Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (135)

Search Parameters:
Keywords = thermal algae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 404 KB  
Review
Ecological Characteristics and Nutritional Values of Australia-Native Brown Algae Species
by Chao Dong, Cundong Xie, Ziqi Lou, Zu Jia Lee, Colin J. Barrow and Hafiz A. R. Suleria
Mar. Drugs 2025, 23(10), 383; https://doi.org/10.3390/md23100383 - 26 Sep 2025
Abstract
This review focuses on five native Australian brown algae species—Cystophora torulosa, Durvillaea potatorum, Ecklonia radiata, Hormosira banksii, and Phyllospora comosa—evaluating their environmental adaptability, biochemical composition, bioactive compounds, and potential for commercial development. Species-specific differences in temperature and [...] Read more.
This review focuses on five native Australian brown algae species—Cystophora torulosa, Durvillaea potatorum, Ecklonia radiata, Hormosira banksii, and Phyllospora comosa—evaluating their environmental adaptability, biochemical composition, bioactive compounds, and potential for commercial development. Species-specific differences in temperature and light tolerance influence their habitat distribution. Nutritional assessments reveal that these algae are rich in proteins, polysaccharides, polyunsaturated fatty acids, and essential trace elements. Bioactive compounds, including polyphenols and fucoidans, exhibit antioxidant, anti-inflammatory, and anti-diabetic properties. D. potatorum extracts have considerable economic value in agriculture by enhancing crop yield, improving nutritional value, and promoting root development. C. torulosa is predominantly found in cooler marine environments and is comparatively more thermally sensitive. In contrast, H. banksii has a higher heat tolerance of up to 40 °C and thrives in warmer environments. E. radiata is widely distributed, highly tolerant of environmental stresses, and exhibits notable disease-resistant activities. P. comosa, due to its high polysaccharide content, demonstrates strong potential for industrial applications. Consumer studies indicate growing acceptance of seaweed-based products in Australia, although knowledge gaps remain. This study highlights the need for continued research, optimized processing methods, and targeted education to support the sustainable development and utilization of Australia’s native brown algae resources. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
14 pages, 1991 KB  
Article
The Effect of Thermal Treatment and Storage on the Stability of Ascophyllum nodosum Extract
by Xin Liu and Wenqiao Yuan
Processes 2025, 13(10), 3043; https://doi.org/10.3390/pr13103043 - 24 Sep 2025
Viewed by 63
Abstract
Macroalgae-derived polyphenols have been considered as a potential source of food supplements that can enhance the nutritional value and extend the shelf life of foods. However, thermal treatment during food processing as well as storage might induce the degradation of some bioactive compounds [...] Read more.
Macroalgae-derived polyphenols have been considered as a potential source of food supplements that can enhance the nutritional value and extend the shelf life of foods. However, thermal treatment during food processing as well as storage might induce the degradation of some bioactive compounds in the extract. In the present study, the stability of the extract from the edible brown algae Ascophyllum nodosum was evaluated under thermal treatment (40–90 °C). Significant differences in TPC, RSC, and antioxidant activity were found during all treatments. The total phenol content (TPC) and antioxidant activity (DPPH scavenging activity) decreased up to 5% and 10%, respectively, after 6 h of thermal treatment, while the reducing sugar content (RSC) increased from 8 to 35% as the temperature increased from 40 to 90 °C. The stability of the extract during storage with or without exposure to air was evaluated at room temperature (25 °C) and low temperature (4 °C) for 108 h, and the influence of the solvent used to contain the extract has been investigated by studying both concentrated and non-concentrated extracts. It was found that the extract stored at 4 °C without exposure to air had a negligible TPC change, while RSC increased in the extract exposed to air, suggesting that oxygen in the air might accelerate polysaccharide degradation during storage. Antioxidant activity of extracts remained constant at both 4 and 25 °C, regardless of exposure to air. Full article
(This article belongs to the Special Issue Evaluation and Utilization of Antioxidant Activity in Food Products)
Show Figures

