Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Crop Management
2.3. Materials
Characterization of Azospirillum sp.
2.4. Plant Material
2.5. Dosage and Frequency of Inoculant Application
2.6. Evaluated Variables
2.7. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guzzon, F.; Arandia, L.W.; Caviedes, G.M.; Céspedes, M.; Chavez, A.; Muriel, J.; Medina Hoyos, A.E.; Jara Calvo, T.W.; Molnar, T.L.; Narro León, L.A.; et al. Conservation and Use of Latin American Maize Diversity: Pillar of Nutrition Security and Cultural Heritage of Humanity. Agronomy 2012, 11, 172. [Google Scholar] [CrossRef]
- MINAGRI [Ministerio de Agricultura y Riego]. Boletín Estadístico de Producción Agrícola y Ganadera, IV Trimestre 2017; SIEA, Ministerio de Agricultura y Riego: Kigali, Rwanda, 2017. [Google Scholar]
- Salvador-Reyes, R.; Pedrosa, M.T. Peruvian Andean maize: General characteristics, nutritional properties, bioactive compounds, and culinary uses. Food Res. Int. 2020, 130, 108934. [Google Scholar] [CrossRef] [PubMed]
- Shovitri, M.; Sugianto, S.K.; Kuswytasari, N.D.; Alami, N.H.; Zulaika, E. Application of Rhizobacteria and NPK for Growth and Productivity of Sweet Corn (Zea mays L.). In Proceedings of the 7th International Conference on Biological Science (ICBS), Yogyakarta, Indonesia, 17 September 2022; Atlantis Press: Yogyakarta, Indonesia, 2022; pp. 111–117. [Google Scholar] [CrossRef]
- Correndo, A.A.; Rotundo, J.L.; Tremblay, N.; Archontoulis, S.; Coulter, J.A.; Ruiz-Diaz, D.; Franzen, D.; Franzluebbers, A.J.; Nafziger, E.; Schwalbert, R.; et al. Assessing the uncertainty of maize yield without nitrogen fertilization. Field Crops Res. 2021, 260, 107985. [Google Scholar] [CrossRef]
- Yang, S. Soil Organic Matter in the Peruvian Andes: Unraveling Factors Controlling Soil Organic Carbon Distribution and the Underlying Organic Matter Stabilization Mechanisms; University of Amsterdam: Amsterdam, The Netherlands, 2020; UvA-DARE Digital Academic Repository; Available online: https://www.narcis.nl/publication/RecordID/oai:dare.uva.nl:publications%2F93642b69-e15e-42c7-9b05-163934506fb0 (accessed on 23 May 2022).
- Whitaker, J.; Ostle, N.; McNamara, N.P.; Nottingham, A.T.; Stott, A.W.; Bardgett, R.D.; Meir, P. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru. Front. Microbiol. 2014, 5, 720. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.; McGrath, J.M.; et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef]
- Caballero-Mellado, J. El género Azospirillum. In Microbios en Línea; Martinez-Romero, E., Martinez-Romero, J., Eds.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2001; Available online: http://www.biblioweb.tic.unam.mx/libros/microbios/Cap10/(accessed (accessed on 23 July 2022).
- Dobbelaere, S.; Croonenborghs, A.; Thys, A.; Ptacek, D.; Vanderleyden, J.; Dutto, P.; Labandera-Gonzalez, C.; Caballero-Mellado, J.; Aguirre, J.F.; Kapulnik, Y.; et al. Responses of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol. 2001, 28, 871–879. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernández, J.P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2013, 378, 1–33. [Google Scholar] [CrossRef]
- Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; de Carlan, C.L.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F.O.; et al. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol. Fertil. Soils 2020, 56, 461–479. [Google Scholar] [CrossRef]
- Corrales, L.C.; Arévalo, Z.Y.; Moreno, V.E. Solubilización de fosfatos: Una función microbiana importante en el desarrollo vegetal. NOVA Publicación Científica Cienc. Biomédicas 2014, 12, 68–79. Available online: http://www.scielo.org.co/pdf/nova/v12n21/v12n21a06.pdf (accessed on 20 April 2022).
