Previous Issue
Volume 16, September
 
 

Int. J. Plant Biol., Volume 16, Issue 4 (December 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 2557 KB  
Article
Chitosan and Brassinosteroids Mitigate Ion Imbalance and Enhancing Stolon Production in Strawberry
by Miriam Elizabeth Martínez-Pérez, Dámaris Leopoldina Ojeda-Barrios, Rafael Ángel Parra-Quezada, Juan Luis Jacobo-Cuéllar, Brenda I. Guerrero, Esteban Sánchez-Chávez and Teresita de Jesús Ruíz-Anchondo
Int. J. Plant Biol. 2025, 16(4), 115; https://doi.org/10.3390/ijpb16040115 - 29 Sep 2025
Abstract
Excess sodium in soil disrupts ionic balance and limits water uptake, negatively affecting growth and stolon production in strawberry plants. This study assessed the effects of chitosan (CTS), brassinosteroids (BRs), and thidiazuron (TDZ) on stolon performance and physiological responses of strawberry cv. ‘Portola’ [...] Read more.
Excess sodium in soil disrupts ionic balance and limits water uptake, negatively affecting growth and stolon production in strawberry plants. This study assessed the effects of chitosan (CTS), brassinosteroids (BRs), and thidiazuron (TDZ) on stolon performance and physiological responses of strawberry cv. ‘Portola’ under saline conditions. A greenhouse experiment included seven treatments: CTS, BRs, CTS + BRs combinations, TDZ, and an untreated control. Foliar applications were used to evaluate impacts on nutrient uptake, photosynthetic pigments, oxidative stress, and stolon production. BRs alone [2.53 × 10−6 μM] significantly increased crown diameter (+43%), stolon number (+65%), stolon length (+4%), and daughter plant formation (+8%), while reducing leaf sodium by 60% and improving Mg2+/Na+ and K+/Na+ ratios. The CTS + BRs combination enhanced phenolic content and produced the heaviest first daughter plants (6.1 g). TDZ, however, resulted in weaker stolons, lower chlorophyll a content, and reduced K+/Na+ ratios, suggesting a need for dose optimization. Overall, BRs, alone or with CTS, improved salt tolerance and stolon propagation through enhanced ion regulation, photosynthesis, and antioxidant defenses. These findings advance understanding of how biostimulants modulate metal ion homeostasis, antioxidant signaling, and growth in salt-sensitive crops, offering strategies to mitigate salinity stress in strawberry cultivation. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

42 pages, 12138 KB  
Article
Genome-Wide Metatranscriptomics Crosswalk of Diseased Common Beans (Phaseolus vulgaris L.) Unravels Critical Metabolic Pathways Involved in Plant Defense Mechanisms
by Aggrey Keya Osogo, Shrabana Sarkar, Francis Muyekho, Hassan Were and Patrick Okoth
Int. J. Plant Biol. 2025, 16(4), 114; https://doi.org/10.3390/ijpb16040114 - 28 Sep 2025
Abstract
The common bean (Phaseolus vulgaris L.) is a vital food crop worldwide, particularly in Latin America, Asia, and Sub-Saharan Africa, due to its high levels of protein, fiber, and essential nutrients. However, it is susceptible to viral infections, especially from the Bean [...] Read more.
The common bean (Phaseolus vulgaris L.) is a vital food crop worldwide, particularly in Latin America, Asia, and Sub-Saharan Africa, due to its high levels of protein, fiber, and essential nutrients. However, it is susceptible to viral infections, especially from the Bean common mosaic virus and Bean common mosaic necrosis virus. While previous research has primarily focused on specific resistance genes, a broader understanding of the plant’s overall immune response remains limited. To investigate this, a study was conducted involving 51 infected leaf samples. RNA was extracted, and deep metatranscriptomic sequencing was performed using the Illumina MiSeq platform. The results indicated that several genes related to stress response, nitrogen metabolism, and biosynthesis pathways were activated during infection. Key defense mechanisms included pathogen recognition, the production of antimicrobial peptides, and changes in metabolic activity. The Mitogen-Activated Protein Kinase (MAPK) signaling pathway and enzymes like glycosyl transferases, which aid in building protective structures, played a significant role. These findings suggest that the bean’s defense system is complex and involves not only direct attacks on pathogens but also metabolic shifts and microbial interactions. Understanding these processes provides valuable insights for breeding stronger, disease-resistant, and climate-resilient bean varieties. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

