Asterocapsa thermalis sp. nov. from the Unique European Continental Geyser in Sapareva Banya (Bulgaria)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Species Diagnosis
3.2. Suggested Conservation Status
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Round, F. Ecology of Algae; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Seckbach, J. (Ed.) Enigmatic Microorganisms and Life in Extreme Environments; Kluver Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Stoyneva, M.P. Survey on green algae of Bulgarian thermal springs. Biol. Bratisl. 2003, 58, 563–574. [Google Scholar]
- Stoyneva, M.P.; Gärtner, G. Taxonomic and Ecological Notes to the List of Green Algal Species from Bulgarian Thermomineral Waters. Ber. Nat. Med. Ver. Innsbr. 2004, 91, 67–89. [Google Scholar]
- Seckbach, J.; Oren, A. Introduction to the Extremophiles. In Origins. Cellular Origin, Life in Extreme Habitats and Astrobiology; Seckbach, J., Ed.; Springer: Dordrecht, The Netherlands, 2005; Volume 6, pp. 371–396. [Google Scholar] [CrossRef]
- Castenholz, R.W. The Biogeography of Hot Spring Algae through Enrichment Cultures. Verh. Int. Ver. Theor. Angew. Limnol. 1978, 21, 296–315. [Google Scholar] [CrossRef]
- Papke, R.T.; Ramsing, N.B.; Bateson, M.M.; Ward, M. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 2003, 5, 650–659. [Google Scholar]
- Saini, N.; Pal, K.; Sujata; Deepak, B.; Mona, S. Thermophilic algae: A new prospect towards environmental sustainability. J. Clean. Prod. 2021, 324, 129277. [Google Scholar] [CrossRef]
- Whitaker, R.J.; Grogan, D.W.; Taylor, J.W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 2003, 301, 976–978. [Google Scholar] [CrossRef] [PubMed]
- Dadheech, P.K.; Glöckner, G.; Casper, P.; Kotut, K.; Mazzoni, C.J.; Mbedi, S.; Krienitz, L. Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake. FEMS Microbiol. Ecol. 2013, 85, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Stoyneva-Gärtner, M.P.; Uzunov, B.; Gärtner, G. Enigmatic Microalgae from Aeroterrestrial and Extreme Habitats in Cosmetics: The Potential of the Untapped Natural Sources. Cosmetics 2020, 7, 27. [Google Scholar] [CrossRef]
- Macelroy, R.D. Some comments on the evolution of extremophiles. BioSystems 1974, 6, 74–75. [Google Scholar] [CrossRef]
- Angelakis, G.N.; Psarologaki, C.; Pirintsos, S.; Kotzabasis, K. Extremophiles and Extremophilic Behaviour—New Insights and Perspectives. Life 2024, 14, 1425. [Google Scholar] [CrossRef] [PubMed]
- Saber, A.A.; El-Refaey, A.A.; Saber, H.; Singh, P.; van Vuuren, S.J.; Cantonati, M. Cyanoprokaryotes and algae: Classification and habitats. In Handbook of Algal Biofuels, Aspects of Cultivation, Conversion, and Biorefinery; El-Sheekh, M., Abomohra, A.E.-F., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–38. [Google Scholar] [CrossRef]
- Liang, Y.; Tang, J.; Luo, Y.; Kaczmarek, M.B.; Li, X.; Daroch, M. Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresour. Technol. 2019, 278, 255–265. [Google Scholar] [CrossRef]
- Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P. A perspective on biotechnological applications of thermophilic microalgae and Cyanobacteria. Bioresour. Technol. 2019, 278, 424–434. [Google Scholar] [CrossRef]
- Stoyneva-Gärtner, M.; Uzunov, B.; Gärtner, G. Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. Cosmetics 2022, 9, 11. [Google Scholar] [CrossRef]
