Influence of Abiotic Stresses on Morphophysiological Characteristics and Biological Value of Grain Sorghum bicolor (L.) Moench
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects of Study
2.2. Field Studies
2.3. Laboratory Research
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physiological Signs
3.2. Morphometric Traits and Yield
3.3. Biochemical Indicators
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amelework, B.; Shimelis, H.; Tongoona, P.; Laing, M. Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. Afr. J. Agric. Res. 2015, 10, 3029–3040. [Google Scholar]
- Jabereldar, A.A.; El Naim, A.M.; Abdalla, A.A.; Dagash, T.M. Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor L. Moench) in Semi-Arid Environment. Int. J. Agric. For. 2017, 7, 1–6. [Google Scholar]
- Kibalnik, O.P.; Larina, T.V.; Kameneva, O.B.; Semin, D.S. Assesment of drought resistance in sorghum CMS lines based on various sterility sources. Proceed. Appl. Bot. Gen. Breed. 2021, 182, 9–17. [Google Scholar] [CrossRef]
- Reddy, B.; Reddy, P.S. Sweet sorghum: Characteristics and potential. Int. Sorghum Millets Newsl. 2003, 44, 26–28. [Google Scholar]
- Sarmento, E.C.S.; Sarmento de Oliveira, F.; Cabral, F.A.S.; Oliveira, D.F.; Dutra, A.S. Physiological potential of sorghum seeds under discontinuous hydration and water deficiency conditions. RCA 2020, 51, e20207200. [Google Scholar] [CrossRef]
- Hossain, M.S.; Islam, M.N.; Rahman, M.M.; Mostofa, M.G. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. J. Agric. Food Res. 2022, 8, 2. [Google Scholar] [CrossRef]
- Mokhova, V.I.; Vikhrova, V.A.; Nikonorova, Y.Y. Evaluation of the quality of baking wheat bread with the addition of grain sorghum flour. Sci. J. KubGAU 2019, 151, 193–199. [Google Scholar]
- Schober, T.J.; Bean, S.R.; Boyle, D.L. Gluten-free sorghum bread improved by sourdough fermentation: Biochemical, rheological, and microstructural background. Food Chem. 2007, 55, 5137–5146. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, M. Hydrolysis of gelatinized maize, millet and sorghum starch by amylases of Aspergillus niger. Biosci. Res. 2012, 9, 92–93. [Google Scholar]
- Dwipajati, D.; Widajati, E.; Ainaya, A.F.; Novanda, R.D. Potential of Indonesian Community Food Sources which are Rich in Fiber as an Alternative Staple Food for Type 2 Diabetics: A Scoping Review. Open Access Macedon. J. Med. Sci. 2022, 10, 47–53. [Google Scholar] [CrossRef]
- Khoddami, A.; Messina, V.; Venkata, K.V.; Farahnaky, A.; Blanchard, C.L.; Roberts, T.H. Sorghum in foods: Functionality and potential in innovative products. Crit. Rev. Food Sci. Nut. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Bibi, A.; Sadaqat, H.A.; Awan, F.S. Physio-biochemical responses and defining selection criteria for drought tolerance in Sorghum bicolor. Maydica 2019, 64, 1–8. [Google Scholar]
- Emendack, Y.; Burke, J.; Sanchez, J.; Laza, H.E.; Hayes, C. Agro-morphological characterization of diverse sorghum lines for pre- and post-flowering drought tolerance. Aust. J. Crop. Sci. 2018, 12, 135–150. [Google Scholar] [CrossRef]
