison of chemical constituents and antimicrobial activities of three essential oils from three different brands’ clove samples collected from Gulf region. Asian Pac. J. Trop. Dis. 2014, 4, 262–268. [Google Scholar] [CrossRef]
- Ameur, E.; Sarra, M.; Yosra, D.; Mariem, K.; Nabil, A.; Lynen, F.; Larbi, K.M. Chemical composition of essential oils of eight Tunisian Eucalyptus species and their antibacterial activity against strains responsible for otitis. BMC Complement. Med. Ther. 2021, 21, 209. [Google Scholar] [CrossRef]
- Alfikri, F.N.; Pujiarti, R.; Wibisono, M.G.; Hardiyanto, E.B. Yield, Quality, and Antioxidant Activity of Clove (Syzygium aromaticum L.) Bud Oil at the Different Phenological Stages in Young and Mature Trees. Scientifica 2020, 2020, 9701701. [Google Scholar] [CrossRef]
- Acidi, A.; Sedik, A.; Rizi, A.; Bouasla, R.; Rachedi, K.O.; Berredjem, M.; Delimi, A.; Abdennouri, A.; Ferkous, H.; Yadav, K.K.; et al. Examination of the main chemical components of essential oil of Syzygium aromaticum as a corrosion inhibitor on the mild steel in 0.5 M HCl medium. J. Mol. Liq. 2023, 391, 123423. [Google Scholar] [CrossRef]
- Kiki, M.J. In Vitro Antiviral Potential, Antioxidant, and Chemical Composition of Clove (Syzygium aromaticum) Essential Oil. Molecules 2023, 28, 2421. [Google Scholar] [CrossRef] [PubMed]
- Kapadiya, S.M.; Parikh, J.; Desai, M.A. A greener approach towards isolating clove oil from buds of Syzygium aromaticum using microwave radiation. Ind. Crops Prod. 2018, 112, 626–632. [Google Scholar] [CrossRef]
- Golmakani, M.-T.; Zare, M.; Razzaghi, S. Eugenol Enrichment of Clove Bud Essential Oil Using Different Microwave-assisted Distillation Methods. Food Sci. Technol. Res. 2017, 23, 385–394. [Google Scholar] [CrossRef]
- Gonzalez-Rivera, J.; Duce, C.; Campanella, B.; Bernazzani, L.; Ferrari, C.; Tanzini, E.; Onor, M.; Longo, I.; Ruiz, J.C.; Tinè, M.R.; et al. In situ microwave assisted extraction of clove buds to isolate essential oil, polyphenols, and lignocellulosic compounds. Ind. Crops Prod. 2021, 161, 113203. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef]
- Minozzo, M.; de Souza, M.A.; Bernardi, J.L.; Puton, B.M.S.; Valduga, E.; Steffens, C.; Paroul, N.; Cansian, R.L. Antifungal activity and aroma persistence of free and encapsulated Cinnamomum cassia essential oil in maize. Int. J. Food Microbiol. 2023, 394, 110178. [Google Scholar] [CrossRef]
- Xu, X.; Li, Q.; Dong, W.; Zhao, G.; Lu, Y.; Huang, X.; Liang, X. Cinnamon cassia oil chitosan nanoparticles: Physicochemical properties and anti-breast cancer activity. Int. J. Biol. Macromol. 2023, 224, 1065–1078. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Hua, B.; Tao, L.; Chen, W.; Gao, Y.; Suo, J.; Yu, W.; Wu, J.; Song, L. The interaction of temperature and relative humidity affects the main aromatic components in postharvest Torreya grandis nuts. Food Chem. 2022, 368, 130836. [Google Scholar] [CrossRef]
- Frohlich, P.C.; Santos, K.A.; Palú, F.; Cardozo-Filho, L.; da Silva, C.; da Silva, E.A. Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum) leaves using supercritical CO2. J. Supercrit. Fluids 2019, 143, 313–320. [Google Scholar] [CrossRef]
