Virus-First Theory Revisited: Bridging RNP-World and Cellular Life
Abstract
1. Introduction
- (i)
- The RNA World theory suggests that life began with self-replicating RNA molecules capable of both storing genetic information and catalyzing biochemical reactions [24,25]. Although widely accepted and needed also in the current model, this proposal struggles to explain how metabolism emerged from RNA alone [26], another piece of evidence for an early mutualism between peptides and nucleic acids [27]. Very few examples of ribozymes with functions comparable to modern proteins have been discovered, even after extensive efforts using in vitro selection and directed evolution. While some ribozymes can catalyze specific reactions—such as RNA cleavage, ligation, and even limited peptide bond formation—their efficiency, structural versatility, and substrate range are markedly inferior to that of protein enzymes Matera [24,28,29,30]. This limitation has raised skepticism about the plausibility of a purely RNA-based early biochemistry and supports the idea that early ribonucleoprotein complexes provided more functional diversity and stability.
- (ii)
- The metabolism-first view proposes that life originated from self-organizing geochemical systems—such as autocatalytic cycles and proton gradients in hydrothermal vent environments—prior to the emergence of informational macromolecules like RNA and DNA. Although also important and effective, this model alone does not account for the origin of heredity, nor does it provide a detailed mechanism for the emergence of genetic encoding or the function of nucleic acids in life. For this reason, many contemporary researchers have sought to integrate metabolism-first scenarios with the RNA World theory under a framework of chemical symbiosis between metabolic networks and informational molecules [31,32].
- (iii)
- The virocell concept, as proposed by Forterre, views viruses as genetic parasites that evolved along with cellular life, influencing evolution through genetic innovation and horizontal gene transfer [18]. While compelling, this model assumes the prior existence of cells and does not explain the gradual evolution of complexity in living systems.
2. A Current View of the RNP-World
3. The Emergence of Compartmentalization
4. The Emergence of Viruses from Progenotes
4.1. The Simplest Form of Biological Encapsulation: Single-Protein Capsids
4.2. Simplicity and Connection with RNP-World Ideas
4.3. Metastable Capsids, RNA Delivery, and the Spatial Regulation of Prebiotic Replication
5. A Brief Approach of Virus to Cell Transition
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fry, I. The origins of research into the origins of life. Endeavour 2006, 30, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Haldane, J.B.S. The origin of life. Ration. Annu. 1929, 148, 3–10. [Google Scholar]
- Tirard, S.J.B.S. Haldane and the origin of life. J. Genet. 2017, 96, 735–739. [Google Scholar] [CrossRef] [PubMed]
- van Regenmortel, M.H.V. Introduction to the species concept in virus taxonomy. In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses; van Regenmortel, M.H.V., Fauquet, C.M., Bishop, D.H.L., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 3–16. [Google Scholar]
- Nasir, A.; Caetano-Anollés, G. A phylogenomic data-driven exploration of viral origins and evolution. Sci. Adv. 2015, 1, e1500527. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015, 479–480, 2–25. [Google Scholar] [CrossRef]
