Frequency, Resistance Patterns, and Serotypes of Salmonella Identified in Samples from Pigs of Colombia Collected from 2022 to 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Included in This Study
2.2. Serological Assay for Detection of Antibodies Against Salmonella
2.3. Isolation of Salmonella
2.4. Antibiotic Susceptibility Testing
2.5. Data Analysis
3. Results
3.1. Detection of Antibodies Against Salmonella in Samples from Colombian Pigs
3.2. Isolation and Identification of Salmonella in Samples from Colombian Pigs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oludairo, O.O.; Kwaga, J.K.P.; Kabir, J.; Abdu, P.A.; Gitanjali, A.; Perrets, A.; Cibin, V.; Lettini, A.; Aiyedun, J. A Review on Salmonella Characteristics, Taxonomy, Nomenclature with Special Reference to Non-Typhoidal and Typhoidal Salmonellosis. Zagazig Vet. J. 2022, 50, 161–176. [Google Scholar] [CrossRef]
- Moura, E.A.G.d.O.; Silva, D.G.d.; Turco, C.H.; Sanches, T.V.C.; Storino, G.Y.; Almeida, H.M.d.S.; Mechler-Dreibi, M.L.; Rabelo, I.P.; Sonalio, K.; Oliveira, L.G.d. Salmonella Bacterin Vaccination Decreases Shedding and Colonization of Salmonella Typhimurium in Pigs. Microorganisms 2021, 9, 1163. [Google Scholar] [CrossRef]
- Chen, H.-M.; Wang, Y.; Su, L.-H.; Chiu, C.-H. Infección Por Salmonella No Tifoidea: Microbiología, Características Clínicas y Terapia Antimicrobiana. Pediatr. Neonatol. 2013, 54, 147–152. [Google Scholar] [CrossRef]
- Griffith, R.W.; Carlson, S.A.; Krull, A.C. Salmonellosis. In Diseases of Swine; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 912–925. ISBN 978-1-119-35092-7. [Google Scholar]
- Horvathova, K.; Modrackova, N.; Splichal, I.; Splichalova, A.; Amin, A.; Ingribelli, E.; Killer, J.; Doskocil, I.; Pechar, R.; Kodesova, T.; et al. Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium. Microorganisms 2023, 11, 1007. [Google Scholar] [CrossRef]
- Wang, F.; Deng, L.; Huang, F.; Wang, Z.; Lu, Q.; Xu, C. Flagellar Motility Is Critical for Salmonella Enterica Serovar Typhimurium Biofilm Development. Front. Microbiol. 2020, 11, 1695. [Google Scholar] [CrossRef]
- Sun, H.; Wan, Y.; Du, P.; Bai, L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog. Dis. 2020, 17, 87–97. [Google Scholar] [CrossRef]
- Campos, J.; Mourão, J.; Peixe, L.; Antunes, P. Non-Typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens 2019, 8, 19. [Google Scholar] [CrossRef]
- Ayala-Romero, C.; Ballen-Parada, C.; Rico-Gaitán, M.; Chamorro-Tobar, I.; Zambrano-Moreno, D.; Poutou-Piñales, R.; Carrascal-Camacho, A. Prevalencia de Salmonella spp., en ganglios mesentéricos de porcinos en plantas de beneficio Colombianas. Rev. MVZ Córdoba 2018, 23, 6474–6486. [Google Scholar] [CrossRef]
- Vidal, J.L.; Clavijo, V.; Castellanos, L.R.; Kathiresan, J.; Kumar, A.M.V.; Mehta, K.; Chaparro-Gutiérrez, J.J. Multidrug-Resistant Salmonella Spp. in Fecal Samples of Pigs with Suspected Salmonellosis in Antioquia, Colombia, 2019–2021. Rev. Panam. Salud Publica 2023, 47, e46. [Google Scholar] [CrossRef]
- World Health Organization Critically Important Antimicrobials for Human Medicine; 6th rev.; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-151552-8.