- Wong, C.K.F.; Chong, T.Y.; Tan, J.; Wong, W.L. Isolation and Characterisation of Culturable Thermophilic Cyanobacteria from Perak Hot Springs and Their Plant Growth Promoting Properties Effects on Rice Seedlings (Oryza sativa L.). Trop. Life Sci. Res. 2023, 34, 1–22. [Google Scholar] [CrossRef]
- Alcorta, J.; Alarcón-Schumacher, T.; Salgado, O.; Díez, B. Taxonomic Novelty and Distinctive Genomic Features of Hot Spring Cyanobacteria. Front. Genet. 2020, 11, 568223. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.C.; Murugapiran, S.K.; Kees, E.D.; Sauer, H.M.; Hamilton, T.L. Temperature and Geographic Location Impact the Distribution and Diversity of Photoautotrophic Gene Variants in Alkaline Yellowstone Hot Springs. Microbiol. Spectr. 2022, 10, e0146521. [Google Scholar] [CrossRef] [PubMed]
- Fecteau, K.M.; Boyd, E.S.; Lindsay, M.R.; Amenabar, M.J.; Robinson, K.J.; Debes, R.V.; Shock, E.L. Cyanobacteria and algae meet at the limits of their habitat ranges in moderately acidic hot springs. JGR Biogeosci. 2022, 127, e2021JG006446. [Google Scholar] [CrossRef]
- Ionescu, D.; Hindiyeh, M.; Malkawi, H.; Oren, A. Biogeography of thermophilic cyanobacteria: Insights from the Zerka Ma’in hot springs (Jordan). FEMS Microbiol. Ecol. 2010, 72, 103–113. [Google Scholar] [CrossRef]
- Stoyneva-Gärtner, M.P.; Uzunov, B.A.; Gärtner, G. Checklist of algae from Bulgarian thermal waters. Annu. Sofia Univ. “St. Kliment Ohridski”, Fac. Biol. Book 2—Bot. 2018, 102, 49–73. [Google Scholar] [CrossRef]
- Kanellopoulos, C.; Lamprinou, V.; Politi, A.; Voudouris, P.; Economou-Amilli, A. Pioneer species of Cyanobacteria in hot springs and their role to travertine formation: The case of Aedipsos hot springs, Euboea (Evia), Greece. Depos. Rec. 2022, 8, 1079–1092. [Google Scholar] [CrossRef]
- Tang, J.; Du, L.-M.; Li, M.; Yao, D.; Jiang, Y.; Waleron, M.; Waleron, K.; Daroch, M. Characterization of a Novel Hot-Spring Cyanobacterium Leptodesmis sichuanensis sp. Nov. and Genomic Insights of Molecular Adaptations into Its Habitat. Front. Microbiol. 2022, 12, 739625. [Google Scholar] [CrossRef]
- Kaštovský, J.; Johansen, J.R.; Hauerová, R.; Akagha, M.U. Hot Is Rich—An Enormous Diversity of Simple Trichal Cyanobacteria from Yellowstone Hot Springs. Diversity 2023, 15, 975. [Google Scholar] [CrossRef]
- Öztürk, S.; Kurt, O. The taxonomy and distribution of algae in the thermal springs of Türkiye. Acta Bot. Croat. 2024, 83, 92–99. [Google Scholar] [CrossRef]
- Cox, A.; Shock, E.L.; Havig, J.R. The transition to microbial photosynthesis in hot spring ecosystems. Chem. Geol. 2011, 280, 344–351. [Google Scholar] [CrossRef]
- Hindák, F.; Kvíderová, J.; Lukavský, J. Growth characteristics of selected thermophilic strains of cyanobacteria using crossed gradients of temperature and light. Biologia 2013, 68, 830–837. [Google Scholar] [CrossRef]
- Amarouche-Yala, S.; Benouadah, A.; El Ouahab Bentabet, A.; López-García, P. Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs. Extremophiles 2014, 18, 1035–1047. [Google Scholar] [CrossRef]
- Ogbaga, C.C.; Stepien, P.; Athar, H.U.R.; Ashraf, M. Engineering Rubisco activase from thermophilic cyanobacteria into high-temperature sensitive plants. Crit. Rev. Biotechnol. 2017, 38, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Bunbury, F.; Rivas, C.; Calatrava, V.; Shelton, A.N.; Grossman, A.; Bhayaa, D. Differential Phototactic Behavior of Closely Related Cyanobacterial Isolates from Yellowstone Hot Spring Biofilms. Appl. Environ. Microbiol. 2022, 88, e0019622. [Google Scholar] [CrossRef]
