Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = tuber inoculation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2380 KB  
Article
New Insights into the Role of Secondary Metabolic Pathways in Resistance of Potato to Dickeya solani
by Anna Grupa-Urbańska, Katarzyna Szajko, Waldemar Marczewski and Renata Lebecka
Int. J. Mol. Sci. 2025, 26(17), 8370; https://doi.org/10.3390/ijms26178370 - 28 Aug 2025
Viewed by 94
Abstract
Dickeya solani causes soft rot in potato (Solanum tuberosum L.) tubers. We used bulk RNA-seq to compare the early transcriptional responses of the diploid F1 genotypes from the mapping population that varied in tuber resistance to D. solani. RNA was [...] Read more.
Dickeya solani causes soft rot in potato (Solanum tuberosum L.) tubers. We used bulk RNA-seq to compare the early transcriptional responses of the diploid F1 genotypes from the mapping population that varied in tuber resistance to D. solani. RNA was collected from wounded tubers inoculated with D. solani (B), wounded tubers treated with sterile water (W), and non-treated tubers (NT) at 8, 24, and 48 hours post-inoculation (hpi). The largest transcriptional divergence between resistant (R) and susceptible (S) genotypes occurred at 8 hpi, with R tubers showing stronger induction of phenylpropanoid biosynthesis, phenylalanine and tyrosine metabolism, amino sugar and nucleotide sugar metabolism, isoquinoline alkaloid biosynthesis, and glutathione metabolism. Phenylpropanoid biosynthesis was dominant in R tubers, in 17 differentially expressed genes (DEGs), consistent with rapid suberin and lignin deposition as a physical barrier. RT-qPCR of nine defence-related genes corroborated the RNA-seq trends. The suberisation-associated anionic peroxidase POPA was located within a QTL for D. solani resistance on chromosome II, supporting its role as a candidate for future functional studies. This is the first transcriptome-based comparison of R and S potato genotypes challenged with D. solani, providing candidate pathways and genes that may guide future molecular breeding once their roles are validated. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 956 KB  
Communication
The Growth-Promoting Ability of Serratia liquefaciens UNJFSC 002, a Rhizobacterium Involved in Potato Production
by Cristina Andrade Alvarado, Zoila Honorio Durand, Pedro M. Rodriguez-Grados, Dennis Lloclla Tineo, Diego Hiroshi Takei, Carlos I. Arbizu and Sergio Contreras-Liza
Int. J. Plant Biol. 2025, 16(3), 82; https://doi.org/10.3390/ijpb16030082 - 23 Jul 2025
Viewed by 464
Abstract
Several strains of the genus Serratia isolated from the rhizosphere of crops are plant growth-promoting bacteria (PGPB) that may possess various traits associated with nitrogen metabolism, auxin production, and other characteristics. The objective of the present study was to investigate the in vitro [...] Read more.
Several strains of the genus Serratia isolated from the rhizosphere of crops are plant growth-promoting bacteria (PGPB) that may possess various traits associated with nitrogen metabolism, auxin production, and other characteristics. The objective of the present study was to investigate the in vitro and in vivo characteristics of the growth-promoting activity of S. liquefaciens UNJFSC 002 in potato plants. This strain was inoculated into potato varieties (Solanum tuberosum) under laboratory and greenhouse conditions to determine the bacterial strain’s ability to promote growth under controlled conditions. It was found that the S. liquefaciens strain UNJFSC 002 had a significantly greater effect on the fresh and dry weight of the foliage and induced a higher tuber weight per plant and larger tuber diameter compared to the uninoculated potato plants (p < 0.05). Additionally, in vitro, the strain demonstrated the ability to fix atmospheric nitrogen and produce indole-3-acetic acid (IAA), as well as the capacity to solubilise tricalcium phosphate in the laboratory. This research reveals the potential of S. liquefaciens UNJFSC 002 as an inoculant to improve potato production, demonstrating its ability to promote the growth and productivity of potato varieties suitable for direct consumption and processing under controlled conditions. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