- de Farias, S.T.; Jheeta, S.; Prosdocimi, F. Viruses as a survival strategy in the armory of life. Hist. Philos. Life Sci. 2019, 41, 45. [Google Scholar] [CrossRef]
- Prosdocimi, F.; Farias, S.T. Coacervates meet the RNP-world: Liquid-liquid phase separation and the emergence of biological compartmentalization. BioSystems 2025, 252, 105480. [Google Scholar] [CrossRef]
- Rohwer, F.; Thurber, R.V. Viruses manipulate the marine environment. Nature 2009, 459, 207–212. [Google Scholar] [CrossRef]
- Waldron, D. Microbial ecology: Sorting out viral dark matter. Nat. Rev. Microbiol. 2015, 13, 526–527. [Google Scholar] [CrossRef]
- Koonin, E.V. Viruses and mobile elements as drivers of evolutionary transitions. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016, 371, 20150442. [Google Scholar] [CrossRef]
- Koonin, E.V.; Martin, W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 2005, 21, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Lavialle, C.; Cornelis, G.; Dupressoir, A.; Esnault, C.; Heidmann, O.; Vernochet, C.; Heidmann, T. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013, 368, 20120507. [Google Scholar] [CrossRef]
- Villarreal, L.P. Viruses and the placenta: The essential virus first view. Acta Pathol. Microbiol. Immunol. Scand. 2016, 124, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Claverie, J.M.; Abergel, C. Mimivirus: The emerging paradox of quasi-autonomous viruses. Trends Genet. 2010, 26, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Legendre, M.; Fabre, E.; Poirot, O.; Jeudy, S.; Lartigue, A.; Alempic, J.M.; Beucher, L.; Philippe, N.; Bertaux, L.; Christo-Foroux, E.; et al. Diversity and evolution of the emerging Pandoraviridae family. Nat. Commun. 2018, 9, 2285. [Google Scholar] [CrossRef]
- Rodrigues, R.A.L.; Mougari, S.; Colson, P.; La Scola, B.; Abrahão, J.S. “Tupanvirus”, a new genus in the family Mimiviridae. Arch. Virol. 2019, 164, 325–331. [Google Scholar] [CrossRef]
- Forterre, P. The virocell concept and environmental microbiology. ISME J. 2013, 7, 233–236. [Google Scholar] [CrossRef]
- Forterre, P.; Raoult, D. The transformation of a bacterium into a nucleated virocell reminds the viral eukaryogenesis hypothesis. Virologie 2017, 21, 28–30. [Google Scholar] [CrossRef]
- Prosdocimi, F.; Cortines, J.R.; José, M.V.; Farias, S.T. Decoding viruses: An alternative perspective on their history, origins and role in nature. BioSystems 2023, 231, 104960. [Google Scholar] [CrossRef]
- Di Giulio, M. On the RNA world: Evidence in favor of an early ribonucleopeptide world. J. Mol. Evol. 1997, 45, 571–578. [Google Scholar] [CrossRef]
- Farias, S.T.; Prosdocimi, F. RNP-world: The ultimate essence of life is a ribonucleoprotein process. Genet. Mol. Biol. 2022, 45, e20220127. [Google Scholar] [CrossRef]
- Prosdocimi, F.; de Farias, S.T. Origin of life: Drawing the big picture. Prog. Biophys. Mol. Biol. 2023, 180–181, 28–36. [Google Scholar] [CrossRef]
- Joyce, G.F. The antiquity of RNA-based evolution. Nature 2002, 418, 214–221. [Google Scholar] [CrossRef]
- Sankaran, N. The RNA World at Thirty: A Look Back with its Author. J. Mol. Evol. 2016, 83, 169–175. [Google Scholar] [CrossRef]
- Cech, T.R. Structural biology. The ribosome is a ribozyme. Science 2000, 289, 878–879. [Google Scholar] [CrossRef]
- Lanier, K.A.; Petrov, A.S.; Williams, L.D. The Central Symbiosis of Molecular Biology: Molecules in Mutualism. J. Mol. Evol. 2017, 85, 8–13. [Google Scholar] [CrossRef]
- Wilson, T.J.; Lilley, D.M. Biochemistry. The evolution of ribozyme chemistry. Science 2009, 323, 1436–1438. [Google Scholar] [CrossRef]