Figure 1

14 pages, 2791 KB  
Article
Asterocapsa thermalis sp. nov. from the Unique European Continental Geyser in Sapareva Banya (Bulgaria)
by Maya Stoyneva-Gärtner, Georg Gärtner and Blagoy Uzunov
Microbiol. Res. 2025, 16(9), 204; https://doi.org/10.3390/microbiolres16090204 - 13 Sep 2025
Viewed by 323
Abstract
Thermal algae are extremophilic organisms that live in one of the harshest environments in the world and thrive in waters with temperatures of up to 90 °C. They have gained attention due to their special ecological adaptations, their great biotechnological potential and their [...] Read more.
Thermal algae are extremophilic organisms that live in one of the harshest environments in the world and thrive in waters with temperatures of up to 90 °C. They have gained attention due to their special ecological adaptations, their great biotechnological potential and their recently recognised role in combating global climate change and achieving sustainable development. However, the biodiversity of these algae is far from being fully explored. The article presents the first finding of the prokaryotic genus Asterocapsa (Chroococcales, Cyanophyceae, Cyanoprokaryota/Cyanobacteria) in thermal waters and describes a new species from the fountain basins in the thermal system of the only continental European geyser (101 °C) in the town of Sapareva Banya (south-west Bulgaria). This species is not only one of the few aquatic representatives of this generally aeroterrestrial genus, but is also characterised by its extremophilic lifestyle and differs clearly from the type species and other aquatic species of the genus due to its morphological characteristics. These include the smaller dimensions of the cells and colonies, as well as the colourless, transparent, but always lamellar and regularly verrucous mucilage envelopes. The unique locality of this alga is highly endangered and was included in the first Red List of Bulgarian wetlands. Due to human activities and changes in the geyser system, we have detected some unfavourable changes in the algal habitat and therefore propose to add the newly described species to the Red List of Bulgarian Microalgae with the status Critically Endangered. Full article
Show Figures

Figure 1

31 pages, 2977 KB  
Review
Thermal and Nutritional Strategies for Managing Tenacibaculum maritimum in Aquaculture: A Welfare-Oriented Review
by Raquel Carrilho, Márcio Moreira, Ana Paula Farinha, Denise Schrama, Florbela Soares, Pedro Rodrigues and Marco Cerqueira
Animals 2025, 15(17), 2581; https://doi.org/10.3390/ani15172581 - 2 Sep 2025
Viewed by 532
Abstract
Disease outbreaks pose a significant challenge in aquaculture, leading to substantial economic losses for producers. Tenacibaculosis, a significant ulcerative bacterial disease caused by Tenacibaculum maritimum, affects a wide range of marine fish species globally. Current disease management relies on antibiotics and chemicals, [...] Read more.
Disease outbreaks pose a significant challenge in aquaculture, leading to substantial economic losses for producers. Tenacibaculosis, a significant ulcerative bacterial disease caused by Tenacibaculum maritimum, affects a wide range of marine fish species globally. Current disease management relies on antibiotics and chemicals, leading to environmental issues, impaired fish and consumer health, and increased antimicrobial-resistant bacteria. This narrative review critically explores welfare-oriented alternatives, specifically examining the potential of temperature modulation and functional diets. Although thermal strategies show promise for warm-water species through behavioural fever mechanisms, their effectiveness remains limited by species-specific thermal tolerances and lack of commercial validation. Nutritional interventions using marine algae, probiotics, and immunostimulants demonstrate broader applicability but suffer from inconsistent methodologies, limited commercial validation, and significant knowledge gaps. We propose that integration of these approaches could theoretically represent a paradigm shift from pathogen-focused to host-centred disease management, pending empirical validation. However, this integration concept requires rigorous validation, as significant knowledge gaps persists regarding optimal implementation protocols, welfare monitoring frameworks, and economic viability assessments. From our perspective, transitioning to welfare-oriented aquaculture demands rigorous evaluation and validation, commercial-scale trials, economic cost–benefit analysis, and the establishment of regulatory frameworks before these theoretical alternatives can be responsibly implemented. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