16 pages, 3526 KB  
Article
Effects of Glomus iranicum Inoculation on Growth and Nutrient Uptake in Potatoes Associated with Broad Beans Under Greenhouse Conditions
by Duglas Lenin Contreras-Pino, Samuel Pizarro, Patricia Verastegui-Martinez, Richard Solórzano-Acosta and Edilson J. Requena-Rojas
Microbiol. Res. 2025, 16(7), 164; https://doi.org/10.3390/microbiolres16070164 - 21 Jul 2025
Viewed by 493
Abstract
The rising global demand for food, including potatoes, necessitates increased crop production. To achieve higher yields, farmers frequently depend on regular applications of nitrogen and phosphate fertilizers. As people seek more environmentally friendly alternatives, biofertilizers are gaining popularity as a potential replacement for [...] Read more.
The rising global demand for food, including potatoes, necessitates increased crop production. To achieve higher yields, farmers frequently depend on regular applications of nitrogen and phosphate fertilizers. As people seek more environmentally friendly alternatives, biofertilizers are gaining popularity as a potential replacement for synthetic fertilizers. This study aimed to determine how Glomus iranicum affects the growth of potatoes (Solanum tuberosum L.) and the nutritional value of potato tubers when grown alongside broad beans (Vicia faba L.). An experiment was conducted using potatoes tested at five dosage levels of G. iranicum, ranging from 0 to 4 g, to see its impact on the plants and soil. Inoculation with G. iranicum produced variable results in associated potato and bean crops, with significant effects on some variables. In particular, inoculation with 3 g of G. iranicum produced an increase in plant height (24%), leaf dry weight (90%), and tuber dry weight (57%) of potatoes. Similarly, 4 g of G. iranicum produced an increase in the foliar fresh weight (115%), root length (124%), root fresh weight (159%), and root dry weight (243%) of broad beans compared to no inoculation. These findings suggest that G. iranicum could be a helpful biological tool in Andean crops to improve the productivity of potatoes associated with broad beans. This could potentially reduce the need for chemical fertilizers in these crops. Full article
Show Figures

Figure 1

17 pages, 8540 KB  
Article
Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum
by Li Huang, Rui Wang, Fuqiang Yu, Ruilong Liu, Chenxin He, Lanlan Huang, Shimei Yang, Dong Liu and Shanping Wan
Agronomy 2025, 15(7), 1749; https://doi.org/10.3390/agronomy15071749 - 20 Jul 2025
Viewed by 455
Abstract
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot [...] Read more.
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot experiment to compare the effects of three root nutrient regulations—Aolu 318S (containing N-P2O5-K2O in a ratio of 15-9-11 (w/w%)), Aolu 328S (11-11-18), and Youguduo (19-19-19)—on the mycorrhizal synthesis of P. armandiiT. indicum. The results showed that root nutrient supplementation significantly improved the seedling crown, plant height, ground diameter, biomass dry weight, and mycorrhizal infection rate of both the control and mycorrhizal seedlings, with the slow-release fertilizers Aolu 318S and 328S outperforming the quick-release fertilizer Youguduo. The suitable substrate composition in this experiment was as follows: pH 6.53–6.86, organic matter content 43.25–43.49 g/kg, alkali-hydrolyzable nitrogen 89.25–90.3 mg/kg, available phosphorus 83.69–87.32 mg/kg, available potassium 361.5–364.65 mg/kg, exchangeable magnesium 1.17–1.57 mg/kg, and available iron 33.06–37.3 mg/kg. It is recommended to mix the Aolu 318S and 328S solid fertilizers evenly into the substrate, with a recommended dosage of 2 g per plant. These results shed light on the pivotal role of a precise N-P-K ratio regulation in fostering sustainable ectomycorrhizal symbiosis, offering a novel paradigm for integrating nutrient management with mycorrhizal biotechnology to enhance forest restoration efficiency in arid ecosystems. Full article
Show Figures