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq, B.A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Fibach-Paldi, S.; Burdman, S.; Okon, Y. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol. Lett. 2012, 326, 99–108. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 2009, 58, 921–929. [Google Scholar] [CrossRef]
- Fukami, J.; Cerezini, P.; Hungria, M. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Goswami, D.; Thakker, J.N.; Dhandhukia, P.C. Portraying mechanics of plant growth-promoting rhizobacteria (PGPR): A review. Cogent Food Agric. 2016, 2, 1127500. [Google Scholar] [CrossRef]
- Tsagou, V.; Kefalogianni, I.; Sini, K.; Aggelis, G. Metabolic activities in Azospirillum lipoferum grown in the presence of NH4+. Appl. Microbiol. Biotechnol. 2003, 62, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Sangoquiza, C.C.A.; Viera, T.Y.; Yañez, G.C. Respuesta biológica de aislados de Azospirillum spp. frente a diferentes tipos de estrés. Cent. Agrícola 2018, 45, 40–46. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852018000100005&lng=es&tlng=es (accessed on 23 May 2022).
- Walters, W.A.; Jin, Z.; Youngblut, N.; Wallace, J.G.; Sutter, J.; Zhang, W.; González-Peña, A.; Peiffer, J.; Koren, O.; Shi, Q.; et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. USA 2018, 115, 7368–7373. [Google Scholar] [CrossRef] [PubMed]
- Rangel Lucio, J.A.; Ramírez Gama, R.M.; Cervantes Ortíz, F.; Mendoza Elos, M.; García Moya, E.; Rivera Reyes, J.G. Biofertilización de Azospirillum spp. y rendimiento de grano de maíz, sorgo y trigo. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo 2014, 46, 231–238. Available online: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-86652014000200017&lng=es&tlng= (accessed on 23 May 2022).
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Santini, J.M.K.; Alves, C.J.; Nogueira, L.M.; Ludkiewicz, M.G.; Andreotti, M.; Bellotte, J.L.M. Corn yield and foliar diagnosis affected by nitrogen fertilization and inoculation with Azospirillum brasilense. Rev. Bras. Ciência Solo 2016, 40, e0150364. [Google Scholar] [CrossRef]
- Rangel-Lucio, J.A.; Rodríguez-Mendoza, M.N.; Ferrera-Cerrato, R.; Castellanos-Ramos, J.Z.; Ramírez-Gama, R.M.; Alvarado-Bárcenas, E. Afinidad y efecto de Azospirillum spp. en maíz. Agron. Mesoam. 2011, 22, 269–279. Available online: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1659-13212011000200004&lng=en&tlng=en (accessed on 23 May 2022). [CrossRef]
- Zambonin, G.; Pacentchuk, F.; Lima, F.N.; Huzar-Novakowiski, J.; Sandini, I.E. Response of maize crop hybrids, with different transgenic events, to inoculation with Azospirillum brasilense. Appl. Res. Agrotechnol. 2019, 12, 33–40. Available online: https://revistas.unicentro.br/index.php/repaa/article/view/5613 (accessed on 23 May 2022). [CrossRef]
- Castellano-Hinojosa, A.; Pérez-Tapia, V.; Bedmar, E.J.; Santillana, N. Purple corn-associated rhizobacteria with potential for plant growth promotion. J. Appl. Microbiol. 2018, 124, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- García, F.; Muñoz, H.; Carreño, C.; Mendoza, G. Characterization of native strains of Azospirillum spp. and its effect on growth of Oryza sativa L.“rice” in Lambayeque. Sci. Agropecu. 2010, 1, 107–116. Available online: https://core.ac.uk/reader/267887680 (accessed on 12 April 2024). [CrossRef]
- Teodoro, E.; Mendoza-Nieto, E.; Contreras-Liza, S.E. Grain Yield of Maize Hybrids in Response to Inoculation with Azospirillum sp. under Nitrogen Limiting Conditions in Huaura, Peru. Sustain. Agric. Res. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Contreras-Liza, S.E.; Mendoza-Nieto, E.; Quiliche, J.P.; Mejía-Domínguez, C.M.; Palacios-Rodriguez, B.M.; Velásquez, J.D. Inoculation effect of Azospirillum sp. and two levels of nitrogen on the performance of the hybrid corn ‘Insignia 800’. Peruv. J. Agron. 2020, 4, 48–54. [Google Scholar] [CrossRef]
- Salhuana, W. Diversidad y Descripción de las Razas de Maíz en el Perú. Cincuenta años del Programa Cooperativo de Investigaciones en Maíz (PCIM); UNALM: Lima, Peru, 2004; pp. 204–251. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Diversidad%20y%20razas%20de%20maiz%20en%20Peru.pdf (accessed on 28 May 2024).