- Loiacono, S.T.; Meyer-Dombard, D.R.; Havig, J.R.; Poret-Peterson, A.T.; Hartnett, H.E.; Shock, E.L. Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park. Environ. Microbiol. 2012, 14, 1272–1283. [Google Scholar] [CrossRef]
- Singh, Y.; Gulati, A.; Singh, D.P.; Khattar, J.I.S. Cyanobacterial community structure in hot water springs of Indian North-Western Himalayas: A morphological, molecular and ecological approach. Algal Res. 2018, 29, 179–192. [Google Scholar] [CrossRef]
- Copeland, J.J. Yellowstone thermal Myxophyceae. Ann. N. Y. Acad. Sci. 1936, 36, 4–223. [Google Scholar] [CrossRef]
- Hamilton, T.L.; Lange, R.K.; Boyd, E.S.; Peters, J.W. Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming. Environ. Microbiol. 2011, 13, 2204–2215. [Google Scholar] [CrossRef]
- Uyeda, J.C.; Harmon, L.J.; Blank, C.E. A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. PLoS ONE 2016, 11, e0162539. [Google Scholar] [CrossRef]
- Sanchez-Baracaldo, P.; Hayes, P.K.; Blank, C.E. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 2005, 3, 145–165. [Google Scholar] [CrossRef]
- Dagan, T.; Roettger, M.; Stucken, K.; Landan, G.; Koch, R.; Major, P.; Gould, S.B.; Goremykin, V.V.; Rippka, R.; de Marsac, N.T.; et al. Genomes of Stigonematalean cyanobacteria (Subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol. Evol. 2013, 5, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.M.; Wu, D.; Latifi, A.; Axen, S.D.; Fewer, D.P.; Talla, E.; Calteau, A.; Cai, F.; de Marsac, N.T.; Rippka, R.; et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 1053–1058. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase; World-Wide Electronic Publication; National University of Ireland: Galway, Ireland; Available online: https://www.algaebase.org (accessed on 17 June 2025).
- Azevedo, M.T.P.; Sant’Anna, C.L.; Senna, P.A.C.; Komárek, J.; Komárková, J. Contribution to the microflora of chroococcalean cyanoprokaryotes in São Paulo State, Southeast Brazil. Hoehnea 2003, 30, 285–295. [Google Scholar]
- Komárek, J. Validation of the genera Gloeocapsopsis and Asterocapsa (Cyanoprokaryota) with regard to species from Japan, Mexico and Himalayas. Bull. Natl. Sci. Mus. Tokyo Ser. B Bot. 1993, 19, 19–37. [Google Scholar]
- Chu, H.J. Flora Algarum Sinicarum Aquae Dulcis Tomus II Chroococcophyceae; Science Press: Beijing, China, 1991. [Google Scholar]
- Tavera, R.; Novelo, E.; López, S. Cyanoprokaryota (Cyanobacteria) in karst environmnets in Yucatán, Mexico. Bot. Sci. 2013, 91, 27–52. [Google Scholar] [CrossRef][Green Version]
- Michev, T.M.; Stoyneva, M.P. Red List of Bulgarian Wetlands: Conception, Creation and Application. Annuaire de l’Université de Sofia “St Kliment Ohridski” 2005, 96, 71–76. [Google Scholar][Green Version]
- Michev, T.; Stoyneva, M. (Eds.) Inventory of Bulgarian Wetlands and Their Biodiversity; Elsi-M: Sofia, Bulgaria, 2007. [Google Scholar]
- Stoyneva-Gärtner, M.P.; Isheva, T.; Ivanov, P.; Uzunov, B.A.; Dimitrova, P. Red List of Bulgarian algae. II. Microalgae. Annu. Sofia Univ. Fac. Biol. Book 2—Bot. 2016, 100, 15–55. [Google Scholar] [CrossRef]
- Bulgaria. Available online: https://en.wikipedia.org/wiki/Bulgaria (accessed on 16 June 2025).
- EN 15708; Water Quality: Guidance Standard for the Surveying, Sampling and Laboratory Analysis of Phytobenthos in Shallow Running Water. CEN Comité European de Normalisation: Geneva, Switzerland, 2009.