22 pages, 1192 KB  
Article
Comparative Proteomic Analysis of Non-Bleached and Bleached Fragments of the Hydrocoral Millepora complanata Reveals Stress Response Signatures Following the 2015–2016 ENSO Event in the Mexican Caribbean
by Esteban de Jesús Alcantar-Orozco, Víctor Hugo Hernández-Elizárraga, Jesús Eduardo Vega-Tamayo, César Ibarra-Alvarado, Juan Caballero-Pérez, Eduardo Rodríguez de San Miguel and Alejandra Rojas-Molina
Biology 2025, 14(8), 1042; https://doi.org/10.3390/biology14081042 - 13 Aug 2025
Viewed by 556
Abstract
The hydrocoral Millepora complanata (fire coral) plays a critical role in reef structure and relies on a symbiotic relationship with Symbiodiniaceae algae. Environmental stressors derived from climate change, such as UV radiation and elevated temperatures, disrupt this symbiosis, leading to bleaching and threatening [...] Read more.
The hydrocoral Millepora complanata (fire coral) plays a critical role in reef structure and relies on a symbiotic relationship with Symbiodiniaceae algae. Environmental stressors derived from climate change, such as UV radiation and elevated temperatures, disrupt this symbiosis, leading to bleaching and threatening reef survival. To gain insight into the thermal stress response of this reef-building hydrocoral, this study investigates the proteomic response of M. complanata to bleaching during the 2015–2016 El Niño event. Fragments from non-bleached and bleached colonies of the hydrocoral M. complanata were collected from a coral reef in the Mexican Caribbean, and proteomic extracts were analyzed using nano-liquid chromatography–tandem mass spectrometry (nano-LC-MS/MS). Uni- and multivariate analyses were applied to identify significant differences in protein abundance. A total of 52 proteins showed differential abundance, including 24 that showed increased expression and 28 whose expression decreased in bleached fragments. Differentially abundant proteins were associated with amino acid biosynthesis, carbohydrate metabolism, cytoskeleton organization, DNA repair, extracellular matrix composition, redox homeostasis, and protein modification. These molecular alterations reflect critical physiological adaptations that may influence stress sensitivity or tolerance in hydrocorals. The findings indicate that heat stress induces molecular responses involving protein refolding, enhanced vesicular transport, cytoskeletal reorganization, and modulation of redox activity. This contributes to a deeper understanding of the molecular mechanisms underlying bleaching in reef-building hydrozoans and broadens current knowledge beyond the more extensively studied anthozoan corals. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

21 pages, 2015 KB  
Article
Enhancing Fucoxanthin Pickering Emulsion Stability and Encapsulation with Seaweed Cellulose Nanofibrils Using High-Pressure Homogenization
by Ying Tuo, Mingrui Wang, Yiwei Yu, Yixiao Li, Xingyuan Hu, Long Wu, Zongpei Zhang, Hui Zhou and Xiang Li
Mar. Drugs 2025, 23(8), 311; https://doi.org/10.3390/md23080311 - 30 Jul 2025
Viewed by 889
Abstract
Poor solubility and bioavailability have limited the application of fucoxanthin in drug and functional food processing. In order to encapsulate fucoxanthin in delivery systems, in this study, cellulose was isolated from industrial brown algae residues and high-pressure homogenized into cellulose nanofibrils (CNFs). Then, [...] Read more.
Poor solubility and bioavailability have limited the application of fucoxanthin in drug and functional food processing. In order to encapsulate fucoxanthin in delivery systems, in this study, cellulose was isolated from industrial brown algae residues and high-pressure homogenized into cellulose nanofibrils (CNFs). Then, fucoxanthin was encapsulated into the Pickering emulsion stabilized by the CNFs. The effect of high-pressure homogenization on the characteristics of cellulose and the stability of fucoxanthin emulsion was evaluated. The results indicated that CNFs prepared at 105 MPa had a diameter of 87 nm and exhibited high zeta potential and thermal stability. Encapsulation efficiency peaked at 70.8% with 1.0 mg/mL fucoxanthin, and after three freeze–thaw cycles the encapsulation efficiency was higher than 60%. The DPPH scavenging activity after 12 days’ storage at 4 °C was still 42%. Furthermore, the Pickering emulsion with 1.0 mg/mL fucoxanthin showed high stability and antioxidant activity under different pH values, salinity, temperature, and UV light exposure duration. The CNFs effectively protected fucoxanthin from degradation, offering a novel delivery system for marine bioactive compounds. To the best of our knowledge, this is the first study on the fucoxanthin delivery system of Pickering emulsion stabilized by the CNFs. Such emulsion might benefit the encapsulation and release of bioactive components in marine drugs. Full article
(This article belongs to the Special Issue Marine Carotenoids: Properties, Health Benefits, and Applications)
Show Figures