- Phuong, N.; Afolayan, G.; Soda, M.E.; Stützel, H.; Wenzel, W.; Uptmoor, R. Genetic Dissection of Pre-Flowering Growth and development in Sorghum bicolor L. Moench under Well-Watered and Drought Stress Conditions. Agric. Sci. 2014, 5, 923–934. [Google Scholar]
- Jeevitha, R.; Vijayalakshmi, D.; Vinitha, A.; Gowsiga, S.; Ramya, G. Morpho-physiological Responses of Sorghum Cultivars to Drought Stress. Int. J. Environ. Clim. Change 2022, 12, 2062–2075. [Google Scholar] [CrossRef]
- Nasrabad, A.A.; Nik, S.M.M.; Galavi, M.; Siroosmehr, A.; Beheshti, S.A.R. Evalution of water stress at different growth stages on yield, its components, cell membrane stability and leaf relative water content of grain sorghum (Sorghum bicolor L. Moench) genotypes. Environ. Stress Crop Sci. 2016, 9, 217–228. [Google Scholar]
- Chadalavada, K.; Kumari, B.D.R.; Kumar, T.S. Sorghum mitigates climate variability and change on crop yield and quality. Planta 2021, 253, 113. [Google Scholar] [CrossRef]
- Golovachev, V.I.; Kirilovskaya, E.V. Methodology of State Variety Testing of Agricultural Crops; Gosagroprom: Moskow, Russia, 1989; p. 194. [Google Scholar]
- Udovenko, G.V.; Oleinikova, T.V.; Kozshushko, N.N. Methods of Diagnostics of Plant resistance (Drought, Heat, Salt and Frost Resistance; VIR: Saint Petersburg, Russia, 1970; p. 74. [Google Scholar]
- Golubinova, I.; Vasilevska-Ivanova, R. Temperature effect on seed imbibition in sorghum. Proc. Bulgar. Acad. Sci. 2008, 61, 1491–1496. [Google Scholar]
- Zhu, G.; An, L.; Jiao, X.; Chen, X.; Zhou, G.; McLaughlin, N. Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chilean. J. Agric. Res. 2019, 79, 415–424. [Google Scholar] [CrossRef]
- Udovenko, G.V. Diagnostics of Plant Resistance to Stress: (Guidelines); VIR: Saint Petersburg, Russia, 1988; pp. 49–50. [Google Scholar]
- Ermakov, A.I.; Arasimovich, V.V.; Yarosh, N.P. Methods of Biochemical Research of Plants; Agropromizdat: Saint Petersburg, Russia, 1987; p. 429. [Google Scholar]
- Dospekhov, B.A. The Technique of a Field Experiment (with Bases of Statistical Processing of Research Results); Agropromizdat: Moscow, Russia, 2011; 352p. (In Russian) [Google Scholar]
- Polevoy, A.N.; Sinitsyna, V.V. Modeling of grain crops development at the early stages of ontogenesis and germination formation. Environ. Monit. Eco. Model. 2013, 25, 265–288. [Google Scholar]
- Polonsky, V.I.; Gribovskaya, I.V.; Volkova, E.K. On the heterogeneity of wheat seeds in the ability to swell and germinate in osmotic solutions. Agric. Biol. 2004, 5, 63–67. [Google Scholar]
- Kibalnik, O.P.; Efremova, I.G.; Kukoleva, S.S. Stress immunity of CMS lines of Sorghum bicolor (L.) Moench at the basis of different cytoplasmic sterility types. In Proceedings of the 6th International Scientific Conference: Plant Genetics, Genomics, Bioinformatics, and Biotechnology, Novosibirsk, Russia, 14–18 June 2021; p. 111. [Google Scholar]
- Wagaw, K. Review on Mechanisms of Drought Tolerance in Sorghum (Sorghum bicolor L. Moench) Basis and Breeding Methods. Acad. Res. J. Agric. Sci. Res. 2019, 7, 87–99. [Google Scholar]
- Ndlovu, E.; Staden, J.; Maphosa, M. Morpho-physiological effects of moisture. Heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress 2021, 2, 100018. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Pisipati, S.R.; Mutava, R.N.; Tuinstra, M.R. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci. 2008, 48, 1911–1917. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Abbas, A.; Niaz, S.; Zulkiffal, M.; Ali, S. Morpho-physiological criteria for tolerance in sorghum (Sorghum bicolor) at seedling and post-anthesis stages. Int. J. Agric. Biol. 2009, 11, 674–680. [Google Scholar]
- Alabushev, A.V.; Kovtunov, V.V.; Lushpina, O.A. Grain sorghum is a promising raw material for starch production. Achiev. Sci. Technol. Agric. 2016, 30, 64–66. [Google Scholar]
- Syrkina, L.F.; Nikonorova, Y.Y. Grain sorghum as a possible source of raw materials for processing into starch and alcohol. Bull. KrasGAU 2020, 10, 95–100. [Google Scholar] [CrossRef]
- Abah, C.R.; Ishiwu, C.N.; Obiegbuna, J.E.; Oladejo, A.A. Sorghum Grains: Nutritional Composition, Functional Properties and Its Food Applications. Eur. J. Nutrit. Food Saf. 2020, 12, 101–111. [Google Scholar] [CrossRef]
- Zarei, M.; Amirkolaei, A.K.; Trushenski, J.T.; Sealey, W.M.; Schwarz, M.H.; Ovissipour, R. Sorghum as a Potential Valuable Aquafeed Ingredient: Nutritional Quality and Digestibility. Agriculture 2022, 12, 669. [Google Scholar] [CrossRef]
- Matvienko, E.V. Sorghum as a food crop. Int. Agric. J. 2020, 3, 100–108. [Google Scholar]
- Pontieri, P.; Giudice, L. Del Sorghum: A Novel and Healthy Food. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016; pp. 33–42. [Google Scholar]
- Abramova, A.V.; Meledina, T.V.; Fedorova, R.A. Prospects and problems of using sorghum to create gluten-free products. Proc. St. Petersburg Agric. Univ. 2016, 42, 72–77. [Google Scholar]
- Henley, E.C.; Taylor, J.R.N.; Obukosia, S.D. The Importance of Dietary Protein in Human Health: Combating Protein Deficiency in Sub-Saharan Africa through Transgenic Biofortified Sorghum. Adv. Food Nutr. Res. 2010, 60, 21–52. [Google Scholar]
- Serna-Saldivar, S.O.; Espinosa-Ramírez, J. Grain Structure and Grain Chemical Composition. Int. Sorghum Millets 2019, 85–129. [Google Scholar] [CrossRef]
- Adebowale, A.A.; Naushad, E.; Beukes, M.; Taylor, M. Fractionation and characterization of teff proteins. J. Cereal Sci. 2011, 54, 380–386. [Google Scholar] [CrossRef]
Sample | Sum of Air Temperatures, °C | Precipitation, mm | Hydrothermal Coefficient | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
RSK Kakholong | 733.6 | 688.4 | 43.5 | 41.0 | 0.59 | 0.59 |
RSK Korall | 733.6 | 688.4 | 43.5 | 41.0 | 0.59 | 0.59 |
Magistr | 736.8 | 689.7 | 36.1 | 41.0 | 0.48 | 0.59 |
L-50/14 | 742.8 | 689.7 | 36.1 | 41.0 | 0.48 | 0.59 |
L-65/14 | 750.6 | 689.7 | 36.1 | 41.0 | 0.48 | 0.59 |
Drought Tolerance Assessment | Leaf Water Content, % | Water Deficiency, % | Water Loss by Leaves after Wilting, % | Average Water Loss for 1 h of Wilting, % |
---|---|---|---|---|
Low | 59.5 and less | 20.1 and more | 50.1 and more | 11.1 and more |
Medium | 60.0–69.9 | 10.1–20.0 | 30.1–50.0 | 10.1–11.0 |
High | 70.0 and more | up to 10.0 | up to 30.0 | up to 10.0 |
Sample | Experience Variant | Experiment Duration, Hour | Average | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 24 | 48 | ||||||||||