- Caniça, M.; Manageiro, V.; Abriouel, H.; Moran-Gilad, J.; Franz, C.M.A.P. Antibiotic Resistance in Foodborne Bacteria. Trends Food Sci. Technol. 2019, 84, 41–44. [Google Scholar] [CrossRef]
- Thacker, P.A. Alternatives to Antibiotics as Growth Promoters for Use in Swine Production: A Review. J. Anim. Sci. Biotechnol. 2013, 4, 35. [Google Scholar] [CrossRef]
- Bearson, S.M.D. Salmonella in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies. Annu. Rev. Anim. Biosci. 2022, 10, 373–393. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention). The European Union One Health 2023 Zoonoses Report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- CDC. Available online: https://www.cdc.gov/ncezid/dfwed/BEAM-dashboard.html (accessed on 17 August 2024).
- ISO 6579-1; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella —Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland. Available online: https://www.iso.org/obp/ui/en/#iso:std:56712:en (accessed on 17 August 2024).
- Mooijman, K.A.; Pielaat, A.; Kuijpers, A.F.A. Validation of EN ISO 6579-1—Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1 Detection of Salmonella spp. Int. J. Food Microbiol. 2019, 288, 3–12. [Google Scholar] [CrossRef]
- Issenhuth-Jeanjean, S.; Roggentin, P.; Mikoleit, M.; Guibourdenche, M.; de Pinna, E.; Nair, S.; Fields, P.I.; Weill, F.-X. Supplement 2008–2010 (No. 48) to the White–Kauffmann–Le Minor Scheme. Res. Microbiol. 2014, 165, 526–530. [Google Scholar] [CrossRef]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol. 2009, 15, 1–23. [Google Scholar]
- Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; Clinical and Laboratory Standards Institute (CLSI), Ed.; VET08.; Clinical and Laboratory Standards Institute (CLSI): Berwyn, PA, USA, 2018; ISBN 978-1-68440-010-2. [Google Scholar]
- Rondón-Barragán, I.S.; Rodríguez, G.A.; Marín, M.G.A. Determinación de la seroprevalencia de Salmonella spp. en granjas porcinas del departamento del Tolima. Orinoquia 2014, 18, 60–67. [Google Scholar]
- Pulido-Villamarín, A.; Castañeda-Salazar, R.; Mendoza-Gómez, M.F.; Vivas-Díaz, L. Presencia de Anticuerpos Frente a Algunos Patógenos de Interés Zoonótico En Cuatro Granjas Porcícolas de Cundinamarca, Colombia. Rev. De. Investig. Vet. Del. Perú 2019, 30, 446–454. [Google Scholar] [CrossRef]
- Mogollón, J.D.; Rincón, M.A.; Peña, B.N.; Hernández, I.; Preciado, P.; Escobar, B.A. Prevalencia serológica de salmonelosis en granjas porcinas intensivas de Colombia. ICA Inf. 2005, 32, 42–47. [Google Scholar]
- ICA Instituto Colombiano Agropecuario. Available online: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018 (accessed on 5 July 2024).
- Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef]
- Dassonville-Klimpt, A.; Sonnet, P. Advances in ‘Trojan Horse’ Strategies in Antibiotic Delivery Systems. Future Med. Chem. 2020, 12, 983–986. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, Z.; Ghssein, G. Towards New Antibiotics Classes Targeting Bacterial Metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef] [PubMed]