- Trinh, N.-T.-T.; Dumas, E.; Thanh, M.; Degraeve, P.; Ben Amara, C.; Gharsallaoui, A.; Oulahal, N. Effect of a Vietnamese Cinnamomum cassia essential oil and its major component trans -cinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force of Listeria innocua. Can. J. Microbiol. 2015, 61, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med. 2016, 16, 158. [Google Scholar] [CrossRef]
- Yap, P.S.; Krishnan, T.; Chan, K.G.; Lim, S.H. Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain. J. Microbiol. Biotechnol. 2015, 25, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Trajano, V.; Lima, E.; Travassos, A.; Souza, E. Inhibitory effect of the essential oil from Cinnamomum zeylanicum Blume leaves on some food-related bacteria. Food Sci. Technol. 2010, 30, 771–775. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antioxidant and Antimicrobial Activities of Thyme and Clove Essential Oils and Application in Minced Beef. J. Food Process. Preserv. 2015, 39, 1261–1271. [Google Scholar] [CrossRef]
- El-Darier, S.; Elahwany, A.; Elkenany, E.; Abdeldaim, A. An in vitro study on antimicrobial and anticancer potentiality of thyme and clove oils. Rend. Lincei. Sci. Fis. Nat. 2018, 29, 131–139. [Google Scholar] [CrossRef]
- Manrique, Y.; Gibis, M.; Schmidt, H.; Weiss, J. Antimicrobial efficacy of sequentially applied eugenol against food spoilage micro-organisms. J. Appl. Microbiol. 2016, 121, 1699–1709. [Google Scholar] [CrossRef]
- Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Catrenich, C.E.; Charbonneau, D.L.; Bartolo, R.G. Activity and mechanisms of action of selected biocidal agents on Gram. J. Appl. Microbiol. 2003, 94, 240–247. [Google Scholar] [CrossRef]
- Malczak, I.; Gajda, A. Interactions of naturally occurring compounds with antimicrobials. J. Pharm. Anal. 2023, 13, 1452–1470. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, G.E.; Lawrence, R. Mechanisms of bactericidal action of Eugenol against Escherichia coli. J. Herb. Med. 2021, 26, 100406. [Google Scholar] [CrossRef]
- Kumar, D.; Mehta, N.; Chatli, M.K.; Kaur, G.; Malav, O.; Kumar, P. In-vitro assessment of antimicrobial and antioxidant potential of essential oils from Lemongrass (Cymbopogon citratus), Cinnamon (Cinnamomum verum) and Clove (Syzygium aromaticum). J. Anim. Res. 2017, 76, 1099–1105. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): Activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 2007, 55, 5484–5490. [Google Scholar] [CrossRef]
- Jantan, I.; Moharam, B.; Santhanam, J.; Jamal, J. Correlation Between Chemical Composition and Antifungal Activity of the Essential Oils of Eight Cinnamomum. Species. Pharm. Biol. 2008, 46, 406–412. [Google Scholar] [CrossRef]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef]
- Yang, C.H.; Li, R.X.; Chuang, L.Y. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules 2012, 17, 7294–7304. [Google Scholar] [CrossRef] [PubMed]