20 pages, 3754 KB  
Article
Preliminary Evidence of Foliar Spray Effectiveness Against the Invasive Cactus Cylindropuntia pallida (Rose), F.M. Knuth in South Africa
by Keletso Makaota, Thabiso Michael Mokotjomela, Caswell Munyai, Thembelihle Joyce Mbele and Nontembeko Dube
Int. J. Plant Biol. 2025, 16(4), 113; https://doi.org/10.3390/ijpb16040113 - 25 Sep 2025
Abstract
Using the biometric differences (i.e., plant physical characteristics) between the C. pallida populations previously treated with herbicide and those of the untreated populations, we tested the prediction that herbicidal treatment suppresses C. pallida plant growth in South Africa, where invasive cacti display high [...] Read more.
Using the biometric differences (i.e., plant physical characteristics) between the C. pallida populations previously treated with herbicide and those of the untreated populations, we tested the prediction that herbicidal treatment suppresses C. pallida plant growth in South Africa, where invasive cacti display high resilience to herbicide treatment. We also determined whether the surrounding communities knew of C. pallida invasion and whether they experienced any negative impacts. Overall, biometric analyses supported the study’s prediction because C. pallida plant height in treated populations was significantly lower than in untreated populations and before treatment. The average plant height of populations not treated with herbicide (i.e., experimental control) and those measured before treatment were not significantly different, but both were significantly greater than the heights of populations previously treated with herbicide. Similarly, the mean number of fruits, cladodes and juveniles per C. pallida plant treated with herbicide was significantly lower than in the untreated populations. We found a significant positive correlation between all measured parameters and C. pallida plant height. Out of 39 participants, 16 (41.0%) confirmed C. pallida presence in and around their properties, with 21 (53.9%) participants having experienced negative impacts directly and indirectly through fatal injuries on pets and livestock in the sampled sites. We confirmed the effectiveness of herbicide in suppressing the invasion of C. pallida and that people experience substantial negative impacts in areas where the species has established. Full article
(This article belongs to the Topic Plant Invasion)
Show Figures

Figure 1

26 pages, 1279 KB  
Review
Drought Stress in Cassava (Manihot esculenta): Management Strategies and Breeding Technologies
by Maltase Mutanda, Assefa B. Amelework, Nzumbululo Ndou and Sandiswa Figlan
Int. J. Plant Biol. 2025, 16(4), 112; https://doi.org/10.3390/ijpb16040112 - 23 Sep 2025
Viewed by 138
Abstract
Drought stress is a major constraint to cassava productivity, especially in drought-prone regions. Although cassava is considered drought-tolerant, prolonged or severe water scarcity significantly reduces tuber yield, carbon assimilation capacity and overall plant growth. The development, selection and deployment of cassava genotypes with [...] Read more.
Drought stress is a major constraint to cassava productivity, especially in drought-prone regions. Although cassava is considered drought-tolerant, prolonged or severe water scarcity significantly reduces tuber yield, carbon assimilation capacity and overall plant growth. The development, selection and deployment of cassava genotypes with enhanced drought tolerance and water use efficiency (WUE) will help to achieve food security. The ability of cassava genotypes to maintain productivity under drought stress is enhanced by drought-responsive genes that regulate stress-related proteins and metabolites, contributing to stomatal closure, osmotic adjustment, antioxidant defense, and efficient carbon assimilation. Therefore, this comprehensive review aimed to document: (i) the effects of drought stress on cassava’s physiological, biochemical and agronomic traits, and (ii) the mitigation strategies and breeding technologies that can improve cassava yield production, drought tolerance and WUE. The key traits discussed include stomatal regulation, chlorophyll degradation, source–sink imbalance, root system architecture and carbon allocation dynamics. In addition, the review presents advances in genomic, proteomic and metabolomic tools, and emphasizes the role of early bulking genotypes, drought tolerance indices, and multi-trait selection in developing cassava cultivars with enhanced drought tolerance, drought escape and drought avoidance mechanism. Therefore, the integration of these strategies will accelerate the development, selection and deployment of improved cassava varieties, which contribute to sustainable productivity and global food security under climate change. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop