Altered Translocation Pattern as Potential Glyphosate Resistance Mechanism in Blackgrass (Alopecurus myosuroides) Populations from Lower Saxony
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Propagation and Growing Conditions
2.3. 14C-glyphosate Treatment
2.4. Harvest and Sample Preparation
2.5. Phosphorimaging
2.6. Absorption and Translocation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Powles, S.B.; Sammons, R.D. Glyphosate—How it became a once in a hundred-year herbicide and its future. Outlooks Pest Manag. 2018, 29, 247–251. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef]
- Nandula, V.K.; Reddy, K.N.; Koger, C.H.; Poston, D.H.; Rimando, A.M.; Duke, S.O.; Bond, J.A.; Ribeiro, D.N. Multiple Resistance to Glyphosate and Pyrithiobac in Palmer Amaranth (Amaranthus palmeri) from Mississippi and Response to Flumiclorac. Weed Sci. 2012, 60, 179–188. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in Action: Plants Resistant to Herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef]
- Green, J.M. Evolution of Glyphosate-Resistant Crop Technology. Weed Sci. 2009, 57, 108–117. [Google Scholar] [CrossRef]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef]
- D’Avignon, D.A.; Ge, X. In vivo NMR investigations of glyphosate influence on plant metabolism. J. Magn. Reson. 2018, 292, 59–72. [Google Scholar] [CrossRef]
- Shaner, D.L. Role of Translocation as a Mechanism of Resistance to Glyphosate. Weed Sci. 2009, 57, 118–123. [Google Scholar] [CrossRef]
- Hock, B.; Elstner, E.F. Plant Toxicology, 4th ed.; CRC Press: New York, NY, USA, 2004; pp. 292–296. [Google Scholar]
- Powles, S.B.; Lorraine-Colwill, D.F.; Dellow, J.J.; Preston, C. Evolved Resistance to Glyphosate in Rigid Ryegrass (Lolium rigidum) in Australia. Weed Sci. 1998, 46, 604–607. [Google Scholar] [CrossRef]
- Heap, I.; Organizer of the “International Survey of Herbicide-Resistant Weeds”. Criteria for Confirmation of Herbicide-Resistant Weeds. Available online: https://hracglobal.com/files/Criteria-for-Confirmation-of-Herbicide-Resistant-Weeds.pdf (accessed on 8 April 2020).
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 13 April 2025).
- Sammons, R.D.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Shaner, D.L.; Lindenmeyer, R.B.; Ostlie, M.H. What have the mechanisms of resistance to glyphosate taught us? Pest Manag. Sci. 2012, 68, 3–9. [Google Scholar] [CrossRef] [PubMed]
- García, M.J.; Palma-Bautista, C.; Rojano-Delgado, A.M.; Bracamonte, E.; Portugal, J.; Alcántara-de la Cruz, R.; De Prado, R. The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus. Int. J. Mol. Sci. 2019, 20, 2396. [Google Scholar] [CrossRef]
- Perotti, V.E.; Larran, A.S.; Palmieri, V.E.; Martinatto, A.K.; Alvarez, C.E.; Tuesca, D.; Permingeat, H.R. A novel triple amino acid substitution in the EPSPS found in a high-level glyphosate resistant Amaranthus hybridus population from Argentina. Pest Manag. Sci. 2019, 75, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.K.; Fernandes, V.N.A.; Adegas, F.S.; Oliveira, R.S., Jr.; Westra, P.; Gaines, T.A.; Dayan, F.E. A novel TIPT double mutation in EPSPS conferring glyphosate resistance in tetraploid Bidens subalternans. Pest Manag. Sci. 2020, 76, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Jalaludin, A.; Han, H.; Chen, M.; Sammons, R.D.; Powles, S.B. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance. Plant Physiol. 2015, 167, 1440–1447. [Google Scholar] [CrossRef]
- Li, J.; Peng, Q.; Han, H.; Nyporko, A.; Kulynych, T.; Yu, Q.; Powles, S. Glyphosate Resistance in Tridax procumbens via a Novel EPSPS Thr-102-Ser Substitution. J. Agric. Food Chem. 2018, 66, 7880–7888. [Google Scholar] [CrossRef]
- Gaines, T.A.; Patterson, E.L.; Neve, P. Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytol. 2019, 223, 1770–1775. [Google Scholar] [CrossRef]
- Yanniccari, M.; Vázquez-García, J.G.; Gómez-Lobato, M.E.; Rojano-Delgado, A.M.; Alves, P.L.d.C.A.; De Prado, R. First Case of Glyphosate Resistance in Bromus catharticus Vahl.: Examination of Endowing Resistance Mechanisms. Front. Plant Sci. 2021, 12, 617945. [Google Scholar] [CrossRef]
- Michitte, P.; De Prado, R.; Espinoza, N.; Ruiz-Santaella, J.P.; Gauvrit, C. Mechanisms of Resistance to Glyphosate in a Ryegrass (Lolium multiflorum) Biotype from Chile. Weed Sci. 2007, 55, 435–440. [Google Scholar] [CrossRef]
- Nandula, V.K.; Reddy, K.N.; Poston, D.H.; Rimando, A.M.; Duke, S.O. Glyphosate Tolerance Mechanism in Italian Ryegrass (Lolium multiflorum) from Mississippi. Weed Sci. 2008, 56, 344–349. [Google Scholar] [CrossRef]
- Nandula, V.K.; Ray, J.D.; Ribeiro, D.N.; Pan, Z.; Reddy, K.N. Glyphosate Resistance in Tall Waterhemp (Amaranthus tuberculatus) from Mississippi is due to both Altered Target-Site and Nontarget-Site Mechanisms. Weed Sci. 2013, 61, 374–383. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Balbi, M.C.; Distéfano, A.J.; Fernández, L.; Hopp, E.; Yu, Q.; Powles, S.B. Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag. Sci. 2012, 68, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Délye, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013, 69, 176–187. [Google Scholar] [CrossRef]
- Alcántara de la Cruz, R.; Barro, F.; Domínguez-Valenzuela, J.A.; De Prado, R. Physiological, morphological and biochemical studies of glyphosate tolerance in Mexican Cologania (Cologania broussonetii (Balb.) DC.). Plant Physiol. Bioch. 2016, 98, 72–80. [Google Scholar] [CrossRef]
- Ghanizadeh, H.; Harrington, K.C.; James, T.K.; Woolley, D.J.; Ellison, N.W. Mechanisms of glyphosate resistance in two perennial ryegrass (Lolium perenne) populations. Pest Manag. Sci. 2015, 71, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Lorraine-Colwill, D.F.; Powles, S.B.; Hawkes, T.R.; Hollinshead, P.H.; Warner, S.A.J.; Preston, C. Investigations into the mechanism of glyphosate resistance in Lolium rigidum. Pestic. Biochem. Phys. 2002, 74, 62–72. [Google Scholar] [CrossRef]
- Perez-Jones, A.; Park, K.-W.; Polge, N.; Colquhoun, J.; Mallory-Smith, C.A. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta 2007, 226, 395–404. [Google Scholar] [CrossRef]
- Preston, C.; Wakelin, A.M. Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag. Sci. 2008, 64, 372–376. [Google Scholar] [CrossRef]
- Baek, Y.; Bobadilla, L.K.; Giacomini, D.A.; Montgomery, J.S.; Murphy, B.P.; Tranel, P.J. Evolution of Glyphosate-Resistant Weeds. In Reviews of Environmental Contamination and Toxicology; Knaak, J.B., Ed.; Springer: Cham, Switzerland, 2021; Volume 255, pp. 93–128. [Google Scholar]
- Pan, L.; Yu, Q.; Han, H.; Mao, L.; Nyporko, A.; Fan, L.; Bai, L.; Powles, S. Aldo-keto Reductase Metabolizes Glyphosate and Confers Glyphosate Resistance in Echinochloa colona. Plant Physiol. 2019, 181, 1519–1534. [Google Scholar] [CrossRef]
- Moretti, M.L.; Van Horn, C.R.; Robertson, R.; Segobye, K.; Weller, S.C.; Young, B.G.; Johnson, W.G.; Sammons, R.D.; Wang, D.; Ge, X.; et al. Glyphosate resistance in Ambrosia trifida: Part 2. Rapid response physiology and non-target-site resistance. Pest Manag. Sci. 2018, 74, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, C.R.; Moretti, M.L.; Robertson, R.R.; Segobye, K.; Weller, S.C.; Young, B.G.; Johnson, W.G.; Schulz, B.; Green, A.C.; Jeffery, T.; et al. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate. Pest Manag. Sci. 2018, 74, 1071–1078. [Google Scholar] [CrossRef]
- Pan, L.; Yu, Q.; Wang, J.; Han, H.; Mao, L.; Nyporko, A.; Maguza, A.; Fan, L.; Bai, L.; Powles, S. An ABCC-type transporter endowing glyphosate resistance in plants. Proc. Natl. Acad. Sci. USA 2021, 118, e2100136118. [Google Scholar] [CrossRef] [PubMed]
- Amrhein, N.; Martinoia, E. An ABC transporter of the ABCC subfamily localized at the plasma membrane confers glyphosate resistance. Proc. Natl. Acad. Sci. USA 2021, 118, e2104746118. [Google Scholar] [CrossRef] [PubMed]
- Cechin, J.; Piasecki, C.; Benemann, D.P.; Kremer, F.S.; Galli, V.; Maia, L.C.; Agostinetto, D.; Vargas, L. Transcriptome Analysis Identifies Candidate Target Genes Involved in Glyphosate-Resistance Mechanism in Lolium multiflorum. Plants 2020, 9, 685. [Google Scholar] [CrossRef]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef]
- Ghanizadeh, H.; Harrington, K.C. Perspective: Root exudation of herbicides as a novel mode of herbicide resistance in weeds. Pest Manag. Sci. 2020, 76, 2543–2547. [Google Scholar] [CrossRef]
- Kleinman, Z.; Rubin, B. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Manag. Sci. 2017, 73, 246–253. [Google Scholar] [CrossRef]
- Markus, C.; Pecinka, A.; Karan, R.; Barney, J.N.; Merotto, A., Jr. Epigenetic regulation—Contribution to herbicide resistance in weeds? Pest Manag. Sci. 2018, 74, 275–281. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, C.J.; Yu, Q.; Guo, W.L.; Zhang, T.J.; Tian, X.S. Evolution of multiple target-site resistance mechanisms in individual plants of glyphosate-resistant Eleusine indica from China. Pest Manag. Sci. 2021, 77, 4810–4817. [Google Scholar] [CrossRef]
- Augustin, B.; Gehring, K. First glyphosate resistance in Germany. In Proceedings of the 29th German Conference on Weed Biology and Weed Control, Braunschweig, Germany, 3–5 March 2020. [Google Scholar]
- Augustin, B.; Gehring, K. Reduced efficacy of glyphosate against annual fescue (Vulpia myuros). In Proceedings of the 29th German Conference on Weed Biology and Weed Control, Braunschweig, Germany, 3–5 March 2020. [Google Scholar]