Figure 1

28 pages, 4382 KB  
Article
Chlorella vulgaris-Derived Biochars for Metribuzin Removal: Influence of Thermal Processing Pathways on Sorption Properties
by Margita Ščasná, Alexandra Kucmanová, Maroš Sirotiak, Lenka Blinová, Maroš Soldán, Jan Hajzler, Libor Ďuriška and Marián Palcut
Materials 2025, 18(14), 3374; https://doi.org/10.3390/ma18143374 - 18 Jul 2025
Viewed by 547
Abstract
Carbonaceous sorbents were prepared from Chlorella vulgaris via hydrothermal carbonization (200 °C and 250 °C) and slow pyrolysis (300–500 °C) to assess their effectiveness in removing the herbicide metribuzin from water. The biomass was cultivated under controlled laboratory conditions, allowing for consistent feedstock [...] Read more.
Carbonaceous sorbents were prepared from Chlorella vulgaris via hydrothermal carbonization (200 °C and 250 °C) and slow pyrolysis (300–500 °C) to assess their effectiveness in removing the herbicide metribuzin from water. The biomass was cultivated under controlled laboratory conditions, allowing for consistent feedstock quality and traceability throughout processing. Using a single microalgal feedstock for both thermal methods enabled a direct comparison of hydrochar and pyrochar properties and performance, eliminating variability associated with different feedstocks and allowing for a clearer assessment of the influence of thermal conversion pathways. While previous studies have examined algae-derived biochars for heavy metal adsorption, comprehensive comparisons targeting organic micropollutants, such as metribuzin, remain scarce. Moreover, few works have combined kinetic and isotherm modeling to evaluate the underlying adsorption mechanisms of both hydrochars and pyrochars produced from the same algal biomass. Therefore, the materials investigated in the present work were characterized using a combination of standard physicochemical and structural techniques (FTIR, SEM, BET, pH, ash content, and TOC). The kinetics of sorption were also studied. The results show better agreement with the pseudo-second-order model, consistent with chemisorption, except for the hydrochar produced at 250 °C, where physisorption provided a more accurate fit. Freundlich isotherms better described the equilibrium data, indicating heterogeneous adsorption. The hydrochar obtained at 200 °C reached the highest adsorption capacity, attributed to its intact cell structure and abundance of surface functional groups. The pyrochar produced at 500 °C exhibited the highest surface area (44.3 m2/g) but a lower affinity for metribuzin due to the loss of polar functionalities during pyrolysis. This study presents a novel use of Chlorella vulgaris-derived carbon materials for metribuzin removal without chemical activation, which offers practical benefits, including simplified production, lower costs, and reduced chemical waste. The findings contribute to expanding the applicability of algae-based sorbents in water treatments, particularly where low-cost, energy-efficient materials are needed. This approach also supports the integration of carbon sequestration and wastewater remediation within a circular resource framework. Full article
Show Figures