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Magistr | H2O | 23.1 | 48.6 | 32.2 | 64.0 | 37.1 | 69.7 | 43.5 | 70.7 | 65.4 | 83.3 | 105.1 | 121.6 | 51.1 | 76.3 |
C12H22O11 | 25.4 | 54.6 | 29.9 | 66.9 | 37.0 | 70.2 | 43.4 | 70.2 | 56.6 | 91.1 | 60.6 | 101.3 | 42.2 | 75.7 | |
KNO3 | 26.4 | 51.0 | 32.8 | 61.6 | 34.1 | 75.5 | 37.8 | 74.7 | 50.2 | 80.1 | 56.9 | 81.5 | 39.7 | 70.7 | |
RSK Kakholong | H2O | 26.0 | 68.6 | 35.3 | 63.2 | 40.6 | 71.2 | 50.3 | 78.5 | 78.7 | 85.4 | 139.5 | 103.4 | 61.7 | 78.4 |
C12H22O11 | 29.6 | 47.4 | 39.5 | 52.9 | 45.6 | 64.2 | 52.6 | 67.8 | 65.2 | 79.2 | 80.3 | 91.8 | 52.1 | 67.2 | |
KNO3 | 24.2 | 52.4 | 35.5 | 63.2 | 42.7 | 67.3 | 46.3 | 71.4 | 54.4 | 79.7 | 63.7 | 98.5 | 44.4 | 72.1 | |
RSK Korall | H2O | 24.7 | 56.3 | 29.6 | 69.6 | 34.1 | 77.1 | 40.5 | 80.2 | 69.3 | 99.4 | 132.4 | 116.5 | 55.1 | 83.2 |
C12H22O11 | 26.6 | 50.6 | 31.0 | 65.7 | 35.6 | 70.3 | 44.5 | 69.1 | 60.2 | 91.7 | 68.6 | 96.7 | 44.4 | 74.0 | |
KNO3 | 24.9 | 57.3 | 28.0 | 66.5 | 32.0 | 74.2 | 34.8 | 77.4 | 42.5 | 80.0 | 49.7 | 85.9 | 35.3 | 73.5 | |
L-65/14 | H2O | 18.8 | 51.8 | 30.9 | 58.1 | 35.7 | 59.0 | 46.2 | 62.7 | 67.9 | 81.3 | 111.8 | 115.0 | 51.9 | 71.3 |
C12H22O11 | 26.5 | 35.4 | 33.7 | 57.2 | 40.5 | 58.3 | 47.1 | 59.5 | 70.8 | 75.5 | 83.7 | 92.7 | 50.4 | 63.1 | |
KNO3 | 27.4 | 55.0 | 34.9 | 62.0 | 39.5 | 63.1 | 41.7 | 66.9 | 56.6 | 67.4 | 69.0 | 94.0 | 44.9 | 68.1 | |
L-50/14 | H2O | 24.6 | 59.6 | 31.8 | 64.1 | 43.4 | 67.6 | 49.9 | 71.7 | 78.1 | 87.9 | 135.2 | 137.2 | 60.5 | 81.4 |
C12H22O11 | 25.8 | 57.0 | 31.2 | 57.1 | 36.5 | 68.3 | 44.9 | 73.3 | 56.5 | 87.5 | 64.0 | 107.7 | 43.1 | 75.2 | |
KNO3 | 27.0 | 42.6 | 33.5 | 49.4 | 37.7 | 55.9 | 44.2 | 57.9 | 51.1 | 68.1 | 65.1 | 74.1 | 43.1 | 58.0 | |
F05 (A) | 15.03 * | 7.29 * | |||||||||||||
F05 (B) | 328.61 * | 122.48 * | |||||||||||||
F05 (AB) | 6.86 * | 1.41 * | |||||||||||||
LSD05 (A) | 5.39 | 6.83 | |||||||||||||
LSD05 (B) | 3.41 | 4.32 | |||||||||||||
LSD05 (AB) | 13.22 | 16.73 |
Sample | Water Content of Leaf Tissues | Water Deficiency | Water-Holding Capacity | Moisture Loss in an Average of 1 h/Day | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | Average | 2021 | 2022 | Average | 2021 | 2022 | Average | 2021 | 2022 | Average | |
RSK Kakholong | 79.90 | 75.51 | 77.71 | 17.61 | 10.49 | 14.05 | 82.65 | 90.33 | 86.49 | 3.18 | 3.00 | 3.09 |
RSK Korall | 81.82 | 75.87 | 78.85 | 19.76 | 9.09 | 14.43 | 81.45 | 88.24 | 84.85 | 3.20 | 2.98 | 3.09 |
Magistr | 75.58 | 72.82 | 74.20 | 13.07 | 15.67 | 14.37 | 87.33 | 83.78 | 85.56 | 2.86 | 2.85 | 2.86 |
L-50/14 | 78.41 | 75.88 | 77.15 | 12.92 | 17.01 | 14.97 | 84.12 | 82.24 | 83.18 | 3.04 | 2.85 | 2.94 |
L-65/14 | 78.30 | 77.36 | 77.83 | 18.61 | 18.38 | 18.49 | 83.64 | 83.90 | 83.77 | 3.04 | 2.97 | 3.01 |
F05 | 14.63 * | 14.55 * | 14.97 * | 10.58 * | 11.38 * | 0.33 | 10.44 * | 25.44 * | 0.27 | 16.71 * | 15.91 * | 11.19 * |
LSD05 | 1.63 | 1.69 | 3.85 | 2.85 | 4.77 | – | 1.94 | 2.66 | – | 0.09 | 0.07 | 0.17 |
Sample | Loss of Moisture during Wilting After: | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
30 min | 60 min | 90 min | 24 h | |||||||||
2021 | 2022 | Average | 2021 | 2022 | Average | 2021 | 2022 | Average | 2021 | 2022 | Average | |