- Augustin, B.; Kunkemöller, M. Glyphosate resistance of Rat’s-tail Fescue (Vulpia myuros). In Proceedings of the 30th German Conference on Weed Biology and Weed Control, Braunschweig, Germany, 22–24 February 2022. [Google Scholar]
- Balgheim, N. Investigations on Herbicide Resistant Grass Weeds. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 17 November 2009. [Google Scholar]
- Lutman, P.J.W.; Moss, S.R.; Cook, S.; Welham, S.J. A review of the effects of crop agronomy on the management of Alopecurus myosuroides. Weed Res. 2013, 53, 299–313. [Google Scholar] [CrossRef]
- Moss, S.R.; Perryman, S.A.M.; Tatnell, L.V. Managing Herbicide-Resistant Blackgrass (Alopecurus myosuroides): Theory and Practice. Weed Technol. 2007, 21, 300–309. [Google Scholar] [CrossRef]
- Wolber, D.M.; Warnecke-Busch, G.; Köhler, L.; Kregel, M.; Radziewicz, M. Variability in glyphosate efficacy in Alopecurus myosuroides HUDS. (blackgrass) in Lower Saxony. In Proceedings of the 28th German Conference on Weed Biology and Weed Control, Braunschweig, Germany, 27 February–1 March 2018. [Google Scholar]
- Radziewicz, M.; Wolber, D.M.; Warnecke-Busch, G.; Köhler, L.; Hofmann, D.; Pütz, T. Response to Glyphosate in Alopecurus myosuroides Populations from Lower Saxony. In Proceedings of the 29th German Conference on Weed Biology and Weed Control, Braunschweig, Germany, 3–5 March 2020. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants—BBCH Monograph, 2nd ed.; Julius Kühn-Institut (JKI) Federal Research Centre for Cultivated Plants: Quedlinburg, Germany, 2018; pp. 141–146. [Google Scholar]
- Koch, M.; Schiedung, H.; Siebers, N.; McGovern, S.; Hofmann, D.; Vereecken, H.; Amelung, W. Quantitative imaging of 33P in plant materials using 14C polymer references. Anal. Bioanal. Chem. 2019, 411, 1253–1260. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef]
- Sørensen, S.R.; Schultz, A.; Jacobsen, O.S.; Aamand, J. Sorption, desorption and mineralisation of the herbicides glyphosate and MCPA in samples from two Danish soil and subsurface profiles. Environ. Pollut. 2006, 141, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Krzyśko-Łupicka, T.; Orlik, A. The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere 1997, 34, 2601–2605. [Google Scholar] [CrossRef]
- Shinabarger, D.L.; Braymer, H.D. Glyphosate catabolism by Pseudomonas sp. Strain PG2982. J. Bacteriol. 1986, 168, 702–707. [Google Scholar] [CrossRef]
- Alarcón-Reverte, R.; García, A.; Urzúa, J.; Fischer, A.J. Resistance to Glyphosate in Junglerice (Echinochloa colona) from California. Weed Sci. 2013, 61, 48–54. [Google Scholar] [CrossRef]
- Bostamam, Y.; Malone, J.M.; Dolman, F.C.; Boutsalis, P.; Preston, C. Rigid Ryegrass (Lolium rigidum) Populations Containing a Target Site Mutation in EPSPS and Reduced Glyphosate Translocation Are More Resistant to Glyphosate. Weed Sci. 2012, 60, 474–479. [Google Scholar] [CrossRef]
- Ghanizadeh, H.; Harrington, K.C.; James, T.K.; Woolley, D.J.; Ellison, N.W. Restricted Herbicide Translocation Was Found in Two Glyphosate-resistant Italian Ryegrass (Lolium multiflorum Lam.) Populations from New Zealand. J. Agric. Sci. Tech-Iran 2016, 18, 1041–1051. [Google Scholar]