Figure 1

28 pages, 4983 KB  
Review
Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review
by Ruiqi Long, Yuanyuan Huang, Mokhtar Dabbour, Benjamin Kumah Mintah, Jiayin Pan, Minquan Wu, Shengqi Zhang, Zhou Qin, Ronghai He and Haile Ma
Foods 2025, 14(13), 2360; https://doi.org/10.3390/foods14132360 - 3 Jul 2025
Cited by 2 | Viewed by 1404
Abstract
The increasing demand for sustainable protein sources has intensified interest in improving the processing efficiency of traditional proteins and developing novel alternatives, particularly those derived from plants and algae. Among various processing technologies, pH shifting has attracted attention due to its simplicity, low [...] Read more.
The increasing demand for sustainable protein sources has intensified interest in improving the processing efficiency of traditional proteins and developing novel alternatives, particularly those derived from plants and algae. Among various processing technologies, pH shifting has attracted attention due to its simplicity, low cost, and capacity to effectively alter protein structure and functionality. However, employing pH shifting alone requires extremely acidic or alkaline conditions, which can lead to protein denaturation and the generation of undesirable by-products. To address these limitations, this review explores the integration of pH shifting with physical processing techniques such as ultrasound, high-pressure processing, pulsed electric fields, and thermal treatments. Moreover, this review highlights the effects of these combined treatments on protein conformational transitions and the resulting improvements in functional properties such as solubility, emulsification, foaming capacity, and thermal stability. Importantly, they reduce reliance on extreme chemical conditions, providing greater sustainability in industrial applications, particularly in food product development where milder processing conditions help preserve nutritional quality and functional properties. In that sense, this combined treatment approach provides a promising and eco-efficient protein modification strategy, and bridges technological innovation with sustainable resource utilization. Full article
Show Figures

Figure 1

20 pages, 4242 KB  
Article
Molecular Compositions of Hydrocarbons Within the Lower and Middle Carboniferous Shale Sequences from the Outcrops in the Piedmont of Southwestern Tarim Basin and the Possible Geochemical Implications
by Xueyou Tan, Zhushi Ge, Suyang Cai and Qilin Xiao
Energies 2025, 18(11), 2737; https://doi.org/10.3390/en18112737 - 24 May 2025
Viewed by 509
Abstract
The lower and middle Carboniferous shale sequences are one of the important potential hydrocarbon source rocks in the piedmont of the southwestern Tarim Basin, China (PSTB). Rock samples were collected from the lower and middle Carboniferous formations on the Kushanhe, Altash, and Aitegou [...] Read more.
The lower and middle Carboniferous shale sequences are one of the important potential hydrocarbon source rocks in the piedmont of the southwestern Tarim Basin, China (PSTB). Rock samples were collected from the lower and middle Carboniferous formations on the Kushanhe, Altash, and Aitegou outcrops in the PSTB with the intention of mapping the hydrocarbon molecules within these shale sources and disclosing the relevant geochemical implications. The ratios of Pr/Ph < 1.0 and DBT/P < 0.4 and the enrichment of C23 tricyclic terpanoid indicate that the Carboniferous shale sources were deposited in a reducing and sulfate-poor marine setting with the contribution of terrestrial freshwater. Marine aquatic algae act as the major contributor, resulting in the formation of Type II1 kerogen. The Carboniferous shale sequences contain abundant diamondoids with 2–4 cages with the predominance of methyldiamantanes, dimethyldiamantanes, and methyltriamantanes. Quantitative extended diamondoid analysis indicates the occurrence of carbonate-rich and carbonate-poor organic facies in the PSTB. Compared to the carbonate-poor facies, the carbonate-rich facies is relatively depleted in C27 diasteranes and rich in gammacerane, C27 regular steranes, and alkylated triamantanes. This indicates that it was deposited in the more salty and stratified water column but with less input of land higher plants. The clay catalysis effects are assumed to be responsible for the discrepancy in steranes and diamondoids. The Carboniferous shale sequences also contain abundant polycyclic aromatic hydrocarbons with 2–5 rings with the predominance of C0–1-phenanthrenes, chrysenes, and benzofluoranthenes. Thermal maturity parameters associated with polycyclic aromatic hydrocarbons and diamondoids suggest that the Carboniferous shale sources have arrived at the late mature to highly mature stage. This study provides the detailed molecular fingerprints of the lower and middle Carboniferous shale source sequences and explores the underlying geochemical implications. This should be helpful for oil–oil and oil–source correlations and hence petroleum exploration activity in the PSTB. Full article
Show Figures