RSK Kakholong | 7.46 | 3.74 | 5.60 | 12.66 | 7.07 | 9.86 | 17.35 | 9.66 | 13.51 | 76.49 | 72.07 | 74.28 |
RSK Korall | 7.36 | 4.51 | 5.94 | 13.53 | 8.38 | 10.95 | 18.55 | 11.76 | 15.15 | 76.96 | 71.47 | 74.21 |
Magistr | 4.54 | 6.49 | 5.51 | 8.34 | 11.55 | 9.94 | 12.67 | 16.22 | 14.44 | 68.75 | 68.35 | 68.55 |
L-50/14 | 5.51 | 6.66 | 6.09 | 10.55 | 12.95 | 11.75 | 15.88 | 17.75 | 16.82 | 73.10 | 68.45 | 70.77 |
L-65/14 | 6.20 | 6.32 | 6.26 | 11.41 | 11.01 | 11.21 | 16.36 | 16.10 | 16.23 | 72.96 | 71.33 | 72.15 |
F05 | 15.09 * | 8.61 * | 0.06 | 14.33 * | 12.79 * | 0.36 | 10.44 * | 25.49 * | 0.27 | 16.37 * | 15.74 * | 11.53 * |
LSD05 | 0.85 | 1.29 | - | 1.47 | 1.92 | – | 1.94 | 2.65 | - | 2.25 | 1.76 | 3.59 |
Sample | Plant Height, cm | Panicle Length, cm | Largest Leaf Area, cm2 | Biomass Yield, t/ha | Grain Yield, t/ha | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | Average | 2021 | 2022 | Average | 2021 | 2022 | Average | 2021 | 2022 | Average | 2021 | 2022 | Average | |
RSK Kakholong | 115.6 | 117.2 | 116.4 | 23.7 | 12.3 | 18.0 | 184.9 | 313.7 | 249.3 | 16.10 | 19.73 | 17.91 | 4.19 | 4.74 | 4.47 |
RSK Korall | 109.8 | 117.8 | 113.8 | 20.1 | 11.8 | 16.0 | 203.6 | 269.5 | 236.5 | 14.23 | 18.40 | 16.31 | 3.86 | 4.39 | 4.13 |
Magistr | 101.5 | 121.8 | 111.7 | 13.8 | 10.6 | 12.5 | 194.1 | 177.0 | 187.3 | 13.00 | 16.77 | 14.88 | 3.46 | 4.61 | 4.04 |
L-50/14 | 98.4 | 123.0 | 110.7 | 19.6 | 27.0 | 23.3 | 176.5 | 173.0 | 174.8 | 15.28 | 23.53 | 19.41 | 3.37 | 5.24 | 4.31 |
L-65/14 | 120.5 | 135.4 | 127.9 | 19.8 | 21.1 | 20.5 | 160.2 | 175.4 | 169.3 | 12.88 | 14.78 | 13.83 | 3.78 | 3.96 | 3.87 |
F05 | 22.50 * | 7.16 * | 4.49 * | 41.59 * | 30.43 * | 4.37 * | 2.89 * | 7.92 * | 2.77 | 2.21 | 4.49 * | 3.35 * | 0.79 | 2.89 * | 0.39 |
LSD05 | 5.72 | 8.08 | 10.13 | 1.63 | 3.83 | 6.17 | 26.55 | 64.44 | - | - | 5.74 | 3.40 | - | 0.28 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibalnik, O.P.; Sazonova, I.A.; Bochkareva, Y.V.; Bychkova, V.V.; Semin, D.S. Influence of Abiotic Stresses on Morphophysiological Characteristics and Biological Value of Grain Sorghum bicolor (L.) Moench. Int. J. Plant Biol. 2023, 14, 150-161. https://doi.org/10.3390/ijpb14010013
Kibalnik OP, Sazonova IA, Bochkareva YV, Bychkova VV, Semin DS. Influence of Abiotic Stresses on Morphophysiological Characteristics and Biological Value of Grain Sorghum bicolor (L.) Moench. International Journal of Plant Biology. 2023; 14(1):150-161. https://doi.org/10.3390/ijpb14010013
Chicago/Turabian StyleKibalnik, Oksana Pavlovna, Irina Alexandrovna Sazonova, Yulia Valerievna Bochkareva, Vera Valerievna Bychkova, and Dmitry Sergeevich Semin. 2023. "Influence of Abiotic Stresses on Morphophysiological Characteristics and Biological Value of Grain Sorghum bicolor (L.) Moench" International Journal of Plant Biology 14, no. 1: 150-161. https://doi.org/10.3390/ijpb14010013
APA StyleKibalnik, O. P., Sazonova, I. A., Bochkareva, Y. V., Bychkova, V. V., & Semin, D. S. (2023). Influence of Abiotic Stresses on Morphophysiological Characteristics and Biological Value of Grain Sorghum bicolor (L.) Moench. International Journal of Plant Biology, 14(1), 150-161. https://doi.org/10.3390/ijpb14010013