The Growth-Promoting Ability of Serratia liquefaciens UNJFSC 002, a Rhizobacterium Involved in Potato Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Bacterial Inoculum
2.2. Evaluation of the Plant Growth-Promoting Capacity In Vitro
2.3. Establishment of Experiments in Greenhouses
2.4. Potato Planting Material for the Greenhouse Experiments
2.5. Evaluation of Agronomic Traits in the Greenhouse
2.6. Data Analysis
3. Results
3.1. Growth-Promoting Activity of S. liquefaciens UNJFSC 002 in Potato Varieties Under Greenhouse Conditions
3.1.1. Inoculation with the Strain in Commercial Potato Varieties
3.1.2. Inoculation with the Strain in Processing Potato Varieties
3.2. Evaluation of the In Vitro Growth-Promoting Capacity of S. liquefaciens UNJFSC 002
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
E.C. | CEC | |||||
pH | (1:1) | CaCO3 | O.M. | P | K | meq/100 g |
(1:1) | dS/m | % | % | ppm | ppm | |
8.12 | 2.96 | 2.90 | 3.04 | 182.0 | 1080 | 2.93 |
References
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.6064/2012/963401 (accessed on 13 July 2025).
- Petersen, L.M.; Tisa, L.S. Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Can. J. Microbiol. 2013, 59, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Martínez, O.A.; Encina, C.; Tomckowiack, C.; Droppelmann, F.; Jara, R.; Maldonado, C.; Muñoz, O.; García-Fraile, P.; Rivas, R. Serratia strains isolated from the rhizosphere of raulí (Nothofagus alpina) in volcanic soils harbour PGPR mechanisms and promote raulí plantlet growth. J. Soil Sci. Plant Nutr. 2018, 18, 804–819. [Google Scholar] [CrossRef]
- Koo, S.Y.; Cho, K.S. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotechnol. 2009, 19, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Dastager, S.G.; Deepa, C.K.; Pandey, A. Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World J. Microbiol. Biotechnol. 2011, 27, 259–265. [Google Scholar] [CrossRef]
- George, P.; Gupta, A.; Gopal, M.; Thomas, L.; Thomas, G.V. Multifarious beneficial traits and plant growth-promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World J. Microbiol. Biotechnol. 2013, 29, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Jha, P.N. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0155026. [Google Scholar] [CrossRef] [PubMed]
- Kulkova, I.; Wróbel, B.; Dobrzyński, J. Serratia spp. as plant growth-promoting bacteria alleviating salinity, drought, and nutrient imbalance stresses. Front. Microbiol. 2024, 15, 1342331. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Han, H.; Wang, Y.; He, L.; Sheng, X. Metal-immobilizing and urease-producing bacteria increase the biomass and reduce metal accumulation in potato tubers under field conditions. Ecotoxicol. Environ. Saf. 2020, 203, 111017. [Google Scholar] [CrossRef] [PubMed]
- Artemchenko, A.S.; Klementeva, T.N.; Khodyrev, V.P. The Symbiotic Bacterium Serratia liquefaciens Enhances the Development of Bacillus thuringiensis Bacteriosis in Colorado Potato Beetle Larvae by Alkalization of pH in the Midgut. Microbiology 2025, 94, 273–281. [Google Scholar] [CrossRef]
- Gonzalez, A.; Almaraz, J.J.; Ferrera, R.; Rodriguez, M.P.; Taboada, O.R.; Trinidad, A.; Alarcon, A.; Arteaga, R.I. Caracterización y selección de rizobacterias promotoras de crecimiento en plántulas de chile poblano (Capsicum annuum L.). Rev. Int. Contam. Ambient. 2017, 33, 463–474. [Google Scholar] [CrossRef]
- Trinh, L.L.; Nguyen, H.H. Role of plant-associated microbes in plant health and development: The case of the Serratia genus. Technol. Agron. 2024, 4, e028. [Google Scholar] [CrossRef]
- Aloo, B.N.; Mbega, E.R.; Makumba, B.A. Sustainable food production systems for climate change mitigation: Indigenous rhizobacteria for potato bio-fertilization in Tanzania. In African Handbook of Climate Change Adaptation; Springer: Cham, Switzerland, 2021; pp. 1469–1495. [Google Scholar]
- Samet, M.; Ghazala, I.; Karray, F.; Abid, C.; Chiab, N.; Nouri-Ellouz, O.; Sayadi, S.; Gargouri-Bouzid, R. Isolation of bacterial strains from compost teas and screening of their PGPR properties on potato plants. Environ. Sci. Pollut. Res. 2022, 29, 75365–75379. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Grados, P.M.; Arbizu, C.I.; Castillo, G.; Camel, V.; Contreras-Liza, S. Draft genome sequence of the Serratia liquefaciens strain UNJFSC002, isolated from the soil of a potato field of the Bicentenaria variety. Microbiol. Resour. Announc. 2025, 14, e00495-24. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate-solubilising microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, D.; Gómez, R.; Garrido, M.; Bonilla, R. Inoculación con bacterias promotoras de crecimiento vegetal en tomate bajo condiciones de invernadero. Rev. Mex. Cienc. Agrícolas 2012, 3, 1401–1415. Available online: https://www.scielo.org.mx/scielo.php?pid=s2007-09342012000700009&script=sci_arttext (accessed on 3 February 2025).