- Gucwa, K.; Milewski, S.; Dymerski, T.; Szweda, P. Investigation of the Antifungal Activity and Mode of Action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus Essential Oils. Molecules 2018, 23, 1116. [Google Scholar] [CrossRef]
- Biernasiuk, A.; Baj, T.; Malm, A. Clove Essential Oil and Its Main Constituent, Eugenol, as Potential Natural Antifungals against Candida spp. Alone or in Combination with Other Antimycotics Due to Synergistic Interactions. Molecules 2022, 28, 215. [Google Scholar] [CrossRef]
- Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef]
- Castro, R.D.d.; Lima, E.O. Anti-Candida activity and chemical composition of Cinnamomum zeylanicum blume essential oil. Braz. Arch. Biol. Technol. 2013, 56, 749–755. [Google Scholar] [CrossRef]
- Blanco, A.R.; Nostro, A.; D’Angelo, V.; D’Arrigo, M.; Mazzone, M.G.; Marino, A. Efficacy of a Fixed Combination of Tetracycline, Chloramphenicol, and Colistimethate Sodium for Treatment of Candida albicans Keratitis. Invest. Ophthalmol. Vis. Sci. 2017, 58, 4292–4298. [Google Scholar] [CrossRef]
- Goñi, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Ali, S.M.; Khan, A.A.; Ahmed, I.; Musaddiq, M.; Ahmed, K.S.; Polasa, H.; Rao, L.V.; Habibullah, C.M.; Sechi, L.A.; Ahmed, N. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clin. Microbiol. Antimicrob. 2005, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Mahadlek, J.; Charoenteeraboon, J.; Phaechamud, T. Combination Effects of the Antimicrobial Agents and Cinnamon Oil. Adv. Mater. Res. 2012, 506, 246–249. [Google Scholar] [CrossRef]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J. Adv. Pharm. Technol. Res. 2019, 10, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.; Lim, S.H.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef]
- Marouf, R.; Ermolaev, A.A.; Podoprigora, I.V.; Senyagin, A.N.; Mbarga, M.J. Antibacterial activity of Clove Syzygium aromaticum L. and synergism with antibiotics against multidrug-resistant uropathogenic E. coli. RUDN Med. 2023, 27, 379–390. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Moon, S.E.; Kim, H.Y.; Cha, J.D. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch. Oral. Biol. 2011, 56, 907–916. [Google Scholar] [CrossRef]
- Jafri, H.; Ahmad, I. In Vitro Efficacy of Clove Oil and Eugenol against Staphylococcus spp. and Streptococcus mutans on Hydrophobicity, Hemolysin Production and Biofilms and their Synergy with Antibiotics. Adv. Microbiol. 2021, 11, 27. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M. Eugenol—From the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules 2012, 17, 6953–6981. [Google Scholar] [CrossRef] [PubMed]
- Hemaiswarya, S.; Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine 2009, 16, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Watanakunakorn, C. Mode of action and in-vitro activity of vancomycin. J. Antimicrob. Chemother. 1984, 14, 7–18. [Google Scholar] [CrossRef]
- Sagar, P.K.; Sharma, P.; Singh, R. Antibacterial efficacy of different combinations of clove, eucalyptus, ginger, and selected antibiotics against clinical isolates of Pseudomonas aeruginosa. AYU (Int. Q. J. Res. Ayurveda) 2020, 41, 123–129. [Google Scholar] [CrossRef]