Figure 1

19 pages, 1738 KB  
Article
Exploration of Bioactive Compounds, Antioxidant and Antibacterial Properties, and Their Potential Efficacy Against HT29 Cell Lines in Dictyota bartayresiana
by Durairaj Swarna Bharathi, Andiyappan Boopathy Raja, Suganthi Nachimuthu, S. Thangavel, Karthik Kannan, Sengottaiyan Shanmugan and Vinaya Tari
Mar. Drugs 2025, 23(6), 224; https://doi.org/10.3390/md23060224 - 23 May 2025
Cited by 1 | Viewed by 1398
Abstract
This study investigates the rare seaweed alga Dictyota bartayresiana lamour for biological activity. Antioxidant and antibacterial activities were examined. An MTT assay was carried out to examine cytotoxicity activity against colon cancer cells. The HPTLC analysis was performed for four different extracts, which [...] Read more.
This study investigates the rare seaweed alga Dictyota bartayresiana lamour for biological activity. Antioxidant and antibacterial activities were examined. An MTT assay was carried out to examine cytotoxicity activity against colon cancer cells. The HPTLC analysis was performed for four different extracts, which exhibited clear flavonoid band formation at 254 nm and 366 nm with varied ranges of Rf values: methanolic extract (Rf 0.87), acetone extract (Rf 0.82), and benzene (Rf 0.83). Methanolic Extract Fraction One (MEF1) has a distinct band formation at 366 nm, it is shown to have the highest inhibition (6.20 ± 0.53 mm) against Escherichia coli, and the MTT assay reveals that the aqueous extract of Dictyota bartayresiana extract has an IC50 value of 300 µg/mL. It is divulged that methanolic extract shows the highest phytochemical compound level among the four extracts of Dictyota bartayresiana. A GC/MS analysis was employed to investigate the flavonoid profile of the crude seaweed extract. Although LC/MS is typically preferred for flavonoid analysis due to thermal sensitivity, GC/MS was used in this study owing to time constraints, with optimized conditions to reduce thermal degradation. The GC-MS analysis identified Quinoline and other flavonoids, suggesting potential bioactivity. The cytotoxicity activity of MEF1 shows that the development of a promising drug may be evaluated from a seaweed source. The present study provides excellent insight with the first report of the biologically active compound of Dictyota bartayresiana. Full article
Show Figures

Figure 1

13 pages, 12111 KB  
Article
Surface-Functionalized Glass Nanoparticles with Algae-Derived Bio-Binder (ADBB) as Reinforcing Agent for Epoxy/ADBB Matrix Nanocomposite
by Abhijeet Mali, Torti Uwaike, Philip Agbo, Shobha Mantripragada, Lijun Wang and Lifeng Zhang
Polymers 2025, 17(10), 1334; https://doi.org/10.3390/polym17101334 - 14 May 2025
Viewed by 497
Abstract
The algae-derived bio-binder (ADBB) from hydrothermal liquefaction has been reported to be an effective and sustainable new alternative to petroleum-based curing agents for epoxy resin. However, there is still room for the epoxy/ADBB system to attain the comprehensive mechanical performance of conventional epoxy-based [...] Read more.
The algae-derived bio-binder (ADBB) from hydrothermal liquefaction has been reported to be an effective and sustainable new alternative to petroleum-based curing agents for epoxy resin. However, there is still room for the epoxy/ADBB system to attain the comprehensive mechanical performance of conventional epoxy-based nanocomposites, typically reinforced with surface-functionalized nanofillers (e.g., glass nanoparticles (GNPs)) by petroleum-based silane coupling agents. Herein, we explored the use of ADBB as an innovative surface-modifying agent to functionalize GNPs and evaluated the potential of ADBB surface-functionalized GNPs (ADBB-GNPs) as a reinforcing agent in the epoxy/ADBB matrix nanocomposite by comparing them to pristine GNPs and (3-aminopropyl) triethoxysilane (APTES) (a popular silane coupling agent) surface-modified GNPs (APTES-GNPs). The surface functionalization of GNPs with ADBB was carried out and characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). Material performance including tensile, flexural, and Izod impact properties and thermal properties of the resulting epoxy/ADBB nanocomposites were investigated by corresponding ASTM mechanical test standards and thermogravimetric analysis (TGA). Our results revealed that the ADBB is a sustainable and effective surface-modifying agent that can functionalize GNPs. The obtained ADBB-GNPs significantly improved the mechanical performance of the epoxy/ADBB system at ultra-low loading (0.5 wt.%) by up to 42% and the maximum decomposition rate temperature increased from 419 °C to 422 °C, both of which outperformed APTES-GNPs. This research sheds light on developing sustainable surface-modifying agents for nanofillers to create high-performance sustainable polymer composite materials. Full article
Show Figures

