Approach to Macrodactyly: A Case Report and Diagnostic Algorithm for Syndromic and Isolated Forms
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.-F.; Tian, G.-L.; Pan, H.; Zhang, W.-T.; Li, D.-C.; Liu, J.-D.; Zhao, L.; Li, H.-L. An Analysis of the Pathogenic Genes and Mutation Sites of Macrodactyly. Pharmgenomics Pers. Med. 2022, 15, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Giżewska-Kacprzak, K.; Śliwiński, M.; Nicieja, K.; Babiak-Choroszczak, L.; Walaszek, I. Macrodactyly. Children 2024, 11, 753. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.F.; Gasteratos, K.; Spyropoulou, G.-A.; Yin, F.; Rui, Y.J. Congenital Difference of the Hand and Foot: Pediatric Macrodactyly. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 4054–4062. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, M.; Beckwith, T.; Oishi, S.N. Macrodactyly: Decision-Making and Surgery Timing. J. Hand Surg. Eur. Vol. 2019, 44, 32–42. [Google Scholar] [CrossRef]
- Méneret, A.; Grabli, D.; Depienne, C.; Gaudebout, C.; Picard, F.; Dürr, A.; Lagroua, I.; Bouteiller, D.; Mignot, C.; Doummar, D.; et al. PRRT2 Mutations: A Major Cause of Paroxysmal Kinesigenic Dyskinesia in the European Population. Neurology 2012, 79, 170–174. [Google Scholar] [CrossRef]
- Groffen, A.J.A.; Klapwijk, T.; van Rootselaar, A.-F.; Groen, J.L.; Tijssen, M.A.J. Genetic and Phenotypic Heterogeneity in Sporadic and Familial Forms of Paroxysmal Dyskinesia. J. Neurol. 2013, 260, 93–99. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Lee, M.-J.; Yu, H.-Y.; Chen, C.; Hsu, C.-H.; Lin, K.-P.; Liao, K.-K.; Chang, M.-H.; Liao, Y.-C.; Soong, B.-W. PRRT2 Mutations in Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions in a Taiwanese Cohort. PLoS ONE 2012, 7, e38543. [Google Scholar] [CrossRef]
- Barber, J.C.K.; Hall, V.; Maloney, V.K.; Huang, S.; Roberts, A.M.; Brady, A.F.; Foulds, N.; Bewes, B.; Volleth, M.; Liehr, T.; et al. 16p11.2–P12.2 Duplication Syndrome; a Genomic Condition Differentiated from Euchromatic Variation of 16p11.2. Eur. J. Hum. Genet. 2013, 21, 182–189. [Google Scholar] [CrossRef]
- Firouzabadi, S.G.; Kariminejad, R.; Vameghi, R.; Darvish, H.; Ghaedi, H.; Banihashemi, S.; Firouzkouhi Moghaddam, M.; Jamali, P.; Mofidi Tehrani, H.F.; Dehghani, H.; et al. Copy Number Variants in Patients with Autism and Additional Clinical Features: Report of VIPR2 Duplication and a Novel Microduplication Syndrome. Mol. Neurobiol. 2017, 54, 7019–7027. [Google Scholar] [CrossRef]
- Shinawi, M.; Liu, P.; Kang, S.-H.L.; Shen, J.; Belmont, J.W.; Scott, D.A.; Probst, F.J.; Craigen, W.J.; Graham, B.H.; Pursley, A.; et al. Recurrent Reciprocal 16p11.2 Rearrangements Associated with Global Developmental Delay, Behavioural Problems, Dysmorphism, Epilepsy, and Abnormal Head Size. J. Med. Genet. 2010, 47, 332–341. [Google Scholar] [CrossRef]
- Keppler-Noreuil, K.M.; Rios, J.J.; Parker, V.E.R.; Semple, R.K.; Lindhurst, M.J.; Sapp, J.C.; Alomari, A.; Ezaki, M.; Dobyns, W.; Biesecker, L.G. PIK3CA-Related Overgrowth Spectrum (PROS): Diagnostic and Testing Eligibility Criteria, Differential Diagnosis, and Evaluation. Am. J. Med. Genet. A 2015, 167A, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L. Smith’s Recognizable Patterns of Human Malformation, 7th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2013; ISBN 978-1-4557-3811-3. [Google Scholar]
- Kliegman, R. Nelson Textbook of Pediatrics, 21st ed.; Elsevier: Philadelphia, PA, USA, 2020; ISBN 978-0-323-52950-1. [Google Scholar]
- Lau, F.H.; Xia, F.; Kaplan, A.; Cerrato, F.; Greene, A.K.; Taghinia, A.; Cowan, C.A.; Labow, B.I. Expression Analysis of Macrodactyly Identifies Pleiotrophin Upregulation. PLoS ONE 2012, 7, e40423. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Atlas of Genetic Diagnosis and Counseling, 3rd ed.; Springer: New York, NY, USA, 2017; ISBN 978-1-4939-2400-4. [Google Scholar]