- Parker, R.A.; Gabriel, K.T.; Graham, K.D.; Butts, B.K.; Cornelison, C.T. Antifungal Activity of Select Essential Oils against Candida auris and Their Interactions with Antifungal Drugs. Pathogens 2022, 11, 821. [Google Scholar] [CrossRef]
- Sharifzadeh, A.; Shokri, H. In vitro synergy of eugenol on the antifungal effects of voriconazole against Candida tropicalis and Candida krusei strains isolated from the genital tract of mares. Equine Vet. J. 2021, 53, 94–101. [Google Scholar] [CrossRef] [PubMed]
- de Paula, S.B.; Bartelli, T.F.; Di Raimo, V.; Santos, J.P.; Morey, A.T.; Bosini, M.A.; Nakamura, C.V.; Yamauchi, L.M.; Yamada-Ogatta, S.F. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients. Evid.-Based Complement. Altern. Med. 2014, 2014, 505204. [Google Scholar] [CrossRef]
- Jafri, H.; Banerjee, G.; Khan, M.S.A.; Ahmad, I.; Abulreesh, H.H.; Althubiani, A.S. Synergistic interaction of eugenol and antimicrobial drugs in eradication of single and mixed biofilms of Candida albicans and Streptococcus mutans. AMB Express 2020, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Shaban, S.; Patel, M.; Ahmad, A. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris. Sci. Rep. 2020, 10, 1162. [Google Scholar] [CrossRef]
- Shokri, H.; Minooieanhaghigh, M.; Sharifzadeh, A. The Synergistic Activity of Eugenol and Fluconazole on the Induction of Necrosis and Apoptosis in Candida Krusei Isolates of HIV+ Patients with Oral Candidiasis. Q. Horiz. Med. Sci. 2021, 27, 434–449. [Google Scholar] [CrossRef]
- Khan, M.S.A. Synergistic Interaction of Certain Essential Oils and Their Active Compounds with Fluconazole against Azole-resistant Strains of Cryptococcus neoformans. Ann. Afr. Med. 2024, 23, 391–399. [Google Scholar] [CrossRef]
- da Costa, J.S.; Barroso, A.S.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and Antioxidant Evaluation of Essential Oil from Eugenia uniflora L., Curzerene-Rich, Thermally Produced in Situ. Biomolecules 2020, 10, 328. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Le, T.V.A.; Dang, N.N.; Nguyen, D.C.; Nguyen, P.T.N.; Tran, T.T.; Nguyen, Q.V.; Bach, L.G.; Thuy Nguyen Pham, D. Microencapsulation of Essential Oils by Spray-Drying and Influencing Factors. J. Food Qual. 2021, 2021, 5525879. [Google Scholar] [CrossRef]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef]
Plant Species | Family | Common Noun | Local Names | Part of the Plant Used | Oil Yield a (%) |
---|---|---|---|---|---|
C. aromaticum | Lauraceae | Cinnamon | Karfa | Bark | 0.74 |
S. aromaticum | Myrtaceae | Clove | Kronfel | Flower buds | 2.4 |
RT a | Compounds b | C. aromaticum | S.aromaticum |
---|---|---|---|
8.11 | Nonane | - c | 0.06 |
10.01 | Benzaldehyde | 1.37 | - |
12.50 | α-Pinene | - | 0.11 |
12.95 | 1.8-Cineole | - | 0.05 |
15.01 | Linalool | - | 0.06 |
17.21 | 2-Phenyl propanal | 1.98 | - |
17.36 | endo-Borneol | 0.89 | - |
18.34 | Methyl salicylate | - | 0.35 |
20.09 | Carvone | 1.09 | - |
21.30 | (Z)-Cinnamyl alcohol | 8.16 | - |
22.21 | Cinnamaldehyde | 47.04 | - |
22.30 | Isobornyl acetate | 2.58 | - |
22.50 | Azulene | 1.76 | - |
23.42 | Citral | 0.58 | - |
24.09 | Eugenol | 3.07 | 71.49 |
24.60 | Copaene | 6.33 | - |
25.81 | Vanillin | - | 0.04 |
26.21 | 2.6-Dimethyl-1.3.6-heptatriene | - | 1.01 |
27.25 | Methyleugenol | - | 0.05 |
27.68 | Benzene, 1-methyl-3.5-bis(1-methylethyl)- | 1.78 | - |
29.13 | Cinnamyl acetate | 18.93 | - |
29.58 | β-Caryophyllene | - | 23.43 |
29.66 | Naphthalene, 2-methoxy- | 1.01 | - |
32.63 | 1.5.9-Cyclododecatriene, (E.E.E)- | 1.13 | - |
33.67 | Nerolidol | 0.44 | - |
33.85 | Eugenol acetate | - | 2 |
Oxygen-containing monoterpenes | 5.63 | 71.6 | |
Monoterpene hydrocarbons | 1.76 | 0.11 | |
Oxygen-containing sesquiterpenes | 0.44 | - | |
Sesquiterpene hydrocarbons | 6.33 | 23.43 | |
Other | 83.98 | 3.51 | |
TOTAL% | 98.14 | 98.65 |
Bacterial Strains | Essential Oil | Antibiotics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cinnamomum aromaticum | Syzygium aromaticum | Cip | Vanc | |||||||
IZ | MIC | MMC | IZ | MIC | MMC | IZ | MIC | IZ | MIC | |
S. aureus | 21.63 ± 0.35 | 0.039 | 0.156 | 10.97 ± 0.45 | 1.25 | 1.25 | 23.16 ± 0.03 | 0.39 | 14.24 ± 0.21 | 1.56 |
L. monocytogenes | 26.35 ± 0.12 | 0.078 | 0.156 | 10.63 ± 0.35 | 1.25 | 1.25 | 8.68 ± 0.18 | 3.125 | 14.88 ± 0.42 | 6.25 |
E. coli | 20.48 ± 0.15 | 0.078 | 0.156 | 10.97 ± 0.41 | 0.625 | 0.625 | 27.24 ± 0.14 | 0.39 | 6 ± 0 | 25 |
K. pneumoniae | 20.71 ± 0.06 | 0.078 | 0.156 | 9.31 ± 0.29 | 1.25 | 1.25 | 24.82 ± 0.16 | 0.195 | 13.87 ± 0.53 | 50 |
S. enterica | 16.99 ± 0.38 | 0.078 | 0.078 | 11.09 ± 0.33 | 0.625 | 0.625 | 28.36 ± 0.42 | 0.78 | 6 ± 0 | 12.5 |
Yeast Strains | Essential Oil | Antifungals | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cinnamomum aromaticum | Syzygium aromaticum | Fluc | Amph | |||||||
IZ | MIC | MMC | IZ | MIC | MMC | IZ | MIC | IZ | MIC | |
C. albicans L4 | 41.65 ± 0.08 | 0.039 | 0.078 | 29.91± 0.15 | 0.625 | 1.25 | 28.98 ± 0.64 | 3.125 | 12.55 ± 0.34 | 1.562 |
C. glabrata L7 | 35.69 ± 0.31 | 0.039 | 0.039 | 27.34 ± 0.15 | 0.625 | 0.625 | 26.64 ± 0.18 | 6.25 | 14.47 ± 0.11 | 1.562 |
C. krusei L10 | 53.16 ± 0.43 | 0.039 | 0.039 | 29.43 ± 0.29 | 0.313 | 1.25 | 19.33 ± 0.19 | 1.562 | 14.97 ± 0.56 | 0.781 |
C. parapsilosis L18 | 42.79 ± 0.23 | 0.039 | 0.039 | 23.37 ± 0.26 | 0.625 | 1.25 | 19.62 ± 0.40 | 6.25 | 8.12 ± 0.34 | 1.562 |
Bacterial Strains | Ciprofloxacin | Vancomycin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MIC Cip + Ca | Gain | FICI | Effect | MIC | MIC Vanc + Ca | Gain | FICI | Effect | |
S. aureus | 0.39 | 0.097 | 4 | 0.50 | Synergism | 1.56 | 0.78 | 2 | 0.75 | Additive effect |
L. monocytogenes | 3.125 | 3.125 | 1 | 1.25 | Indifference | 6.25 | 0.195 | 32 | 0.28 | Synergism |
E. coli | 0.39 | 0.012 | 32 | 0.28 | Synergism | 25 | 12.5 | 2 | 0.75 | Additive effect |
K. pneumoniae | 0.195 | 0.195 | 1 | 1.25 | Indifference | 50 | 0.87 | 64 | 0.27 | Synergism |
S. enterica | 0.78 | 0.006 | 128 | 0.26 | Synergism | 12.5 | 12.5 | 1 | 1.25 | Indifference |
Bacterial Strains | Ciprofloxacin | Vancomycin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MIC Cip + Sa | Gain | FICI | Effect | MIC | MIC Vanc + Sa | Gain | FICI | Effect | |