- Schmidt, J.E.; Gaudin, A.C. What is the agronomic potential of biofertilizers for maize? A meta-analysis. FEMS Microbiol. Ecol. 2018, 94, fiy094. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, R.; Aceves, E.; Guerrero, J.; Olvera, J.I.; Bustamante, A.; Vargas, S.; Hernández, J.H. Response of maize genotypes (Zea mays L.) to different fertilizer sources in the Valley of Puebla. Terra Latinoam. 2018, 36, 49–59. [Google Scholar] [CrossRef]
- Ferreira, L.L.; Santos, G.F.; Carvalho, I.R.; de Sá Fernandes, M.; Carnevale, A.B.; Lopes, K.; Prado, R.L.; Lautenchleger, F.; de Azevedo Pereira, A.I.; da Silva Curvêlo, C.R. Cause and effect relationships, multivariate approach for inoculation of Azospirillum brasilense in corn. Commun. Plant Sci. 2020, 10, 37–45. Available online: https://cpsjournal.org/2020/05/28/cps2020006/ (accessed on 23 May 2022). [CrossRef]
- Wagner, M.R.; Tang, C.; Salvato, F.; Clouse, K.M.; Bartlett, A.; Vintila, S.; Phillips, L.; Sermons, S.; Hoffmann, M.; Balint-Kurti, P.J.; et al. Microbe-dependent heterosis in maize. Proc. Natl. Acad. Sci. USA 2021, 118, e2021965118. [Google Scholar] [CrossRef]
- Bashan, Y.; Levanony, H. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbiol. 1990, 36, 591–608. [Google Scholar] [CrossRef]
- Nunes, A.; Fávaro, M.H.; Amador, T.S.; Tavares, L.F.; Hertel, M.F.; Calzavara, A.K.; de Oliveira, A.L.M.; Oliveira, H.C.; Dias-Pereira, J.; de Araújo, H.H. Associative bacteria and arbuscular mycorrhizal fungus increase drought tolerance in maize (Zea mays L.) through morphoanatomical, physiological, and biochemical changes. Plants 2024, 13, 1667. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D. The Management of Soil Quality and Plant Productivity in Stressed Environment with Rhizobacteria. In Bacteria in Agrobiology: Stress Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Pérez-Montaño, F.; Alías-Villegas, C.; Bellogín, R.A.; Del Cerro, P.; Espuny, M.R.; Jiménez-Guerrero, I.; López-Baena, F.J.; Ollero, F.J.; Cubo, T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2015, 169, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, P.; Dehecq, A.; Taipe, E. Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nat. Geosci. 2020, 13, 56–60. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Kahhat, R.; Quispe, I.; Bentín, M. Environmental profile of green asparagus production in a hyper-arid zone in coastal Peru. J. Clean. Prod. 2016, 112, 2505–2517. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Brester, G.; Smith, V. High Fertilizer Prices: Supply and Demand at Work Muddled by War and Market Interventions. American Enterprise Institute. 2022. Available online: https://policycommons.net/artifacts/2392521/high-fertilizer-prices/3413970/ (accessed on 23 May 2022).