Figure 1

20 pages, 16179 KB  
Article
Source-Reservoir Characteristics and Pore Evolution Model of the Lower Paleozoic Shales in the Neijiang–Rongchang Area, Sichuan Basin
by Shizhen Chen, Zhidian Xi, Fei Huo and Bingcheng Jiang
Minerals 2025, 15(5), 499; https://doi.org/10.3390/min15050499 - 8 May 2025
Viewed by 499
Abstract
The Wufeng–Longmaxi formations in the Sichuan Basin have emerged as China’s principal shale gas exploration target, with drilling results confirming substantial resource potential. Although the Neijiang–Rongchang Block demonstrates promising production, significant performance variations among lithofacies and reservoir types highlight the need for enhanced [...] Read more.
The Wufeng–Longmaxi formations in the Sichuan Basin have emerged as China’s principal shale gas exploration target, with drilling results confirming substantial resource potential. Although the Neijiang–Rongchang Block demonstrates promising production, significant performance variations among lithofacies and reservoir types highlight the need for enhanced understanding of reservoir evolution. This study integrates petrological analyses, SEM imaging, XRD characterization, seismic interpretation, and production data from multiple wells targeting the Wufeng–Long 1-1 Sub-member. Key insights reveal the following: (1) reservoir lithology consists predominantly of siliceous shale (68% occurrence), characterized by high quartz content (48% avg), low carbonates (<15%), and low clay (<30%); (2) organic-rich intervals contain Type I kerogen derived from planktonic algae, with thermal maturity indicating post-mature evolution; (3) premium reservoirs develop multi-scale pore networks combining organic-hosted pores, interparticle pores, and micro-fractures. Despite high brittle mineral content, mechanical competence decreases stratigraphically from the Wufeng Formation (78%) to Long 1-17 (63%); (4) depositional redox conditions facilitated exceptional organic preservation. Core analyses reveal low porosity (5.5% avg) and ultra-low permeability (0.27 × 10⁻3 μm2 avg), classifying reservoirs as multiple tight unconventional systems in the study area. The proposed lithofacies-controlled pore evolution model elucidates reservoir heterogeneity mechanisms, providing critical geological criteria for optimized shale gas development. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