S. aureus | 0.39 | 0.097 | 4 | 0.50 | Synergism | 1.56 | 0.39 | 4 | 0.50 | Synergism |
L. monocytogenes | 3.125 | 0.195 | 16 | 0.31 | Synergism | 6.25 | 0.781 | 8 | 0.37 | Synergism |
E. coli | 0.39 | 0.024 | 16 | 0.31 | Synergism | 25 | 12.5 | 2 | 0.75 | Additive effect |
K. pneumoniae | 0.195 | 0.097 | 2 | 0.75 | Additive effect | 50 | 3.13 | 16 | 0.31 | Synergism |
S. enterica | 0.78 | 0.012 | 64 | 0.27 | Synergism | 12.5 | 12.5 | 1 | 1.25 | Indifference |
Candida Strains | Fluconazol | Amphotericin B | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MIC Fluc + Ca | Gain | FICI | Effect | MIC | MIC Amph + Ca | Gain | FICI | Effect | |
C. albicans L4 | 3.125 | 3.125 | 1 | 1.25 | Indifference | 1.562 | 0.39 | 4 | 0.50 | Synergism |
C. glabrata L7 | 6.25 | 0.78 | 8 | 0.50 | Synergism | 1.562 | 0.39 | 4 | 0.50 | Synergism |
C. krusei L10 | 1.562 | 1.562 | 1 | 1.25 | Indifference | 0.781 | 0.781 | 1 | 1.25 | Indifference |
C. parapsilosis L18 | 6.25 | 6.25 | 1 | 1.25 | Indifference | 1.562 | 1.562 | 1 | 125 | Indifference |
Candida Strains | Fluconazol | Amphotericin B | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MIC Fluc + Sa | Gain | FICI | Effect | MIC | MIC Amph + Sa | Gain | FICI | Effect | |
C. albicans L4 | 3.125 | 0.195 | 16 | 0.31 | Synergism | 1.562 | 0.391 | 4 | 0.50 | Synergism |
C. glabrata L7 | 6.25 | 0.195 | 32 | 0.28 | Synergism | 1.562 | 0.391 | 4 | 0.50 | Synergism |
C. krusei L10 | 1.562 | 1.562 | 1 | 1.25 | Indifference | 0.781 | 0.781 | 1 | 1.25 | Indifference |
C. parapsilosis L18 | 6.25 | 6.25 | 1 | 1.25 | Indifference | 1.562 | 1.562 | 1 | 1.25 | Indifference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Baz, S.; Soulaimani, B.; Abbad, I.; Azgaou, Z.; Lotfi, E.M.; Malha, M.; Mezrioui, N. Antimicrobial Activity and the Synergy Potential of Cinnamomum aromaticum Nees and Syzygium aromaticum (L.) Merr. et Perry Essential Oils with Antimicrobial Drugs. Microbiol. Res. 2025, 16, 63. https://doi.org/10.3390/microbiolres16030063
El Baz S, Soulaimani B, Abbad I, Azgaou Z, Lotfi EM, Malha M, Mezrioui N. Antimicrobial Activity and the Synergy Potential of Cinnamomum aromaticum Nees and Syzygium aromaticum (L.) Merr. et Perry Essential Oils with Antimicrobial Drugs. Microbiology Research. 2025; 16(3):63. https://doi.org/10.3390/microbiolres16030063
Chicago/Turabian StyleEl Baz, Soraia, Bouchra Soulaimani, Imane Abbad, Zineb Azgaou, El Mostapha Lotfi, Mustapha Malha, and Noureddine Mezrioui. 2025. "Antimicrobial Activity and the Synergy Potential of Cinnamomum aromaticum Nees and Syzygium aromaticum (L.) Merr. et Perry Essential Oils with Antimicrobial Drugs" Microbiology Research 16, no. 3: 63. https://doi.org/10.3390/microbiolres16030063
APA StyleEl Baz, S., Soulaimani, B., Abbad, I., Azgaou, Z., Lotfi, E. M., Malha, M., & Mezrioui, N. (2025). Antimicrobial Activity and the Synergy Potential of Cinnamomum aromaticum Nees and Syzygium aromaticum (L.) Merr. et Perry Essential Oils with Antimicrobial Drugs. Microbiology Research, 16(3), 63. https://doi.org/10.3390/microbiolres16030063