- Geitler, L. Cyanophyceae. In Süswasserflora; Pascher, A., Ed.; Abt. 12; Gustav Fischer Verlag: Jena, Germany, 1925; pp. 1–401. [Google Scholar]
- Geitler, L. Cyanophyceae. In Kryptogamen-Flora von Deutschland, Österreich und der Schweiz; Rabenhorst, L., Ed.; Abt. 14; Akademische Verlagsgesellschaft: Leipzig, Germany, 1932; pp. 673–1196. [Google Scholar]
- Geitler, L. Schizophyta (Klasse Schizophyceae). In Die natürlichen Pflanzenfamilien; Zweite Auflage; Engler, A., Prantl, K., Eds.; Abt.1B; Duncker & Humboldt: Berlin, Germany, 1942; pp. 1–232. [Google Scholar]
- Starmach, K. Cyanophyta-sinice. Glaucophyta—Glaukofity. In Flora Slodkowodns Polski; Starmch, K., Ed.; PWN: Warszawa, Poland, 1966; pp. 1–808. [Google Scholar]
- Gollerbakh, M.M.; Kossinskaya, E.K.; Polyanskiy, V.I. Manual of freshwater algae of the USSR. In Blue-Green Algae; Sovetskaya Nauka: Moscow, Russia, 1953. (In Russian) [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota. 1. Teil: Chroococcales. In Süßwasserflora von Mitteleuropa. Bd. 19/1; Ettl, H., Gärtner, G., Heynig, G., Mollenhauer, D., Eds.; Gustav Fischer: Jena, Germany; Stuttgart, Germany; Lübeck, Germany, 1999. [Google Scholar]
- Hindák, F. Colour Atlas of Cyanophytes; Veda: Bratislava, Slovakia, 2008. [Google Scholar]
- Komárek, J. Coccoid and colonial cyanobacteria. In Freshwater Algae of North America. Ecology and Classification; Wehr, J.D., Sheath, R.G., Eds.; Academic Press: San Fransisco, CA, USA, 2003; pp. 59–116. [Google Scholar]
- Wehr, J.; Sheath, R.; Kociolek, J.P. (Eds.) Freshwater algae of North America: Ecology and Classification; Elsevier, Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Chu, H.-J. Some new Myxophyceae from Szechwan province, China. Ohio J. Sci. 1952, 52, 96–101. [Google Scholar]
- Gkelis, S.; Ourailidis, I.; Panou, M.; Pappas, N. Cyanobacteria of Greece: An annotated checklist. Br. Dent. J. 2016, 4, e10084. [Google Scholar] [CrossRef]
- Aboal, M.; Asencio, A.D.; López-Jiménez, E. Morphological, ultrastructural and ecological study of Asterocapsa divina Komárek (Chroococcaceae, Cyanobacteria) from a cave of Southeastern Spain. Algol. Stud. 2003, 109, 57–65. [Google Scholar] [CrossRef]
- Ramirez, M.; Hernandez-Marine, M.; Novelo, E.; Roldan, M. Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Biofouling 2010, 26, 399–409. [Google Scholar] [CrossRef]
- Johansen, J.R.; Lowe, R.L.; Carty, S.; Fuciková, K.; Olsen, C.E.; Fitzpatrick, M.H.; Ress, J.A.; Furey, P.C. New algal species records for the Great Smoky Mountains National Park, with an annotated checklist of all reported taxa from the park. Southeast. Nat. 2007, 1, 99–134. [Google Scholar] [CrossRef]
- Werner, V.R. Cyanophyceae. In Catálogo de Plantas e Fungos do Brasil; Forzza, R.C., Ed.; Andrea Jakobsson Estúdio, Instituto de Pesquisas, Jardim Botânico do Rio de Janeiro: Rio de Janeiro, Brazil, 2010; Volume 1, pp. 356–366. [Google Scholar]
- Broady, P.A.; Merican, F. Phylum Cyanobacteria: Blue-green bacteria, blue-green algae. In New Zealand inventory of biodiversity. Volume Three. Kingdoms Bacteria, Protozoa, Chromista, Plantae, Fungi; Gordon, D.P., Ed.; Canterbury University Press: Christchurch, New Zealand, 2012; pp. 50–69. [Google Scholar]
- Lederer, F. Asterocapsa aerophytica (Cyanobacteria, Chroococcales), a new species from the Triglav National Park (Julian Alps, Slovenia). Algol. Stud. 2000, 99, 23–28. [Google Scholar] [CrossRef]
- Xiao, H.-X.; Cai, L. Three new species of Cyanophyta from Jilin, China. Acta Phytotax. Sin. 2001, 39, 92–95. [Google Scholar]