Figure 1

17 pages, 1921 KB  
Article
Description, Identification, and Growth of Ectomycorrhizae in Tuber sinense-Mycorrhized Castanea mollissima Seedlings
by Yiyang Wang, Weiwei Zhang, Qingqin Cao, Rui Yang, Yong Qin and Guoqing Zhang
Agriculture 2025, 15(8), 868; https://doi.org/10.3390/agriculture15080868 - 16 Apr 2025
Viewed by 553
Abstract
The synthesis and symbiotic mechanisms of truffle ectomycorrhizae have attracted considerable scientific interest in recent decades. Although previous research has successfully identified the symbiotic partners of truffles (Tuber spp.) and characterized their mature morphological features, the dynamic processes involved in truffle ectomycorrhizal [...] Read more.
The synthesis and symbiotic mechanisms of truffle ectomycorrhizae have attracted considerable scientific interest in recent decades. Although previous research has successfully identified the symbiotic partners of truffles (Tuber spp.) and characterized their mature morphological features, the dynamic processes involved in truffle ectomycorrhizal formation remain insufficiently understood. In this study, we established an ectomycorrhizal synthesis system using Castanea mollissima seedlings inoculated with Tuber sinense spore suspensions under controlled greenhouse conditions, followed by an eight-month observation period. To systematically characterize and model the morphological changes during ectomycorrhizal development, we employed an innovative approach integrating resin sectioning with confocal microscopy. Ectomycorrhizal formation was initially observed two months post inoculation, with a colonization rate reaching 24.4 ± 5.3% by the third month. The ectomycorrhizae displayed a distinct color progression from light brown through ochre and finally dark brown, typically manifesting either monopodial or branched structures. Early developmental stages (2–3 months) were characterized by a thin mycelial membrane enveloping the root surface, accompanied by limited hyphal penetration into the root system. By the eighth month, the colonization rate stabilized at 45.2 ± 8.6%, with enhanced organization and density of the fungal mantle and extended Hartig nets reaching the periphery of outer cortical cells. The continuous growth and differentiation of mycorrhizal root tips generated repetitive root architectures, significantly enhancing symbiotic efficiency. These findings provide critical insights into the morphological development and symbiotic effectiveness of truffle ectomycorrhizae while establishing a methodological framework for investigating ectomycorrhizal associations in other economically significant plant–fungal systems. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

19 pages, 2995 KB  
Article
Biotization with Plant Growth-Promoting Bacteria Benefits the Survival and Production of Potato (Solanum tuberosum L.) In Vitro and In Vivo
by Yulimar Castro Molina, Joyce Dória, Ana Milena Gómez Sepúlveda, Luna Queiroz Carvalho, Moacir Pasqual and Ederson da Conceição Jesus
Horticulturae 2025, 11(4), 393; https://doi.org/10.3390/horticulturae11040393 - 8 Apr 2025
Viewed by 913
Abstract
Bacterial inoculation stimulates growth and adaptation in micropropagated plants. This study evaluated the effects of biotization on in vitro seedling production and in vivo adaptation in two potato cultivars, Agatha and Duvira. Nine bacterial strains were tested for hormone production and ACC deaminase [...] Read more.
Bacterial inoculation stimulates growth and adaptation in micropropagated plants. This study evaluated the effects of biotization on in vitro seedling production and in vivo adaptation in two potato cultivars, Agatha and Duvira. Nine bacterial strains were tested for hormone production and ACC deaminase activity and then inoculated in vitro and re-inoculated in vivo. Growth, adaptation, and tuber production were assessed. Biotization significantly enhanced seedling growth, survival, and tuber yield. Biotized seedlings had a 1.3-fold higher survival rate than the controls. Azospirillum brasilense Ab-V5 and Rhizobium tropici CIAT 899 promoted at least one growth variable in both cultivars under in vitro and in vivo conditions. A. brasilense Ab-V5 consistently improved plant performance across production stages, with re-inoculated plants showing 1.2–1.3-fold increases in stem and root length and a 1.1-fold gain in total dry biomass. Additionally, inoculated plants produced 1.9 times more tubers than the controls. Biotization effects were strain-dependent, with A. brasilense Ab-V5 improving in vitro seedling quality and enhancing plant performance and survivability in vivo. Full article
(This article belongs to the Special Issue The Role of Plant Growth Regulators in Horticulture)
Show Figures