- Bárcena, A. Efectos Económicos y Financieros en América Latina y el Caribe del Conflicto Entre la Federación de Rusia y Ucrania. Santiago de Chile, CEPAL. 2022. Available online: https://repositorio.cepal.org/bitstream/handle/11362/47831/1/S2200221_es.pdf (accessed on 23 May 2022).
Treatment | Code | Description |
---|---|---|
100% N | Control | Conventional fertilization at 180 kg N ha−1, uninoculated |
100% N + A1 | T1 | 180 kg N + Azospirillum inoculation at sowing |
100% N + A1 + A2 | T2 | 180 kg N + Azospirillum inoculation at sowing and hilling |
50% N + A1 | T3 | 90 kg N + Azospirillum inoculation at sowing |
50% N + A1 + A2 | T4 | 90 kg N + Azospirillum inoculation at sowing and hilling |
Treatment | Yield kg ha−1 | Grain Weight, g | Ear Diameter, cm | Ear Length, cm | Ear Weight, kg | Ear Number |
---|---|---|---|---|---|---|
50% N + A1 | 3633.26 a | 601.25 a | 5.06 b | 21.73 b | 0.28 b | 0.92 a |
50% N + A1 + A2 | 3269.33 b | 586.25 a | 5.12 b | 20.82 b | 0.27 b | 0.96 a |
Control (100% N) | 2968.32 b | 577.50 a | 5.32 a | 21.30 b | 0.35 a | 1.04 a |
100% N + A1 | 3709.28 a | 561.25 a | 5.39 a | 23.82 a | 0.36 a | 0.95 a |
100% N + A1 + A2 | 3434.23 a | 496.25 a | 5.37 a | 22.65 a | 0.34 a | 0.88 a |
SE | 130.93 | 28.38 | 0.08 | 0.55 | 0.03 | 0.05 |
Treatments | Days to Emergence | Plant Survival % | Days to Harvest | Flower Number | 1000 Seed Weight, kg |
---|---|---|---|---|---|
50% N + A1 | 6.91 a | 78 a | 43.00 a | 34.25 a | 0.93 b |
50% N + A1 + A2 | 6.65 a | 70 b | 33.50 b | 25.75 a | 0.94 a |
Control (100% N) | 7.50 a | 64 b | 47.75 a | 33.50 a | 0.93 b |
100% N + A1 | 6.03 a | 79 a | 48.50 a | 30.75 a | 0.94 a |
100% N + A1 + A2 | 7.04 a | 74 a | 45.50 a | 35.25 a | 0.93 b |
SE | 0.31 | 0.03 | 3.08 | 3.07 | 0.01 |
Code | Treatment | Yield 1 | GVP 2 | PCost 3 | Benefit/ha 4 | BCR 5 |
---|---|---|---|---|---|---|
T3 | 50% N + A1 | 3633.26 | 1963.92 | 1321.08 | 642.84 | 0.49 |
T4 | 50% N + A1 + A2 | 3269.33 | 1767.21 | 1334.59 | 432.61 | 0.32 |
T0 | Control | 2968.32 | 1604.50 | 1469.73 | 134.77 | 0.09 |
T1 | 100% N + A1 | 3709.28 | 2005.02 | 1483.24 | 521.77 | 0.35 |
T2 | 100% N + A1 + A2 | 3434.23 | 1856.34 | 1510.27 | 346.07 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Liza, S.; Villadeza, C.Y.; Rodriguez-Grados, P.M.; Palomares, E.G.; Arbizu, C.I. Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions. Int. J. Plant Biol. 2024, 15, 683-691. https://doi.org/10.3390/ijpb15030050
Contreras-Liza S, Villadeza CY, Rodriguez-Grados PM, Palomares EG, Arbizu CI. Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions. International Journal of Plant Biology. 2024; 15(3):683-691. https://doi.org/10.3390/ijpb15030050
Chicago/Turabian StyleContreras-Liza, Sergio, Cristofer Yasiel Villadeza, Pedro M. Rodriguez-Grados, Edison Goethe Palomares, and Carlos I. Arbizu. 2024. "Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions" International Journal of Plant Biology 15, no. 3: 683-691. https://doi.org/10.3390/ijpb15030050