- Xiao, H.-X. Two new species of Asterocapsa from Norhtewest China. Acta Phytotax. Sin. 2000, 38, 398–400. [Google Scholar]
- Popović, S.; Nikolić, N.; Jovanović, J.; Predojević, D.; Trbojević, I.; Manić, L.; Simić, G.S. Cyanobacterial and algal abundance and biomass in cave biofilms and relation to environmental and biofilm parameters. Int. J. Speleol. 2019, 48, 49–61. [Google Scholar] [CrossRef]
- Martínez, A.; Asencio, A.D. Distribution of cyanobacteria at the Gelada Cave (Spain) by physical parameters. J. Cave Karst Stud. 2010, 72, 11–20. [Google Scholar] [CrossRef]
- Samad, L.K.; Adhikary, S.P. Diversity of Micro-algae and Cyanobacteria on Building Facades and Monuments in India. Algae 2008, 23, 91–114. [Google Scholar] [CrossRef]
- Komárek, J.; Komárkova-Legnerová, J. Taxonomic evaluation of the cyanobacterial microflora from alkaline marshes of northern Belize. 1. Phenotypic diversity of coccoid morphotypes. Nova Hedwig. 2007, 84, 65–111. [Google Scholar] [CrossRef]
- Kala, R.; Pandey, V.D. Assessment of epilithic cyanobacterial colonization of ancient temples of Garhwal region, Uttarakhand, India. Plant Arch. 2023, 23, 60–67. [Google Scholar] [CrossRef]
- Tian, Y. Study on the Biological Communities and Bioweathering 1 of Marble Surfaces at Temple of Heaven Park, Beijing, China. EGusphere 2024, 2024, 1–35. [Google Scholar] [CrossRef]
- Rosaldo-Benitez, V.; Ayil-Chan, G.A.; Labrín-Sotomayor, N.; Valdéz-Ojeda, R.; Peña-Ramírez, Y.J. Eukaryotic Microalgae Communities from Tropical Karstic Freshwater Lagoons in an Anthropic Disturbance Gradient Microscopic and Metagenomic Analysis. Microorganisms 2024, 12, 2368. [Google Scholar] [CrossRef]
- Stoyneva-Gärtner, M.P.; Ivanov, P.; Zidarova, R.; Isheva, T.; Uzunov, B.A. A new method for assessment of the Red list threat status of microalgae. Annu. Sofia Univ. “St. Kliment Ohridski”, Fac. Biol. Book 2—Bot. 2016, 100, 5–14. [Google Scholar] [CrossRef]
- Stoyneva-Gärtner, M.P.; Uzunov, B.A. First application of a drone for studies of the biodiversity of Bulgarian extremophilic algae in the Marikostinovo thermal complex. Annu. Sofia Univ. “St. Kliment Ohridski”, Fac. Biol. Book 2—Bot. 2019, 103, 5–37. [Google Scholar] [CrossRef]
- Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef]
- Saraf, A.; Dawda, H.G.; Singh, P. Polyphasic Approach and Cyanobacterial Taxonomy: Some Perspectives and Case Studies. In Ecophysiology and Biochemistry of Cyanobacteria; Rastogi, R.P., Ed.; Springer: Singapore, 2021; pp. 31–48. [Google Scholar] [CrossRef]
- Perona, E.; Muñoz-Martín, M.Á.; Gómez, E.B. Recent trends of polyphasic approach in taxonomy and cyanobacterial diversity. In Developments in Microbiology, Expanding Horizon of Cyanobacterial Biology; Singh, P.K., Fillat, M.F., Sitther, V., Kumar, A., Eds.; Academic Press: London, UK, 2022; pp. 1–49. [Google Scholar] [CrossRef]
Date | MFSP | FFW |
---|---|---|
11 May 2006 | 4 | 2 |
21 July 2008 | 4 | 2 |
6 August 2024 | 4 | 2 |
Species | Cell Shape, Colour, Dimensions and Arrangement, Colony Dimensions | Cell Content | Mucilage Envelopes | Reproduction | Habitat and Continent | Reference |
---|---|---|---|---|---|---|
Asterocapsa thermalis sp. n. | Cells oval; blue-green; 2–2.5 (3)x4 µm; regularly and densely arranged in the colonies; colonies small, up to 15–25 µm, often forming larger aggregations | With large cyanophycin (?) granules | Colourless and transparent in all stages; lamellate, with regular, short rounded projections (warts) | Binary consecutive division | Benthic in Leptolyngbya thermalis mats in a geyser thermal system; Europe | This paper |