- Doudna, J.A.; Szostak, J.W. RNA-catalysed synthesis of complementary-strand RNA. Nature 1989, 339, 519–522. [Google Scholar] [CrossRef]
- Fedor, M.J.; Williamson, J.R. The catalytic diversity of RNAs. Nat. Rev. Mol. Cell Biol. 2005, 6, 399–412. [Google Scholar] [CrossRef]
- Prosdocimi, F.; José, M.V.; de Farias, S.T. The Theory of Chemical Symbiosis: A Margulian View for the Emergence of Biological Systems (Origin of Life). Acta Biotheor. 2021, 69, 67–78. [Google Scholar] [CrossRef]
- de Farias, S.T.; Prosdocimi, F. The RNA World Hypothesis: Past Triumphs, Current Challenges and Future Questions. In Encyclopedia of Evolutionary Biology; Elsevier: Amsterdam, The Netherlands, 2025; Chapter 5; Volume 2, pp. 1–14. [Google Scholar] [CrossRef]
- Koonin, E.V.; Senkevich, T.G.; Dolja, V.V. The ancient Virus World and evolution of cells. Biol. Direct 2006, 1, 29. [Google Scholar] [CrossRef]
- Matera, A.G. Twenty years of RNA: Reflections from the RNP world. RNA 2015, 21, 690–691. [Google Scholar] [CrossRef]
- Hansma, H.G. Better than Membranes at the Origin of Life? Life 2017, 7, 28. [Google Scholar] [CrossRef]
- Prosdocimi, F.; Farias, S.T. A Emergência dos Sistemas Biológicos: Uma Visão Molecular Sobre a Origem da vida. ArteComCiencia, 1st ed.; Amazon.com, Inc.: Rio de Janeiro, Brazil, 2019; Available online: https://www.amazon.com.br/dp/B08WTHJPM4 (accessed on 14 March 2025). (In Portuguese)
- Prosdocimi, F.; José, M.; Farias, S. The First Universal Common Ancestor (FUCA) as the Earliest Ancestor of LUCA’s (Last UCA) Lineage. In Evolution, Origin of Life, Concepts and Methods; Pontarotti, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; Chapter 3. [Google Scholar] [CrossRef]
- de Farias, S.T.; Jose, M.V.; Prosdocimi, F. Is it possible that cells have had more than one origin? BioSystems 2021, 202, 104371. [Google Scholar] [CrossRef]
- Eigen, M.; Schuster, P. The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Die Naturwissenschaften 1977, 64, 541–565. [Google Scholar] [CrossRef]
- Orgel, L.E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 99–123. [Google Scholar]
- Keller, M.A.; Turchyn, A.V.; Ralser, M. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 2014, 10, 725. [Google Scholar] [CrossRef]
- Keller, M.A.; Zylstra, A.; Castro, C.; Turchyn, A.V.; Griffin, J.L.; Ralser, M. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Sci. Adv. 2016, 2, e1501235. [Google Scholar] [CrossRef]
- Vitas, M.; Dobovišek, A. In the Beginning was a Mutualism—On the Origin of Translation. Orig. Life Evol. Biosph. J. Int. Soc. Study Orig. Life 2018, 48, 223–243. [Google Scholar] [CrossRef] [PubMed]
- Woese, C.R.; Fox, G.E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 1977, 74, 5088–5090. [Google Scholar] [CrossRef]
- Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life 2024, 14, 1307. [Google Scholar] [CrossRef] [PubMed]
- Prosdocimi, F.; de Farias, S.T.; José, M.V. Prebiotic chemical refugia: Multifaceted scenario for the formation of biomolecules in primitive Earth. Theory Biosci. 2022, 141, 339–347. [Google Scholar] [CrossRef]
- Prosdocimi, F.; de Farias, S.T. Major evolutionary transitions before cells: A journey from molecules to organisms. Prog. Biophys. Mol. Biol. 2024, 191, 11–24. [Google Scholar] [CrossRef]
- Prosdocimi, F.; de Farias, S.T. Entering the labyrinth: A hypothesis about the emergence of metabolism from protobiotic routes. BioSystems 2022, 220, 104751. [Google Scholar] [CrossRef]