Graphical abstract

20 pages, 2452 KB  
Article
Demonstrating Agroecological Practices in Potato Production with Conservation Tillage and Pseudomonas spp., Azotobacter spp., Bacillus spp. Bacterial Inoculants—Evidence from Hungary
by Jana Marjanović, Abdulrahman Maina Zubairu, Sandor Varga, Shokhista Turdalieva, Fernanda Ramos-Diaz and Apolka Ujj
Agronomy 2024, 14(12), 2979; https://doi.org/10.3390/agronomy14122979 - 14 Dec 2024
Cited by 2 | Viewed by 1468
Abstract
This study explores agroecological practices designed to improve soil quality and crop yield in small-scale agriculture, focusing on soil inoculation with beneficial bacteria over conventional fertilizers. Conducted at the SZIA Agroecological Garden MATE in Gödöllő, Hungary, the research utilizes 12 plots to evaluate [...] Read more.
This study explores agroecological practices designed to improve soil quality and crop yield in small-scale agriculture, focusing on soil inoculation with beneficial bacteria over conventional fertilizers. Conducted at the SZIA Agroecological Garden MATE in Gödöllő, Hungary, the research utilizes 12 plots to evaluate different conservation tillage methods, including minimum and no-tillage, with and without microbial inoculation. Commenced in 2022, this study centers on potato cultivation (Solanum tuberosum L.) and includes comprehensive chemical and physical analyses of soil and harvested potatoes, alongside continuous monitoring of growth. Statistical analysis using One-way Anova in R revealed p-values predominantly above 0.05, indicating no significant differences across most parameters, though variations in soil plasticity and pH (KCl) were noted. Results suggest that substantial treatmeent differences may require a longer observation period. Notably, plots with microbial inoculation exhibited higher harvest weights and tuber sizes compared to control plots. Additionally, trends and interactions were found between weed abundance, total harvest, and plant height. The findings indicate that the benefits of integrated agroecological practices, including conservation tillage, may take time to materialize, emphasizing the necessity for extended observation. This research lays the groundwork for future studies, underscoring the importance of patience in achieving improvements in soil health and crop quality through sustainable agricultural methods. Full article
Show Figures

Figure 1

21 pages, 2946 KB  
Article
Combination of Silicate-Based Soil Conditioners with Plant Growth-Promoting Microorganisms to Improve Drought Stress Resilience in Potato
by Abdullah Al Mamun, Günter Neumann, Narges Moradtalab, Aneesh Ahmed, Fahim Nawaz, Timotheus Tenbohlen, Jingyu Feng, Yongbin Zhang, Xiaochan Xie, Li Zhifang, Uwe Ludewig, Klára Bradáčová and Markus Weinmann
Microorganisms 2024, 12(11), 2128; https://doi.org/10.3390/microorganisms12112128 - 24 Oct 2024
Viewed by 1687
Abstract
Due to shallow root systems, potato is a particularly drought-sensitive crop. To counteract these limitations, the application of plant growth-promoting microorganisms (PGPMs) is discussed as a strategy to improve nutrient acquisition and biotic and abiotic stress resilience. However, initial root colonization by PGPMs, [...] Read more.
Due to shallow root systems, potato is a particularly drought-sensitive crop. To counteract these limitations, the application of plant growth-promoting microorganisms (PGPMs) is discussed as a strategy to improve nutrient acquisition and biotic and abiotic stress resilience. However, initial root colonization by PGPMs, in particular, can be affected by stress factors that negatively impact root growth and activity or the survival of PGPMs in the rhizosphere. In this study, perspectives for the use of commercial silicate-based soil conditioners (SCs) supposed to improve soil water retention were investigated. The SC products were based on combinations with lignocellulose polysaccharides (Sanoplant® = SP) or polyacrylate (Geohumus® = GH). It was hypothesized that SC applications would support beneficial plant–inoculant interactions (arbuscular mycorrhiza, AM: Rhizophagus irregularis MUCL41833, and Pseudomonas brassicacearum 3Re2-7) on a silty loam soil–sand mixture under water-deficit conditions (6–12 weeks at 15–20% substrate water-holding capacity, WHC). Although no significant SC effects on WHC and total plant biomass were detectable, the SC-inoculant combinations increased the proportion of leaf biomass not affected by drought stress symptoms (chlorosis, necrosis) by 66% (SP) and 91% (GH). Accordingly, osmotic adjustment (proline, glycine betaine accumulation) and ROS detoxification (ascorbate peroxidase, total antioxidants) were increased. This was associated with elevated levels of phytohormones involved in stress adaptations (abscisic, jasmonic, salicylic acids, IAA) and reduced ROS (H2O2) accumulation in the leaf tissue. In contrast to GH, the SP treatments additionally stimulated AM root colonization. Finally, the SP-inoculant combination significantly increased tuber biomass (82%) under well-watered conditions, and a similar trend was observed under drought stress, reaching 81% of the well-watered control. The P status was sufficient for all treatments, and no treatment differences were observed for stress-protective nutrients, such as Zn, Mn, or Si. By contrast, GH treatments had negative effects on tuber biomass, associated with excess accumulation of Mn and Fe in the leaf tissue close to toxicity levels. The findings suggest that inoculation with the PGPMs in combination with SC products (SP) can promote physiological stress adaptations and AM colonization to improve potato tuber yield, independent of effects on soil water retention. However, this does not apply to SC products in general. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 3rd Edition)
Show Figures