- Nandula, V.K.; Wright, A.A.; Van Horn, C.R.; Molin, W.T.; Westra, P.; Reddy, K.N. Glyphosate Resistance in Giant Ragweed (Ambrosia trifida L.) from Mississippi Is Partly Due to Reduced Translocation. Am. J. Plant Sci. 2015, 6, 2104–2113. [Google Scholar] [CrossRef]
- Dinelli, G.; Marotti, I.; Bonetti, A.; Catizone, P.; Urbano, J.M.; Barnes, J. Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res. 2008, 48, 257–265. [Google Scholar] [CrossRef]
- Dinelli, G.; Marotti, I.; Bonetti, A.; Minelli, M.; Catizone, P.; Barnes, J. Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pestic. Biochem. Phys. 2006, 86, 30–41. [Google Scholar] [CrossRef]
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef]
- Nardemir, G.; Agar, G.; Arslan, E.; Erturk, F.A. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theor. Exp. Plant Phys. 2015, 27, 131–139. [Google Scholar] [CrossRef]
- Kim, G.; Clarke, C.R.; Larose, H.; Tran, H.T.; Haak, D.C.; Zhang, L.; Askew, S.; Barney, J.; Westwood, J.H. Herbicide injury induces DNA methylome alterations in Arabidopsis. PeerJ 2017, 5, e3560. [Google Scholar] [CrossRef] [PubMed]
- Margaritopoulou, T.; Tani, E.; Chachalis, D.; Travlos, I. Involvement of Epigenetic Mechanisms in Herbicide Resistance: The Case of Conyza canadensis. Agriculture 2018, 8, 17. [Google Scholar] [CrossRef]
- Ge, X.; d’Avignon, D.A.; Ackerman, J.J.H.; Collavo, A.; Sattin, M.; Ostrander, E.L.; Hall, E.L.; Sammons, R.D.; Preston, C. Vacuolar Glyphosate-Sequestration Correlates with Glyphosate Resistance in Ryegrass (Lolium spp.) from Australia, South America, and Europe: A 31P NMR Investigation. J. Agric. Food Chem. 2012, 60, 1243–1250. [Google Scholar] [CrossRef]
- Ge, X.; D’Avignon, D.A.; Ackerman, J.J.H.; Sammons, R.D. Rapid vacuolar sequestration: The horseweed glyphosate resistance mechanism. Pest Manag. Sci. 2010, 66, 345–348. [Google Scholar] [CrossRef]
- Hickman, M.V.; Messersmith, C.G.; Lym, R.G. Picloram release from leafy spurge roots. J. Range Manag. 1990, 43, 442–445. [Google Scholar] [CrossRef]
- Dinelli, G.; Bonetti, A.; Marotti, I.; Minelli, M.; Busi, S.; Catizone, P. Root exudation of diclofop-methyl and triasulfuron from foliar-treated durum wheat and ryegrass. Weed Res. 2007, 47, 25–33. [Google Scholar] [CrossRef]
- Laitinen, P.; Rämö, S.; Siimes, K. Glyphosate translocation from plants to soil—Does this constitute a significant proportion of residues in soil? Plant Soil 2007, 300, 51–60. [Google Scholar] [CrossRef]
- Brunharo, C.A.C.G.; Patterson, E.L.; Carrijo, D.R.; de Melo, M.S.C.; Nicolai, M.; Gaines, T.A.; Nissen, S.J.; Christoffoleti, P.J. Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil. Pest Manag. Sci. 2016, 72, 1758–1764. [Google Scholar] [CrossRef]
- Rojano-Delgado, A.M.; Portugal, J.M.; Palma-Bautista, C.; Alcántara-de la Cruz, R.; Torra, J.; Alcántara, E.; De Prado, R. Target site as the main mechanism of resistance to imazamox in a Euphorbia. heterophylla. biotype. Sci. Rep. 2019, 9, 15423. [Google Scholar] [CrossRef] [PubMed]
- Jugulam, M.; DiMeo, N.; Veldhuis, L.J.; Walsh, M.; Hall, J.C. Investigation of MCPA (4-Chloro-2-ethylphenoxyacetate) Resistance in Wild Radish (Raphanus raphanistrum L.). J. Agric. Food Chem. 2013, 61, 12516–12521. [Google Scholar] [CrossRef]