Department (State) | Total Samples Analyzed n (%) | Salmonella n (%) * | ||
---|---|---|---|---|
Antioquia | 3.793 | (65.17%) | 2.413 | (63.62%) |
Boyacá | 71 | (1.22%) | 33 | (46.48%) |
Caldas | 171 | (2.94%) | 89 | (52.05%) |
Cauca | 18 | (0.31%) | 11 | (61.11%) |
Córdoba | 29 | (0.50%) | 17 | (58.62%) |
Cundinamarca | 537 | (9.23%) | 360 | (67.04%) |
Meta | 74 | (1.27%) | 42 | (56.76%) |
Nariño | 89 | (1.53%) | 54 | (60.67%) |
Quindío | 100 | (1.72%) | 67 | (67%) |
Risaralda | 161 | (2.77%) | 117 | (72.67%) |
Santander | 119 | (2.04%) | 96 | (80.67%) |
Sucre | 20 | (0.34%) | 13 | (65%) |
Tolima | 30 | (0.52%) | 13 | (43.33%) |
Valle del Cauca | 608 | (10.45%) | 386 | (63.49%) |
Total samples | 5820 | 3711 | (63.76%) |
Department (State) | Total Samples Analyzed n (%) | Salmonella n (%) * | ||
---|---|---|---|---|
Antioquia | 566 | (66.7%) | 133 | (23.5%) |
Atlántico | 1 | (0.1%) | 0 | (0%) |
Caldas | 5 | (0.6%) | 1 | (20%) |
Córdoba | 1 | (0.1%) | 0 | (0%) |
Cundinamarca | 100 | (11.8%) | 19 | (19%) |
Meta | 11 | (1.3%) | 3 | (27.27%) |
Quindío | 11 | (1.3%) | 1 | (9.09%) |
Risaralda | 33 | (3.9%) | 8 | (24.24%) |
Sucre | 5 | (0.6%) | 1 | (20%) |
Tolima | 6 | (0.7%) | 0 | (0%) |
Valle del Cauca | 109 | (12.9%) | 33 | (30.28%) |
Total samples | 848 | 199 | (23.47%) |
Type | Total Samples Analyzed n (%) | Salmonella n (%) | ||
---|---|---|---|---|
Feces | 600 | (70.75%) | 136 | (22.67%) |
Tissues | 202 | (23.82%) | 60 | (29.70%) |
Multiple * | 29 | (3.42%) | 1 | (3.45%) |
Unknown | 17 | (2%) | 2 | (11.76%) |
Total samples | 848 | 199 | (23.47%) |
Antibiotic | Sensitive n (%) | Intermediate n (%) | Resistant n (%) | |||
---|---|---|---|---|---|---|
Ampicillin (n = 3) | 3 | (100%) | ||||
Tetracycline (n = 3) | 1 | (33.3%) | 2 | (66.7%) | ||
Tilmicosin (n = 2) | 1 | (50%) | 1 | (50%) | ||
Tiamulin (n = 1) | 1 | (100%) | ||||
Penicillin (n = 2) | 2 | (100%) | ||||
Doxycycline (n = 5) | 1 | (20%) | 4 | (80%) | ||
Tylosin (n = 2) | 2 | (100%) | ||||
Fosfomycin (n = 38) | 36 | (94.7%) | 2 | (5.3%) | ||
Amoxicillin (n = 46) | 13 | (28.3%) | 1 | (2.2%) | 32 | (69.6%) |
Enrofloxacin (n = 64) | 17 | (26.6%) | 13 | (20.3%) | 34 | (53.1%) |
Erythromycin (n = 1) | 1 | (100%) | ||||
Ciprofloxacin (n = 68) | 35 | (51.5%) | 10 | (14.7%) | 23 | (33.8%) |
Spectinomycin (n = 25) | 6 | (24%) | 1 | (4%) | 18 | (72%) |
Chloramphenicol (n = 3) | 1 | (33.3%) | 2 | (66.7%) | ||
Florfenicol (n = 54) | 8 | (14.8%) | 2 | (3.7%) | 44 | (81.5%) |
Trimethoprim-sulfamethoxazole (n = 58) | 32 | (55.2%) | 26 | (44.8%) | ||
Neomycin (n = 51) | 16 | (31.4%) | 12 | (23.5%) | 23 | (45.1%) |
Ceftiofur (n = 35) | 29 | (82.9%) | 1 | (2.9%) | 5 | (14.3%) |
Gentamicin (n = 26) | 14 | (53.8%) | 12 | (46.2%) | ||
487 antibiotic susceptibility discs | 210 | 40 | 237 |
Serotype | n | (%) |
---|---|---|
Typhimurium | 30 | (49.2%) |
I 4,[5],12:i:- | 14 | (23%) |
Choleraesuis | 11 | (18%) |
Derby | 2 | (3.3%) |
Enteritidis | 1 | (1.6%) |
Heidelberg | 1 | (1.6%) |
Virchow | 1 | (1.6%) |
Manhattan | 1 | (1.6%) |
Total | 61 |
Serotype | Antioquia n (%) | Valle n (%) | Cundinamarca n (%) | Meta n (%) | Risaralda n (%) | Quindío n (%) | Caldas n (%) |
---|---|---|---|---|---|---|---|
Typhimurium | 18 (55%) | 8 (47%) | 2 (50%) | 1 (25%) | 1 (100%) | ||
I 4,[5],12:i:- | 9 (27%) | 2 (12%) | 1 (25%) | 1 (100%) | 1 (25%) | ||
Choleraesuis | 2 (6%) | 7 (41%) | 1 (25%) | 1 (100%) | |||
Derby | 1 (3%) | 1 (25%) | |||||
Enteritidis | 1 (3%) | ||||||
Heidelberg | 1 (3%) | ||||||
Virchow | 1 (25%) | ||||||
Manhattan | 1 (3%) | ||||||
Total (n = 61) | 33 | 17 | 4 | 1 | 4 | 1 | 1 |
Typhimurium | I 4,[5],12:i:- | Enteritidis | Choleraesuis | Manhattan | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(n = 95) | (n = 35) | (n = 7) | (n = 13) | (n = 6) | |||||||||
Antibiotic susceptibility disc | S | I | R | S | I | R | S | I | R | S | R | S | R |
Ampicillin (n = 2) | 2 | ||||||||||||
Doxycycline (n = 2) | 2 | ||||||||||||
Fosfomycin (n = 12) | 7 | 3 | 1 | 1 | |||||||||
Amoxicillin (n = 15) | 1 | 9 | 2 | 2 | 1 | ||||||||
Enrofloxacin (n = 22) | 5 | 9 | 3 | 1 | 1 | 2 | 1 | ||||||
Erythromycin (n = 1) | 1 | ||||||||||||
Ciprofloxacin (n = 21) | 5 | 2 | 5 | 4 | 1 | 1 | 2 | 1 | |||||
Spectinomycin (n = 7) | 2 | 4 | 1 | ||||||||||
Chloramphenicol (n = 2) | 1 | 1 | |||||||||||
Florfenicol (n = 15) | 10 | 1 | 3 | 1 | |||||||||
Trimethoprim-sulfamethoxazole (n = 18) | 4 | 8 | 2 | 1 | 2 | 1 | |||||||
Neomycin (n = 17) | 3 | 4 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | ||||
Ceftiofur (n = 13) | 6 | 1 | 3 | 2 | 1 | ||||||||
Gentamicin (n = 9) | 2 | 2 | 2 | 1 | 1 | 1 | |||||||
Total (n = 156) | 36 | 6 | 53 | 17 | 3 | 15 | 4 | 1 | 2 | 2 | 11 | 6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrientos-Villegas, S.; Vidal, J.L.; Gomez, N.; Leite, F.L.; López-Osorio, S.; Chaparro-Gutiérrez, J.J. Frequency, Resistance Patterns, and Serotypes of Salmonella Identified in Samples from Pigs of Colombia Collected from 2022 to 2023. Microbiol. Res. 2025, 16, 74. https://doi.org/10.3390/microbiolres16040074
Barrientos-Villegas S, Vidal JL, Gomez N, Leite FL, López-Osorio S, Chaparro-Gutiérrez JJ. Frequency, Resistance Patterns, and Serotypes of Salmonella Identified in Samples from Pigs of Colombia Collected from 2022 to 2023. Microbiology Research. 2025; 16(4):74. https://doi.org/10.3390/microbiolres16040074
Chicago/Turabian StyleBarrientos-Villegas, Stefany, Juana L. Vidal, Nidia Gomez, Fernando L. Leite, Sara López-Osorio, and Jenny J. Chaparro-Gutiérrez. 2025. "Frequency, Resistance Patterns, and Serotypes of Salmonella Identified in Samples from Pigs of Colombia Collected from 2022 to 2023" Microbiology Research 16, no. 4: 74. https://doi.org/10.3390/microbiolres16040074
APA StyleBarrientos-Villegas, S., Vidal, J. L., Gomez, N., Leite, F. L., López-Osorio, S., & Chaparro-Gutiérrez, J. J. (2025). Frequency, Resistance Patterns, and Serotypes of Salmonella Identified in Samples from Pigs of Colombia Collected from 2022 to 2023. Microbiology Research, 16(4), 74. https://doi.org/10.3390/microbiolres16040074