20 pages, 5205 KB  
Article
Origin and Hydrocarbon Generation of γ-Alkylbutyrolactones in Permian Shales
by Wenjun Wang, Ting Zhang, Zuodong Wang, Liwu Li, Yin Fu, Xiaobin Li and Xiaofeng Wang
Processes 2025, 13(4), 1011; https://doi.org/10.3390/pr13041011 - 28 Mar 2025
Viewed by 435
Abstract
The Lucaogou Formation in the Santanghu Basin is notable for its abundance of oxygen-containing compounds, especially the γ-alkylbutyrolactone series (GBLs), which were detected for the first time in the shales. However, the origin and geological significance of these compounds in sediment are unclear. [...] Read more.
The Lucaogou Formation in the Santanghu Basin is notable for its abundance of oxygen-containing compounds, especially the γ-alkylbutyrolactone series (GBLs), which were detected for the first time in the shales. However, the origin and geological significance of these compounds in sediment are unclear. In this study, source rock samples from the Lucaogou Formation in the Santanghu Basin were collected and classified into two categories (high-GBL content (Group H); low-GBL content (Group L)) based on gas chromatography–mass spectrometry. The biomarker results indicate that the medium-chain n-alkanes in Group H are more enriched. In addition, the source rocks of both Group H and Group L were formed in a reducing and salinized sedimentary environment. The Rock-Eval pyrolysis results indicate that Group H has high organic matter abundance and organic matter types of I–II1, illustrating the contribution of submerged algae, whereas Group L has low organic matter abundance and organic matter types II2–III. Based on the above results, the GBLs exhibit typical biogenic characteristics and is likely to originate from specific submerged algae. Thermal simulation experiments further confirm that Group H has a greater hydrocarbon generation. Combined with gas isotope evidence, these findings show that the high abundance of GBLs compounds is effectively preserved during the formation of excellent source rocks and promotes the formation of petroleum. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 6203 KB  
Article
Application of Clay-Based Catalysts in Co-Conversion and Co-Pyrolysis of Chlorella and Oil Shale
by Xianglong Meng, Ranran Song and Junjie Bian
Catalysts 2025, 15(4), 322; https://doi.org/10.3390/catal15040322 - 27 Mar 2025
Viewed by 629
Abstract
In this study, natural clay-like silicate minerals were used as precursors to prepare highly acid-catalytic hydrophobic catalysts. A series of sulfonic acid-functionalized attapulgite catalysts, SO3H-APG, were fabricated by the ball-milling–oxidation method. The catalytic performance in the co-liquefaction and co-pyrolysis of Chlorella [...] Read more.
In this study, natural clay-like silicate minerals were used as precursors to prepare highly acid-catalytic hydrophobic catalysts. A series of sulfonic acid-functionalized attapulgite catalysts, SO3H-APG, were fabricated by the ball-milling–oxidation method. The catalytic performance in the co-liquefaction and co-pyrolysis of Chlorella and oil shale was investigated. The catalysts were analyzed using hydrophobicity evaluation, TEM, BET, FTIR, and other characterization methods. The SO3H-APG catalysts exhibited good hydrophobicity and dispensability. Sulfonation grafting improved their excellent hydrocarbon conversion activity. According to the GC–MS results, the addition of the SO3H-APG catalysts shifted the co-liquefaction products of microalgae and oil shale towards lower carbon numbers, with the majority of the products concentrated between C5 and C12, and a content of 84.9% in the range of C5–C11, while the content of products in the range of C12–C20 was only 15.1%. In the co-pyrolysis experiments, the addition of the catalysts promoted the thermal decomposition reaction. The synergistic effect between oil shale and microalgae facilitated the production of more hydrocarbon compounds with a higher H/C atomic ratio. The development of this type of catalyst provides an economically favorable approach for the co-conversion of algae and oil shale. The oil shale pyrolysis kinetic diagram shows that adding the APG clay-based catalyst significantly reduces the time for achieving the same conversion rate, especially below 300 °C, where the in situ catalytic effect is most pronounced. Full article
(This article belongs to the Special Issue Biomass Catalytic Conversion to Value-Added Chemicals)
Show Figures

Figure 1

10 pages, 1715 KB  
Article
The Role of Climate Warming and Thermal Stratification in the Ecological Success of Diaphanosoma brachyurum in Lake Maggiore
by Roberta Piscia, Rossana Caroni, Claudia Dresti and Marina Manca
Water 2025, 17(5), 768; https://doi.org/10.3390/w17050768 - 6 Mar 2025
Viewed by 911
Abstract
Deep temperate lakes are increasingly reported to suffer consequences of climate warming, affecting thermal stratification and plankton seasonality. Long-term studies offer a unique opportunity for detecting changes in the zooplankton taxa composition related to climate change. Sampling zooplankton organisms alongside abiotic variables, such [...] Read more.
Deep temperate lakes are increasingly reported to suffer consequences of climate warming, affecting thermal stratification and plankton seasonality. Long-term studies offer a unique opportunity for detecting changes in the zooplankton taxa composition related to climate change. Sampling zooplankton organisms alongside abiotic variables, such as water column temperature, enables the linking of changes in plankton communities with variations in the stratification regime. This provides evidence of direct and indirect warming effects. Our study in Lake Maggiore investigated variations in the population density and persistence of Diaphanosoma brachyurum, a thermophile species that is a member of the original zooplankton community of the lake, along with the increase in water temperature and the duration of the thermal stratification during the period 2013–2023. Our results highlighted an increase in the abundance and persistence of Diaphanosoma during the study period, along with an increase in the mean water temperature of the layer 0–10 m and of the length of the thermal stratification. Such changes, affecting the population dynamics of predators and competitors and their food sources (i.e., small algae), might lead to a rearrangement of the structure of the pelagic food chain. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

Back to TopTop