- Comont, D.; Hicks, H.; Crook, L.; Hull, R.; Cocciantelli, E.; Hadfield, J.; Childs, D.; Freckleton, R.; Neve, P. Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. New Phytol. 2019, 223, 1584–1594. [Google Scholar] [CrossRef]
Plant Clones from Population | Survival at Previous Dose Rate (g a.i. ha−1) | Growth Stage a | BBCH Stage No. | Replications |
---|---|---|---|---|
S-0 | 0 | Beginning of shooting—1 node stage | 30–31 | 3 |
S-0125 | 225 | 9 or more tillers | 29 | 3 |
P11 | 1800 | 9 or more tillers | 29 | 2 |
P39 | 1800 | 9 or more tillers | 29 | 3 |
A1.3 | 1800 | 7 tillers | 27 | 3 |
A1.2 | 3600 | 9 or more tillers | 29 | 2 |
A2.2 | 3600 | Beginning of shooting—1 node stage | 30–31 | 3 |
14C-glyphosate Distribution | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plants (Clones) from Individuals | HAT | Biomass Mean Plant Dry Weight | 14C-glyphosate Absorption | 14C-glyphosate Translocation | TL | UL | PS | RO | |||||
h | mg | % Applied | % Absorbed | ||||||||||
sensitive S-0 | 264 | 401 ± 112 | 79 ± 5 | 17 ± 13 | a | 83 ± 13 | a | 3 ± 2 | ad | 14 ± 11 | a | 0.8 ± 0.4 | a |
sensitive S-0125 | 240 | 1283 ± 371 | 81 ± 9 | 28 ± 22 | ab | 73 ± 22 | ab | 5 ± 4 | abd | 17 ± 14 | a | 5.6 ± 6.1 | ab |
tolerant P11 | 240 | 699 ± 54 | 76 ± 1 | 27 ± 8 | ab | 73 ± 8 | ab | 4 ± 4 | abd | 16 ± 5 | a | 7.3 ± 8.6 | ab |
tolerant P39 | 240 | 1739 ± 131 | 80 ± 15 | 23 ± 7 | ab | 78 ± 7 | ab | 3 ± 0 | abd | 10 ± 7 | a | 8.7 ± 6.8 | ab |
tolerant A1.3 | 264 | 938 ± 158 | 77 ± 2 | 52 ± 32 | bcd | 48 ± 32 | bc | 11 ± 6 | bcd | 16 ± 10 | a | 26 ± 28 | b |
tolerant A1.2 | 264 | 1075 ± 60 | 76 ± 10 | 63 ± 15 | cd | 37 ± 15 | c | 18 ± 9 | c | 37 ± 1 | b | 8.3 ± 5.3 | ab |
tolerant A2.2 | 240 | 358 ± 40 | 77 ± 9 | 61 ± 8 | cd | 39 ± 8 | c | 8 ± 4 | d | 44 ± 9 | b | 9.2 ± 2.7 | ab |
p-value | 0.9874 | 0.0418 | 0.0418 | 0.0344 | 0.0085 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radziewicz, M.; Wolber, D.M.; Pütz, T.; Hofmann, D. Altered Translocation Pattern as Potential Glyphosate Resistance Mechanism in Blackgrass (Alopecurus myosuroides) Populations from Lower Saxony. Int. J. Plant Biol. 2025, 16, 45. https://doi.org/10.3390/ijpb16020045
Radziewicz M, Wolber DM, Pütz T, Hofmann D. Altered Translocation Pattern as Potential Glyphosate Resistance Mechanism in Blackgrass (Alopecurus myosuroides) Populations from Lower Saxony. International Journal of Plant Biology. 2025; 16(2):45. https://doi.org/10.3390/ijpb16020045
Chicago/Turabian StyleRadziewicz, Markus, Dirk M. Wolber, Thomas Pütz, and Diana Hofmann. 2025. "Altered Translocation Pattern as Potential Glyphosate Resistance Mechanism in Blackgrass (Alopecurus myosuroides) Populations from Lower Saxony" International Journal of Plant Biology 16, no. 2: 45. https://doi.org/10.3390/ijpb16020045
APA StyleRadziewicz, M., Wolber, D. M., Pütz, T., & Hofmann, D. (2025). Altered Translocation Pattern as Potential Glyphosate Resistance Mechanism in Blackgrass (Alopecurus myosuroides) Populations from Lower Saxony. International Journal of Plant Biology, 16(2), 45. https://doi.org/10.3390/ijpb16020045