Figure 1

21 pages, 3358 KB  
Article
Essential Quality Attributes of Culture Media Used as Substrates in the Sustainable Production of Pre-Basic Potato Seeds
by Haydee Peña, Mila Santos, Beatriz Ramírez, José Sulbarán, Karen Arias, Victoria Huertas and Fernando Diánez
Sustainability 2024, 16(19), 8552; https://doi.org/10.3390/su16198552 - 1 Oct 2024
Cited by 2 | Viewed by 1769
Abstract
The sustainability of the primary sector is closely linked to meeting the demand for seeds using agro-industrial waste and bioresidues. Sustainability is a multidimensional concept focused on achieving environmental health, social justice, and economic viability. To this end, an experiment was designed based [...] Read more.
The sustainability of the primary sector is closely linked to meeting the demand for seeds using agro-industrial waste and bioresidues. Sustainability is a multidimensional concept focused on achieving environmental health, social justice, and economic viability. To this end, an experiment was designed based on a combination of biotechnological strategies accessible to many individuals. The first strategy involves the use of compost and vermicompost as cultivation substrates; the second is the in vitro acclimatization of potato plants to these substrates; and the third is the incorporation of Trichoderma asperellum into these substrates to determine the synergistic effect of both. The compost used in this work came from sewage sludge from an agri-food company (Cp); a dining room and pruning waste from a university campus (Cu); and vermicomposted coffee pulp waste (Cv). Each sample was mixed with coconut fiber (Fc) in proportions of 100, 75, 50, and 25%. In the resulting mixtures, María Bonita variety vitroplants were planted and placed in a greenhouse. The biometric response in the three cases indicated a dependence on the type of compost and the proportion of the coconut fiber mixture. The inoculation of Trichoderma asperellum with sewage sludge compost increased stem thickness (42.58%) and mini-tuber weight (6.74%). In contrast, uninoculated treatments showed the best performance in terms of the number of mini-tubers. A 50:50 mixture of sewage sludge compost with coconut fiber and without inoculation of Trichoderma asperellum was the best treatment for the production of pre-basic seeds of the María Bonita potato variety. The use of composted agricultural waste and bioresidues is shown as a valid and low-cost alternative for the sector, even independently of the incorporation of additional inoculants. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

14 pages, 2529 KB  
Brief Report
Clonostachys rosea, a Pathogen of Brown Rot in Gastrodia elata in China
by Huan Yao, Kang Liu, Lei Peng, Touli Huang, Jinzhen Shi, Beilin Sun and Juan Zou
Biology 2024, 13(9), 730; https://doi.org/10.3390/biology13090730 - 17 Sep 2024
Cited by 1 | Viewed by 1918
Abstract
Gastrodia elata, commonly known as Tian Ma, is a perennial mycoheterotrophic orchid. Qianyang Tian Ma (QTM), a geographical indication agricultural product from Hongjiang City, Hunan Province, China, is primarily characterized by the red variety, G. elata f. elata. A severe outbreak [...] Read more.
Gastrodia elata, commonly known as Tian Ma, is a perennial mycoheterotrophic orchid. Qianyang Tian Ma (QTM), a geographical indication agricultural product from Hongjiang City, Hunan Province, China, is primarily characterized by the red variety, G. elata f. elata. A severe outbreak of tuber brown rot disease was documented in QTM during the harvesting season in Hunan. The fungal pathogen associated with the disease was isolated on potato saccharose agar (PSA) and identified through morphological and phylogenetic analyses. Pathogenicity tests were performed on healthy tubers of G. elata f. elata. The results showed that the representative isolate, named TMB, produced white hyphal colonies with a ring structure, broom-like phialides, partially curved ellipsoidal conidia, and orange–yellow spherical ascocarps on PSA. Phylogenetic analysis of the ITS, LSU, rpb2 and tub2 sequences using Bayesian and maximum-likelihood methods identified the isolate TMB as Clonostachys rosea, based on morphological and phylogenetic data. Pathogenicity tests revealed typical disease symptoms on healthy G. elata tubers 15 days post-inoculation with the isolate TMB. C. rosea is known to cause diseases in economically important crops, but there are no reports of its occurrence on G. elata f. elata in China. This study provides valuable insights into the occurrence, prevention, and control of brown rot disease in G. elata f. elata. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
Show Figures