- Glickman, E.; Dessaux, Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Bonierbale, M.W.; Haan, S.D.; Forbes, A.; Bastos, C. Procedures for Standard Evaluation Trials of Advanced Potato Clones—An International Cooperator’s Guide; International Potato Center: Lima, Peru, 2007; Available online: https://www.google.com.pe/books/edition/Procedures_for_standard_evaluation_trial/Ztb-iz_MdR0C?hl=es&gbpv=1&pg=PA2&printsec=frontcover (accessed on 4 March 2025).
- Hennessy, R.C.; Dichmann, S.I.; Martens, H.J.; Zervas, A.; Stougaard, P. Serratia inhibens sp. nov., a new antifungal species isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 2020, 70, 4204–4211. [Google Scholar] [CrossRef] [PubMed]
- Kleyn, M.S.; Akinyemi, M.O.; Bezuidenhout, C.; Adeleke, R.A. Draft genome sequences of three Serratia liquefaciens strains isolated from vegetables in South Africa. Microbiol. Resour. Announc. 2025, 14, e00772-24. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Rodríguez, M.; Almaraz-Suárez, J.; Vázquez-Vázquez, C.; Angulo-Castro, A.; Ríos-Vega, M.; González-Mancilla, A. Efecto de rizobacterias promotoras del crecimiento vegetal en el desarrollo y rendimiento del chile jalapeño. Rev. Mex. Cienc. Agrícolas 2022, 13, 185–196. [Google Scholar] [CrossRef]
- Hanif, M.K.; Malik, K.A.; Hameed, S.; Saddique, M.J.; Fatima, K.; Naqqash, T.; Imran, A. Growth stimulatory effect of AHL-producing Serratia spp. from potato on homologous and non-homologous host plants. Microbiol. Res. 2020, 238, 126506. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, S.; Muneer, M.A.; Tahir, M.; Javed, M.T.; Mahmood, T.; Afridi, M.S.; Pakar, N.P.; Abbasi, H.A.; Munis, M.F.H.; Chaudhary, H.J. Deciphering distinct biological control and growth-promoting potential of multi-stress tolerant Bacillus subtilis PM32 for potato stem canker. Physiol. Mol. Biol. Plants 2021, 27, 2101–2114. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, H.; Kibret, M. The roles of plant growth-promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chem. Biol. Technol. Agric. 2021, 8, 15. [Google Scholar] [CrossRef]
- Oswald, A.; Calvo, P.; Zuñiga, D.; Arcos, J. Evaluating soil rhizobacteria for their ability to enhance plant growth and tuber yield in potato. Ann. Appl. Biol. 2010, 157, 259–271. [Google Scholar] [CrossRef]
- Vega-Celedón, P.; Bravo, G.; Velásquez, A.; Cid, F.P.; Valenzuela, M.; Ramírez, I.; Vasconez, I.-N.; Álvarez, I.; Jorquera, M.A.; Seeger, M. Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms 2021, 9, 538. [Google Scholar] [CrossRef] [PubMed]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.S.; Patra, J.K. Revitalization of plant growth-promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bahadur, I.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Singh, D.K.; Dixit, J. Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J. Pure Appl. Microbiol. 2015, 9, 715–724. Available online: https://microbiologyjournal.org/does-a-plant-growth-promoting-rhizobacteria-enhance-agricultural-sustainability/ (accessed on 3 February 2025).