- Belousoff, M.J.; Davidovich, C.; Zimmerman, E.; Caspi, Y.; Wekselman, I.; Rozenszajn, L.; Shapira, T.; Sade-Falk, O.; Taha, L.; Bashan, A.; et al. Ancient machinery embedded in the contemporary ribosome. Biochem. Soc. Trans. 2010, 38, 422–427. [Google Scholar] [CrossRef]
- de Farias, S.T.; do Rêgo, T.G.; José, M.V. Evolution of transfer RNA and the origin of the translation system. Front. Genet. 2014, 5, 303. [Google Scholar] [CrossRef]
- Bowman, J.C.; Hud, N.V.; Williams, L.D. The ribosome challenge to the RNA world. J. Mol. Evol. 2015, 80, 143–161. [Google Scholar] [CrossRef]
- Weiss, M.C.; Preiner, M.; Xavier, J.C.; Zimorski, V.; Martin, W.F. The last universal common ancestor between ancient Earth chemistry and the onset of genetics. PLoS Genet. 2018, 14, e1007518. [Google Scholar] [CrossRef]
- Moody, E.R.R.; Álvarez-Carretero, S.; Mahendrarajah, T.A.; Clark, J.W.; Betts, H.C.; Dombrowski, N.; Szánthó, L.L.; Boyle, R.A.; Daines, S.; Chen, X.; et al. The nature of the last universal common ancestor and its impact on the early Earth system. Nat. Ecol. Evol. 2024, 8, 1654–1666. [Google Scholar] [CrossRef]
- Muller, H.J. The gene as the basis of life. Proc. Int. Congr. Plant Sci. 1929, 1, 897–921. [Google Scholar]
- Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A.A. ATP as a biological hydrotrope. Science 2017, 356, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, R.R.; Pir Cakmak, F.; Keating, C.D.; Bevilacqua, P.C. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry. Biochemistry 2018, 57, 2509–2519. [Google Scholar] [CrossRef]
- Smokers, I.B.A.; Visser, B.S.; Slootbeek, A.D.; Huck, W.T.S.; Spruijt, E. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Acc. Chem. Res. 2024, 57, 1885–1895. [Google Scholar] [CrossRef]
- Ruzov, A.S.; Ermakov, A.S. The non-canonical nucleotides and prebiotic evolution. BioSystems 2025, 248, 105411. [Google Scholar] [CrossRef]
- Wright, P.E.; Dyson, H.J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015, 16, 18–29. [Google Scholar] [CrossRef]
- Brangwynne, C.; Tompa, P.; Pappu, R. Polymer physics of intracellular phase transitions. Nat. Phys. 2015, 11, 899–904. [Google Scholar] [CrossRef]
- Uversky, V.N. Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Adv. Colloid Interface Sci. 2017, 239, 97–114. [Google Scholar] [CrossRef]
- Feng, Z.; Jia, B.; Zhang, M. Liquid-Liquid Phase Separation in Biology: Specific Stoichiometric Molecular Interactions vs Promiscuous Interactions Mediated by Disordered Sequences. Biochemistry 2021, 60, 2397–2406. [Google Scholar] [CrossRef]
- Hyman, A.A.; Simons, K. Cell biology. Beyond oil and water–phase transitions in cells. Science 2012, 337, 1047–1049. [Google Scholar] [CrossRef]
- Franzmann, T.M.; Alberti, S. Protein Phase Separation as a Stress Survival Strategy. Cold Spring Harb. Perspect. Biol. 2019, 11, a034058. [Google Scholar] [CrossRef] [PubMed]
- Bose, T.; Fridkin, G.; Davidovich, C.; Krupkin, M.; Dinger, N.; Falkovich, A.H.; Peleg, Y.; Agmon, I.; Bashan, A.; Yonath, A. Origin of life: Protoribosome forms peptide bonds and links RNA and protein dominated worlds. Nucleic Acids Res. 2022, 50, 1815–1828. [Google Scholar] [CrossRef] [PubMed]
- Franzmann, T.M.; Jahnel, M.; Pozniakovsky, A.; Mahamid, J.; Holehouse, A.S.; Nüske, E.; Richter, D.; Baumeister, W.; Grill, S.W.; Pappu, R.V.; et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 2018, 359, eaao5654. [Google Scholar] [CrossRef] [PubMed]
- Dignon, G.L.; Best, R.B.; Mittal, J. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties. Annu. Rev. Phys. Chem. 2020, 71, 53–75. [Google Scholar] [CrossRef]