- Lauffer, P.; Boudin, E.; van der Kaay, D.C.M.; Koene, S.; van Haeringen, A.; van Tellingen, V.; Van Hul, W.; Prickett, T.C.R.; Mortier, G.; Espiner, E.A.; et al. Broadening the Spectrum of Loss-of-Function Variants in NPR-C-Related Extreme Tall Stature. J. Endocr. Soc. 2022, 6, bvac019. [Google Scholar] [CrossRef]
- Mohamed, S.; He, Q.Q.; Singh, A.A.; Ferro, V. Mucopolysaccharidosis Type II (Hunter Syndrome): Clinical and Biochemical Aspects of the Disease and Approaches to Its Diagnosis and Treatment. Adv. Carbohydr. Chem. Biochem. 2020, 77, 71–117. [Google Scholar] [CrossRef]
- Bendon, C.L.; Giele, H.P. Macrodactyly in the Setting of a Plexiform Schwannoma in Neurofibromatosis Type 2: Case Report. J. Hand Surg. Am. 2013, 38, 740–744. [Google Scholar] [CrossRef]
- Tian, W.; Huang, Y.; Sun, L.; Guo, Y.; Zhao, S.; Lin, M.; Dong, X.; Zhong, W.; Yin, Y.; Chen, Z.; et al. Phenotypic and Genetic Spectrum of Isolated Macrodactyly: Somatic Mosaicism of PIK3CA and AKT1 Oncogenic Variants. Orphanet J. Rare Dis. 2020, 15, 288. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lee, Y.; Choi, Y.; Choi, I.H.; Heo, S.H.; Choi, J.M.; Do, H.-S.; Jang, J.-H.; Yum, M.-S.; Yoo, H.-W.; et al. Clinical and Genetic Analyses of Patients with Lateralized Overgrowth. BMC Med. Genom. 2022, 15, 206. [Google Scholar] [CrossRef]
- Rodríguez-Laguna, L.; Davis, K.; Finger, M.; Aubel, D.; Vlamis, R.; Johnson, C. Mapping the PIK3CA-Related Overgrowth Spectrum (PROS) Patient and Caregiver Journey Using a Patient-Centered Approach. Orphanet J. Rare Dis. 2022, 17, 189. [Google Scholar] [CrossRef]
- Biesecker, L.G.; Sapp, J.C. Proteus Syndrome. 2012 Aug 9 [Updated 2023 May 25]. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Alotibi, R.S.; Sannan, N.S.; AlEissa, M.; Aldriwesh, M.G.; Tuwaijri, A.A.; Akiel, M.A.; Almutairi, M.; Alsamer, A.; Altharawi, N.; Aljawfan, G.; et al. The Diagnostic Yield of CGH and WES in Neurodevelopmental Disorders. Front. Pediatr. 2023, 11, 1133789. [Google Scholar] [CrossRef]
- Manor, J.; Lalani, S.R. Overgrowth Syndromes—Evaluation, Diagnosis, and Management. Front. Pediatr. 2020, 8, 574857. [Google Scholar] [CrossRef]
- Reimann, E.; Kõks, S.; Ho, X.D.; Maasalu, K.; Märtson, A. Whole Exome Sequencing of a Single Osteosarcoma Case--Integrative Analysis with Whole Transcriptome RNA-Seq Data. Hum. Genom. 2014, 8, 20. [Google Scholar] [CrossRef]
- Douzgou, S.; Rawson, M.; Baselga, E.; Danielpour, M.; Faivre, L.; Kashanian, A.; Keppler-Noreuil, K.M.; Kuentz, P.; Mancini, G.M.S.; Maniere, M.-C.; et al. A Standard of Care for Individuals with PIK3CA-Related Disorders: An International Expert Consensus Statement. Clin. Genet. 2022, 101, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Keppler-Noreuil, K.M.; Sapp, J.C.; Lindhurst, M.J.; Parker, V.E.R.; Blumhorst, C.; Darling, T.; Tosi, L.L.; Huson, S.M.; Whitehouse, R.W.; Jakkula, E.; et al. Clinical Delineation and Natural History of the PIK3CA-Related Overgrowth Spectrum. Am. J. Med. Genet. A 2014, 164A, 1713–1733. [Google Scholar] [CrossRef]
- Madsen, R.R.; Vanhaesebroeck, B.; Semple, R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol. Med. 2018, 24, 856–870. [Google Scholar] [CrossRef] [PubMed]
- Canaud, G.; Lopez Gutierrez, J.C.; Irvine, A.D.; Vabres, P.; Hansford, J.R.; Ankrah, N.; Branle, F.; Papadimitriou, A.; Ridolfi, A.; O’Connell, P.; et al. Alpelisib for Treatment of Patients with PIK3CA-Related Overgrowth Spectrum (PROS). Genet. Med. 2023, 25, 100969. [Google Scholar] [CrossRef]