Asterocapsa gloeocystiformis Chu (type species) | Cells spherical to oblong; olive-green, bright blue-green or brownish green; 12–16 × 7 µm; mature colonies spherical; colonies 70–250 µm | Homogenous or finely granulated (?pseudovacules) | Colourless, brownish or reddish; very thick, firm, lamellated or not; irregular short or long, minute or stout warts on the surface | Binary division in two or three planes, fragmentation of colonies, aplanospores | Aerophytic on wet rocks; Asia | [60] |
Asterocapsa submersa Azevedo, Sant’Anna, Senna, Komárek et Komárková | Cells spherical to subsphaerical; dark blue-green; 6.4–9.1 µm in diameter (colonies up to 54 µm); aggregated in the centre of the colony | Homogenous | Colourless to pink and golden brown; firm; slightly lamellated; smooth or slightly granular at the surface | Binary fusion in different planes, fragmentation of the colonies or their disintegration in solitary cells | Benthic in Phormidium mats in periodically flooded channels; South America | [42] |
Asterocapasa belizensis Komárek et Komárková-Legnerová | Cells oval to irregularly oval; olive green or bright blue-green; 7–12 µm long or in diameter; spherical colonies 70–130 (280) µm in diameter; cells irregularly but +/− evenly arranged in colonies, in small groups | Slightly granular content; sometimes visible chromatoplasm | Colourless to yellowish, yellow-orange and brown; usually ±lamellated | Disintegration of colonies or through escaping of small cell groups through an opening in the slime margin | Benthic, not common in cya-noprokayote mats in low conductivity marshes and rare in limestone-based marshes; North America | [73] |
A. stagnina Komárek et Komárková-Legnerová | Cells spherical, hemispherical to irregularly spherical; pale greyish blue; 3.6–6.2 µm in diameter; sphaeroid colonies, 30–70 (rarely up to 160) µm; biscuit-like arrangement of cells, concentrated in the centre of the colony | Slightly granulated; sometimes visible chromatoplasm | Intensily yellow brownish; lamellated; warts only in young stages | Irregular cell division, mainly libe-ration of small cells and sub-co-lonies after splitting of the firm envelopes | Benthic, rare and solitary dispersed in cyanoprokaryote mats in low to medium conductivity marshes; North America | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyneva-Gärtner, M.; Gärtner, G.; Uzunov, B. Asterocapsa thermalis sp. nov. from the Unique European Continental Geyser in Sapareva Banya (Bulgaria). Microbiol. Res. 2025, 16, 204. https://doi.org/10.3390/microbiolres16090204
Stoyneva-Gärtner M, Gärtner G, Uzunov B. Asterocapsa thermalis sp. nov. from the Unique European Continental Geyser in Sapareva Banya (Bulgaria). Microbiology Research. 2025; 16(9):204. https://doi.org/10.3390/microbiolres16090204
Chicago/Turabian StyleStoyneva-Gärtner, Maya, Georg Gärtner, and Blagoy Uzunov. 2025. "Asterocapsa thermalis sp. nov. from the Unique European Continental Geyser in Sapareva Banya (Bulgaria)" Microbiology Research 16, no. 9: 204. https://doi.org/10.3390/microbiolres16090204
APA StyleStoyneva-Gärtner, M., Gärtner, G., & Uzunov, B. (2025). Asterocapsa thermalis sp. nov. from the Unique European Continental Geyser in Sapareva Banya (Bulgaria). Microbiology Research, 16(9), 204. https://doi.org/10.3390/microbiolres16090204