- Perlmutter, J.D.; Hagan, M.F. Mechanisms of virus assembly. Annu. Rev. Phys. Chem. 2015, 66, 217–239. [Google Scholar] [CrossRef]
- Larson, S.B.; Day, J.S.; McPherson, A. Satellite tobacco mosaic virus refined to 1.4 Å resolution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70 Pt 9, 2316–2330. [Google Scholar] [CrossRef]
- Roossinck, M.J. The good viruses: Viral mutualistic symbioses. Nat. Rev. Microbiol. 2011, 9, 99–108. [Google Scholar] [CrossRef]
- Khayat, R.; Brunn, N.; Speir, J.A.; Hardham, J.M.; Ankenbauer, R.G.; Schneemann, A.; Johnson, J.E. The 2.3-angstrom structure of porcine circovirus 2. J. Virol. 2011, 85, 7856–7862. [Google Scholar] [CrossRef]
- Li, L.; Kapoor, A.; Slikas, B.; Bamidele, O.S.; Wang, C.; Shaukat, S.; Masroor, M.A.; Wilson, M.L.; Ndjango, J.B.; Peeters, M.; et al. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J. Virol. 2010, 84, 1674–1682. [Google Scholar] [CrossRef]
- Franzo, G.; Legnardi, M.; Tucciarone, C.M.; Drigo, M.; Klaumann, F.; Sohrmann, M.; SegalÉs, J. Porcine circovirus type 3: A threat to the pig industry? Vet. Rec. 2018, 182, 83. [Google Scholar] [CrossRef]
- Persson, M.; Tars, K.; Liljas, L. The capsid of the small RNA phage PRR1 is stabilized by metal ions. J. Mol. Biol. 2008, 383, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Aksyuk, A.A.; Rossmann, M.G. Bacteriophage assembly. Viruses 2011, 3, 172–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.C.; Yoshimura, M.; Guan, H.H.; Wang, T.Y.; Misumi, Y.; Lin, C.C.; Chuankhayan, P.; Nakagawa, A.; Chan, S.I.; Tsukihara, T.; et al. Crystal Structures of a Piscine Betanodavirus: Mechanisms of Capsid Assembly and Viral Infection. PLoS Pathog. 2015, 11, e1005203. [Google Scholar] [CrossRef] [PubMed]
- Caspar, D.L.; Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 1962, 27, 1–24. [Google Scholar] [CrossRef]
- Huiskonen, J.T.; Butcher, S.J. Membrane-containing viruses with icosahedrally symmetric capsids. Curr. Opin. Struct. Biol. 2007, 17, 229–236. [Google Scholar] [CrossRef]
- Krupovic, M.; Bamford, D.H. Virus evolution: How far does the double beta-barrel viral lineage extend? Nat. Rev. Microbiol. 2008, 6, 941–948. [Google Scholar] [CrossRef]
- Forterre, P.; Prangishvili, D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann. N. Y. Acad. Sci. 2009, 1178, 65–77. [Google Scholar] [CrossRef]
- Krupovic, M.; Koonin, E.V. Multiple origins of viral capsid proteins from cellular ancestors. Proc. Natl. Acad. Sci. USA 2017, 114, E2401–E2410. [Google Scholar] [CrossRef]
- Harish, A.; Abroi, A.; Gough, J.; Kurland, C. Did Viruses Evolve As a Distinct Supergroup from Common Ancestors of Cells? Genome Biol. Evol. 2016, 8, 2474–2481. [Google Scholar] [CrossRef]
- Dyson, F.J. A model for the origin of life. J. Mol. Evol. 1982, 18, 344–350. [Google Scholar] [CrossRef]
- Campanacci, V.; Nurizzo, D.; Spinelli, S.; Valencia, C.; Tegoni, M.; Cambillau, C. The crystal structure of the Escherichia coli lipocalin Blc suggests a possible role in phospholipid binding. FEBS Lett. 2004, 562, 183–188. [Google Scholar] [CrossRef]
- Rescher, U.; Gerke, V. Annexins--unique membrane binding proteins with diverse functions. J. Cell Sci. 2004, 117 Pt 13, 2631–2639. [Google Scholar] [CrossRef]
- Hanczyc, M.M.; Szostak, J.W. Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol. 2004, 8, 660–664. [Google Scholar] [CrossRef]
- Luisi, P.L. The Emergence of Life: From Chemical Origins to Synthetic Cells; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Sojo, V.; Pomiankowski, A.; Lane, N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biol. 2014, 12, e1001926. [Google Scholar] [CrossRef]