- Kshetri, L.; Naseem, F.; Pandey, P. Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management; Sayyed, R., Ed.; Microorganisms for Sustainability; Springer: Singapore, 2019; Volume 13. [Google Scholar] [CrossRef]
- Schuerger, A.C.; Ulrich, R.; Berry, B.J.; Nicholson, W.L. Growth of Serratia liquefaciens under 7 mbar, 0 °C, and CO2-enriched anoxic atmospheres. Astrobiology 2013, 13, 115–131. Available online: https://www.liebertpub.com/doi/abs/10.1089/ast.2011.0811 (accessed on 15 January 2025). [CrossRef] [PubMed]
- Ortiz, A.; Sansinenea, E. The possibility of using Serratia isolates for the production of biopreparations in the protection of plants against diseases and pests. Arch. Microbiol. 2023, 205, 288. [Google Scholar] [CrossRef] [PubMed]
- Shaffique, S.; Khan, M.A.; Wani, S.H.; Pande, A.; Imran, M.; Kang, S.-M.; Rahim, W.; Khan, S.A.; Bhatta, D.; Kwon, E.-H.; et al. A Review on the Role of Endophytes and Plant Growth Promoting Rhizobacteria in Mitigating Heat Stress in Plants. Microorganisms 2022, 10, 1286. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Park, G.S.; Asaf, S.; Hong, S.J.; Jung, B.K.; Shin, J.H. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS ONE 2017, 12, e0171534. [Google Scholar] [CrossRef] [PubMed]
- Silva, U.C.M.; da Silva, D.R.; Cuadros-Orellana, S.; Moreira, L.M.; Leite, L.R.; Medeiros, J.D.; Felestrino, E.B.; Caneschi, W.L.; Almeida, N.F.; Silva, R.S.; et al. Genomic and phenotypic insights into Serratia interaction with plants from an ecological perspective. Braz. J. Microbiol. 2025, 56, 1219–1239. [Google Scholar] [CrossRef] [PubMed]
Variety | Registration | Type of Variety | Origin 1 |
---|---|---|---|
Canchán | CIP 380389.1 | Commercial variety | CIP |
Unica | CIP 392797.22 | Commercial variety | CIP |
Perricholi | CIP 374080.5 | Commercial variety | CIP |
Variety | Registration | Type of Variety | Origin 1 |
---|---|---|---|
Bicentenaria | 001-2021-DELYC-SENASA | Commercial variety | UNJFSC |
Yasmine | CIP 396311.1 | Advanced clone | CIP |
Faustina | CIP 399101.1 | Advanced clone | CIP |
Treatments | PH cm | FFW g/Plant | DFW g/Plant | TWP g/Plant | ATD mm |
---|---|---|---|---|---|
S. liquefaciens UNJFSC 1 | 20.53 a | 63.67 a | 10.58 a | 118.07 a | 30.59 a |
Control 2 | 19.11 a | 23.70 b | 7.47 b | 52.92 b | 23.83 b |
Standard error | 1.47 | 4.93 | 0.93 | 7.15 | 1.61 |
Treatments | TWP g | NLP n | VV Scale |
---|---|---|---|
S. liquefaciens UNJFSC 1 | 83.49 a | 17.61 a | 4.97 a |
Control 2 | 49.91 b | 15.68 a | 6.53 b |
Standard error | 8.88 | 0.84 | 0.31 |
Test | Phosphate Solubilization | Production of Indole Acetic Acid (IAA) | Biological Nitrogen Fixation |
---|---|---|---|
S. liquefaciens UNJFSC 002 | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarado, C.A.; Durand, Z.H.; Rodriguez-Grados, P.M.; Tineo, D.L.; Takei, D.H.; Arbizu, C.I.; Contreras-Liza, S. The Growth-Promoting Ability of Serratia liquefaciens UNJFSC 002, a Rhizobacterium Involved in Potato Production. Int. J. Plant Biol. 2025, 16, 82. https://doi.org/10.3390/ijpb16030082
Alvarado CA, Durand ZH, Rodriguez-Grados PM, Tineo DL, Takei DH, Arbizu CI, Contreras-Liza S. The Growth-Promoting Ability of Serratia liquefaciens UNJFSC 002, a Rhizobacterium Involved in Potato Production. International Journal of Plant Biology. 2025; 16(3):82. https://doi.org/10.3390/ijpb16030082
Chicago/Turabian StyleAlvarado, Cristina Andrade, Zoila Honorio Durand, Pedro M. Rodriguez-Grados, Dennis Lloclla Tineo, Diego Hiroshi Takei, Carlos I. Arbizu, and Sergio Contreras-Liza. 2025. "The Growth-Promoting Ability of Serratia liquefaciens UNJFSC 002, a Rhizobacterium Involved in Potato Production" International Journal of Plant Biology 16, no. 3: 82. https://doi.org/10.3390/ijpb16030082
APA StyleAlvarado, C. A., Durand, Z. H., Rodriguez-Grados, P. M., Tineo, D. L., Takei, D. H., Arbizu, C. I., & Contreras-Liza, S. (2025). The Growth-Promoting Ability of Serratia liquefaciens UNJFSC 002, a Rhizobacterium Involved in Potato Production. International Journal of Plant Biology, 16(3), 82. https://doi.org/10.3390/ijpb16030082