Figure 1

13 pages, 1415 KB  
Article
Biological Control of Streptomyces Species Causing Common Scabs in Potato Tubers in the Yaqui Valley, Mexico
by Amelia C. Montoya-Martínez, Roel Alejandro Chávez-Luzanía, Ana Isabel Olguín-Martínez, Abraham Ruíz-Castrejón, Jesús Daniel Moreno-Cárdenas, Fabiola Esquivel-Chávez, Fannie I. Parra-Cota and Sergio de los Santos-Villalobos
Horticulturae 2024, 10(8), 865; https://doi.org/10.3390/horticulturae10080865 - 15 Aug 2024
Cited by 1 | Viewed by 2753
Abstract
Potatoes (Solanum tuberosum L.) represent an important food in the country’s gastronomy due to their cost, nutritional contribution, and versatility. However, many plant diseases such as the common scab—caused by Streptomyces species—reduce its yield and quality. This study aims to determine Streptomyces [...] Read more.
Potatoes (Solanum tuberosum L.) represent an important food in the country’s gastronomy due to their cost, nutritional contribution, and versatility. However, many plant diseases such as the common scab—caused by Streptomyces species—reduce its yield and quality. This study aims to determine Streptomyces species being the causal agent of common scabs in a commercial potato field in the Yaqui Valley, Mexico, while identifying Bacillus strains as a biological control method to mitigate the impact of this disease under field conditions. Thus, three Streptomyces strains were selected from symptomatic samples, and then they were morphologically and molecularly (through sequencing recA and rpoB genes) identified as Streptomyces caniscabiei. After pathogenicity tests, the three strains were found to be pathogenic to potato tubers. In screening assays to identify biocontrol bacteria, strain TSO2T (Bacillus cabrialesii subsp. tritici) and TE3T_UV25 (Bacillus subtilis) had the best in vitro biocontrol effect against S. caniscabiei. Then, a field experiment (1 ha per treatment), under commercial conditions, was carried out to analyze the effectivity of these biocontrol bacteria to mitigate the common scabs on potato crops. After four months, the inoculation of this bacterial consortium decreased common scab incidence from 31% to 21% and increased the potato yield up to almost 5 tons/ha vs. the un-inoculated treatment. These findings demonstrate the effectiveness of the studied bacterial consortium as a potential biological control strategy to control common scabs of potato caused by Streptomyces caniscabiei, as well as increase the potato yield in the Yaqui Valley, Mexico. Full article
Show Figures