- Da Cunha, V.; Gaia, M.; Gadelle, D.; Nasir, A.; Forterre, P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 2017, 13, e1006810. [Google Scholar] [CrossRef]
- Di Giulio, M. The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes. J. Mol. Evol. 2011, 72, 119–126. [Google Scholar] [CrossRef]
- Di Giulio, M. The late appearance of DNA, the nature of the LUCA and ancestors of the domains of life. BioSystems 2021, 202, 104330. [Google Scholar] [CrossRef]
- Di Giulio, M. The origins of the cell membrane, the progenote, and the universal ancestor (LUCA). BioSystems 2022, 222, 104799. [Google Scholar] [CrossRef]
- Peretó; J Out of fuzzy chemistry: From prebiotic chemistry to metabolic networks. Chem. Soc. Rev. 2012, 41, 5394–5403. [CrossRef]
- Forterre, P. Defining life: The virus viewpoint. Orig. Life Evol. Biosph. 2010, 41, 367–372. [Google Scholar] [CrossRef]
- Iranzo, J.; Krupovic, M.; Koonin, E.V. The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing. mBio 2016, 7, e00978-16. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Kuhn, J.H. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol. Mol. Biol. Rev. 2021, 85, e0019320. [Google Scholar] [CrossRef] [PubMed]
Model | Main Tenets | Strengths | Limitations |
---|---|---|---|
Virus-First Revisited | Virus-like RNPs predate cells and contributed to the emergence of cellular life via simple encapsulation, achieving molecular protection | Proposes a role for proteinaceous compartments in pre-cellular evolution; explains capsid evolution into cells. | Lacks direct experimental evidence; difficulty in explaining host-independent replication in progenotes |
RNA World | Life began with self-replicating RNA molecules that served as both information and catalyst | Supported by ribozyme activity; explains the flux of molecular information | Limited stability of RNA; unclear how membranes, metabolism, and translation evolved from RNA alone. |
Virocell Concept | Viruses and cells co-evolved; viruses are metabolic parasites of host cells but play evolutionary roles. | Explains the complexity and integration of viral functions within cells; accounts for virus-cell genetic exchange | Assumes existence of fully formed cells; not a true abiogenesis theory but a model of host–virus interaction |
Metabolism-First | Life began with autocatalytic cycles and geochemical gradients before information-bearing molecules evolved | Offers plausible geochemical scenarios (e.g., hydrothermal vents); can occur in mineral-rich environments. | Lacks a clear mechanism for the emergence of heredity and evolution; does not explain genetic information flow. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosdocimi, F.; de Farias, S.T. Virus-First Theory Revisited: Bridging RNP-World and Cellular Life. Microbiol. Res. 2025, 16, 154. https://doi.org/10.3390/microbiolres16070154
Prosdocimi F, de Farias ST. Virus-First Theory Revisited: Bridging RNP-World and Cellular Life. Microbiology Research. 2025; 16(7):154. https://doi.org/10.3390/microbiolres16070154
Chicago/Turabian StyleProsdocimi, Francisco, and Savio Torres de Farias. 2025. "Virus-First Theory Revisited: Bridging RNP-World and Cellular Life" Microbiology Research 16, no. 7: 154. https://doi.org/10.3390/microbiolres16070154
APA StyleProsdocimi, F., & de Farias, S. T. (2025). Virus-First Theory Revisited: Bridging RNP-World and Cellular Life. Microbiology Research, 16(7), 154. https://doi.org/10.3390/microbiolres16070154