- Mirzaa, G.; Graham, J.M.; Keppler-Noreuil, K. PIK3CA-Related Overgrowth Spectrum. 2013 Aug 15 [Updated 2023 Apr 6]. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
Phenotype | Gene (Location) | Other Features |
---|---|---|
PIK3CA-related overgrowth syndrome (PROS) | PIK3CA (3q26.32) | Including (i) macrodactydy including fibroadipose overgrowth; (ii) CLOVE syndrome; (iii) CLAPO syndrome; (iv) epidermal nevus; (v) seborrheic or benign lichenoid keratosis; (vi) cerebral cavernous malformations 4; (vii) Cowden syndrome 5; (viii) MCAP; (ix) HHML; (x) muscle hemihypertrophy; (xi) facial-infiltrating lipomatosis; and (xii) specific cancers: breast, colorectal, gastric, hepatocellular, non-small-cell lung, and ovarian types. |
Non-syndromic macrodactyly | PTN (7q33) | Pleiotrophin upregulation. PTN seems to activate PI3K signaling. |
Klippel–Trenaunay–Weber syndrome | Diversity in its genetic landscape. Many cases display somatic mosaicism for a missense mutation in PIK3CA | Large cutaneous hemangiomata with hypertrophy of the related bones and soft tissues, venous varicosities, and half of patients with Kasabach–Merritt syndrome |
Tuberous sclerosis complex (TSC) | TSC1 (9q34.13) or TSC2 (16p13.3) | Autosomal dominant. Cystic areas of bone rarefaction–especially for phalanges |
Natriuretic Peptide Receptor 2 mutations | NPR2 (9p13.3) | Including epiphyseal chondrodysplasia, Miura type. Macrodactyly is also seen with NPR3 (Boudin–Mortier syndrome) and NPPC (alias CNP) variants. |
PTEN hamartoma syndromes (with variable expression and age-related penetrance) | PTEN (10q23.31) | Including (i) Cowden syndrome 1: a hamartomatous disorder characterized by macrocephaly, facial trichilemmomas, acral keratoses, papillomatous papules, and an increased risk for the development of breast, thyroid, and endometrial carcinoma; (ii) Bannayan–Riley–Ruvalcaba syndrome: hamartomatous polyps of the gastrointestinal tract, mucocutaneous lesions, developmental delay, macrocephaly, lipomas, hemangiomas, and pigmented speckled macules of the glans penis in males, and an increased risk of developing neoplasms; (iii) Lhermitte–Duclos disease with dysplastic gangliocytoma of the cerebellum; and (iv) Proteus-like syndrome |
Proteus syndrome | AKT1 (14q32.33) | Partial gigantism of hands and feet, nevi, hemihyperthrophy, and macrocephaly; Elattoproteus syndrome and fibroadipose hyperplasia included |
Mucopolysaccharidosis type II or Hunter syndrome | IDS region (Xq28) | X-linked recessive inheritance. Patients excrete excessive amounts of chondroitin sulfate B (dermatan sulfate) and heparitin sulfate (heparan sulfate) in the urine. Severe airway obstruction, skeletal deformities, cardiomyopathy, and neurologic decline. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakidis, I.; Pelagiadis, I.; Katzilakis, N.; Stiakaki, E. Approach to Macrodactyly: A Case Report and Diagnostic Algorithm for Syndromic and Isolated Forms. Pediatr. Rep. 2025, 17, 32. https://doi.org/10.3390/pediatric17020032
Kyriakidis I, Pelagiadis I, Katzilakis N, Stiakaki E. Approach to Macrodactyly: A Case Report and Diagnostic Algorithm for Syndromic and Isolated Forms. Pediatric Reports. 2025; 17(2):32. https://doi.org/10.3390/pediatric17020032
Chicago/Turabian StyleKyriakidis, Ioannis, Iordanis Pelagiadis, Nikolaos Katzilakis, and Eftichia Stiakaki. 2025. "Approach to Macrodactyly: A Case Report and Diagnostic Algorithm for Syndromic and Isolated Forms" Pediatric Reports 17, no. 2: 32. https://doi.org/10.3390/pediatric17020032
APA StyleKyriakidis, I., Pelagiadis, I., Katzilakis, N., & Stiakaki, E. (2025). Approach to Macrodactyly: A Case Report and Diagnostic Algorithm for Syndromic and Isolated Forms. Pediatric Reports, 17(2), 32. https://doi.org/10.3390/pediatric17020032