Figure 1

11 pages, 472 KB  
Article
Seed Tubers Are Not the Primary Inoculum Source in Water Yam (Dioscorea alata) Anthracnose Epidemics in the Caribbean
by Laurent Penet, Margot Gumbau, Pauline Dentika, Fritz Poliphème, Sébastien Guyader, François Bussière, Angela T. Alleyne and Jean-Marc Blazy
Int. J. Plant Biol. 2024, 15(3), 733-743; https://doi.org/10.3390/ijpb15030053 - 28 Jul 2024
Viewed by 1296
Abstract
Crop disease often leads to field epidemics with serious threats to yield. Early symptoms are sometimes difficult to identify, so the origin of primary inoculum is a critical focal point in the study of plant diseases, as it can help design management strategies [...] Read more.
Crop disease often leads to field epidemics with serious threats to yield. Early symptoms are sometimes difficult to identify, so the origin of primary inoculum is a critical focal point in the study of plant diseases, as it can help design management strategies to reduce crop losses. Here, we investigated whether anthracnose of water yams (Dioscorea alata L.) caused by the species complex Colletotrichum gloeosporioides can start from infected seed tubers from the previous harvest. Over two years, we collected tubers with varying pathogen prevalence in the field directly from producers and conducted fungal isolations in the lab to sample C. gloeosporioides. We also proceeded to artificially inoculate tubers before planting and monitored disease development. Finally, we genotyped isolates from leaves in the fields and assessed fixation indices between plots based on plot ownership (plots with a common seed tuber origin from a single farmer) vs. samples in plots from unrelated producers in Guadeloupe, Martinique, and Barbados. We were unable to isolate the fungus from harvested tubers in either sampling survey nor did any plants grown from inoculated tubers develop any disease symptoms during growth. Also, the genetic structure of samples within each plot was independent of plot ownership, though this occurred with varying levels in the different islands. These results suggest that contaminated planting material from seed tubers is not the primary source of the disease, which is in contrast to the common perception of yam anthracnose prevalence in the Antilles. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

13 pages, 4168 KB  
Article
Evaluation of the Colonization of Plants from Five Quercus Taxa Native to Greece by Tuber aestivum (Ascomycota, Pezizales)
by Vassileios Daskalopoulos, Elias Polemis, Irini-Evangelia Kioupidi, Panayiotis Trigas and Georgios I. Zervakis
Life 2024, 14(7), 852; https://doi.org/10.3390/life14070852 - 7 Jul 2024
Cited by 1 | Viewed by 1812
Abstract
Fungi of the genus Tuber are famous for their hypogeous ascomata (truffles), many of which possess noteworthy organoleptic properties. T. aestivum shows a wide geographic distribution, has many plant symbionts and is well adapted to various climatic conditions. In this study, five Quercus [...] Read more.
Fungi of the genus Tuber are famous for their hypogeous ascomata (truffles), many of which possess noteworthy organoleptic properties. T. aestivum shows a wide geographic distribution, has many plant symbionts and is well adapted to various climatic conditions. In this study, five Quercus taxa native to Greece (i.e., Q. coccifera, Q. ilex, Q. ithaburensis subsp. macrolepis, Q. pubescens and Q. trojana subsp. trojana) were inoculated with spore suspensions obtained from a single ascoma of T. aestivum. The fungal colonization of oak roots was evaluated at three, seven and 12 months after inoculation; the respective colonization rates for each time period were as follows: low to medium (17–41%) for Q. pubescens, Q. ithaburensis subsp. macrolepis and Q. trojana subsp. trojana, medium to relatively high (58–80%) for Q. ithaburensis subsp. macrolepis, Q. ilex, Q. pubescens and Q. trojana subsp. trojana, and medium to high (45–87%) for all oak species examined. Positive correlations were assessed between the number of colonized root tips and the total root tips number, but no significant differences were detected between the inoculated plants and the respective control as regards plant growth. The ectomycorrhizae formed by T. aestivum with Q. ithaburensis subsp. macrolepis and Q. trojana subsp. trojana are described for the first time. The outcome of the study evidences the feasibility of generating the seedlings of various indigenous oak species (covering a large range of diverse habitats) successfully inoculated with autochthonous truffles to be readily used for cultivation purposes. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 2216 KB  
Article
Brackish Water, Phosphate Fertilization and Trichoderma in the Agronomic Performance of Beet Crops
by Andreza Silva Barbosa, Alexsandro Oliveira da Silva, Geocleber Gomes de Sousa, Maria Vanessa Pires de Souza, Márcio Henrique da Costa Freire, Geovana Ferreira Goes, Arthur Prudêncio de Araújo Pereira, Thales Vinícius de Araújo Viana, Raimundo Nonato Távora Costa, Claudivan Feitosa de Lacerda, Geronimo Ferreira da Silva and Mário Monteiro Rolim
Agronomy 2024, 14(6), 1306; https://doi.org/10.3390/agronomy14061306 - 17 Jun 2024
Cited by 4 | Viewed by 1334
Abstract
The study hypothesis proposes that the use of Trichoderma, associated with fertilization with 100% of the recommended phosphorus, may mitigate saline stress and maximize the productivity and quality of the tuberous root. This study aims to evaluate the mitigating effects of phosphate [...] Read more.
The study hypothesis proposes that the use of Trichoderma, associated with fertilization with 100% of the recommended phosphorus, may mitigate saline stress and maximize the productivity and quality of the tuberous root. This study aims to evaluate the mitigating effects of phosphate fertilization and Trichoderma harzianum in beet plants under salt stress, by measuring the initial growth, leaf gas exchange, productivity and quality of the beet. The experimental design used was entirely randomized, in a 3 × 2 × 2 factorial scheme, referring to three doses of phosphate fertilization (25%, 50% and 100%), with and without the use of Trichoderma-based inoculation, and two levels of electrical conductivity of the irrigation water (0.5 and 6.2 dS m−1). Salt stress negatively affected the leaf area of the beet. The shoots’ dry mass was reduced as the electrical conductivity of the irrigation water increased, especially in the treatment with the 25% P2O5 dose. Salt stress reduced photosynthesis to a greater extent at the 25% P2O5 dose and in the absence of Trichoderma harzianum. Increasing the electrical conductivity of the irrigation water reduced transpiration and increased leaf temperature at the 25% P2O5 dose and in the presence of Trichoderma harzianum. The 25% P2O5 dose increased the stomatal conductance of the beet. The higher electrical conductivity of the irrigation water negatively affected water use efficiency, most significantly at the 25% P2O5 dose. Our data showed that the doses of 50% and 100% P2O5 were more efficient at increasing the productivity and quality of the beet, with the tuberous root diameter being higher under the lower electrical conductivity of the water and the absence of Trichoderma harzianum. The pH was high under the lowest electrical conductivity of the water, with a dose of 25% P2O5 and the absence of Trichoderma harzianum. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

18 pages, 3947 KB  
Article
A Comparative Analysis of Microbial Communities in the Rhizosphere Soil and Plant Roots of Healthy and Diseased Yuanyang Nanqi (Panax vietnamensis) with Root Rot
by Changyuan Chen, Yifan Cheng, Fangli Zhang, Saiying Yu, Xiuming Cui and Yuanshuang Wu
Agriculture 2024, 14(5), 719; https://doi.org/10.3390/agriculture14050719 - 1 May 2024
Cited by 6 | Viewed by 1816
Abstract
Microbial communities are not only an important indicator of soil status but also a determinant of plant nutrition and health levels. Loss of microbial community ecosystem control can directly lead to microbial disease occurrence. During the process of Yuanyang Nanqi wild imitation planting, [...] Read more.
Microbial communities are not only an important indicator of soil status but also a determinant of plant nutrition and health levels. Loss of microbial community ecosystem control can directly lead to microbial disease occurrence. During the process of Yuanyang Nanqi wild imitation planting, root rot diseases frequently occur, seriously affecting their yield and quality. Via amplicon sequencing, this study mainly compared the microbial community composition between the rhizosphere soil and roots of healthy and diseased Yuanyang Nanqi with root rot. The α-diversity showed that the microbial community diversity and abundance in the roots of diseased Yuanyang Nanqi were much lower than those of those in healthy specimens, while no significant difference was found in the rhizosphere soil. The β-diversity showed that the bacterial community in the Gejiu region and the fungal community in the Honghe region were significantly different from those in other regions. The species relative abundance map showed that there was no obvious difference in microbial community composition between the rhizosphere soil and roots of healthy and diseased Nanqi, but in diseased specimens with root rot, the proportions of Pseudomonas and Fusarium increased. Based on a functional prediction analysis of FUNGuild, the results showed that the Nanqi roots were mainly pathological saprophytic type and that their rhizosphere soil was mainly saprophytic type. The microorganisms in the roots of Yuanyang Nanqi tubers with root rot were also isolated and identified through the use of the culture method. The possible pathogenic strains were tested via anti-inoculation, and Fusarium oxysporum was identified as one of the main pathogenic fungi of Nanqi root rot, which was consistent with the amplicon sequencing results. These results will help us understand the change trend of microbial communities in healthy and diseased plants and analyze the pathogens involved, the pathogenesis, and the beneficial microorganisms, which would provide a theoretical basis for effective biological control. Full article
(This article belongs to the Special Issue Integrated Management of Soil-Borne Diseases)
Show Figures

Figure 1

Back to TopTop