Impact of Negative Pressure Wound Therapy on Outcomes Following Pancreaticoduodenectomy: An NSQIP Analysis of 14,044 Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline and Demographic Characteristics
3.2. Thirty-Day Postoperative Outcome Comparison
3.3. Assessing the Independent Effect of NPWT in Multivariable Models on the Risk of SSIs
3.4. Evaluation of NPWT in High-Risk Cohorts
3.5. The Association of NPWT with Serious Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasumova, G.G.; Eskander, M.F.; Kent, S.T.; Ng, S.C.; Moser, A.J.; Ahmed, M.; Pleskow, D.K.; Callery, M.P.; Tseng, J.F. Hemorrhage after pancreaticoduodenectomy: Does timing matter? HPB 2016, 18, 861–869. [Google Scholar] [CrossRef]
- Villaseñor-Echavarri, R.; Melchor-Ruan, J.; Aranda-Audelo, M.; Arredondo-Saldaña, G.; Volkow-Fernandez, P.; del Carmen Manzano-Robleda, M.; Padilla-Rosciano, A.E.; Vilar-Compte, D. Surgical site infection following pancreaticoduodenectomy in a referral cancer center in Mexico. Hepatobiliary Pancreat. Dis. Int. 2024, 23, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Mirrielees, J.A.; Weber, S.M.; Abbott, D.E.; Greenberg, C.C.; Minter, R.M.; Scarborough, J.E. Pancreatic fistula and delayed gastric emptying are the highest-impact complications after Whipple. J. Surg. Res. 2020, 250, 80–87. [Google Scholar] [CrossRef]
- D’Cruz, J.R.; Misra, S.; Menon, G.; Shamsudeen, S. Pancreaticoduodenectomy (Whipple Procedure); StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- De Lissovoy, G.; Fraeman, K.; Hutchins, V.; Murphy, D.; Song, D.; Vaughn, B.B. Surgical site infection: Incidence and impact on hospital utilization and treatment costs. Am. J. Infect. Control 2009, 37, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Buettner, S.; Ethun, C.G.; Poultsides, G.; Tran, T.; Idrees, K.; Isom, C.A.; Weiss, M.; Fields, R.C.; Krasnick, B.; Weber, S.M.; et al. Surgical site infection is associated with tumor recurrence in patients with extrahepatic biliary malignancies. J. Gastrointest. Surg. 2017, 21, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Shiroky, J.; Lillie, E.; Muaddi, H.; Sevigny, M.; Choi, W.J.; Karanicolas, P.J. The impact of negative pressure wound therapy for closed surgical incisions on surgical site infection: A systematic review and meta-analysis. Surgery 2020, 167, 1001–1009. [Google Scholar] [CrossRef]
- Orgill, D.P.; Manders, E.K.; Sumpio, B.E.; Lee, R.C.; Attinger, C.E.; Gurtner, G.C.; Ehrlich, H.P. The mechanisms of action of vacuum assisted closure: More to learn. Surgery 2009, 146, 40–51. [Google Scholar] [CrossRef]
- Scherer, S.S.; Pietramaggiori, G.; Mathews, J.C.; Prsa, M.J.; Huang, S.; Orgill, D.P. The mechanism of action of the vacuum-assisted closure device. Plast. Reconstr. Surg. 2008, 122, 786–797. [Google Scholar] [CrossRef]
- Fleischmann, W.; Strecker, W.; Bombelli, M.; Kinzl, L. Vacuum sealing as treatment of soft tissue damage in open fractures. Unfallchirurg 1993, 96, 488–492. [Google Scholar]
- Burkhart, R.A.; Javed, A.A.; Ronnekleiv-Kelly, S.; Wright, M.J.; Poruk, K.E.; Eckhauser, F.; Makary, M.A.; Cameron, J.L.; Wolfgang, C.L.; He, J. The use of negative pressure wound therapy to prevent post-operative surgical site infections following pancreaticoduodenectomy. HPB 2017, 19, 825–831. [Google Scholar] [CrossRef]
- Poruk, K.E.; Lin, J.A.; Cooper, M.A.; He, J.; Makary, M.A.; Hirose, K.; Cameron, J.L.; Pawlik, T.M.; Wolfgang, C.L.; Eckhauser, F. A novel, validated risk score to predict surgical site infection after pancreaticoduodenectomy. HPB 2016, 18, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Javed, A.A.; Teinor, J.; Wright, M.; Ding, D.; Burkhart, R.A.; Hundt, J.; Cameron, J.L.; Makary, M.A.; He, J.; Eckhauser, F.E. Negative pressure wound therapy for surgical-site infections: A randomized trial. Ann. Surg. 2019, 269, 1034–1040. [Google Scholar] [CrossRef]
- Andrianello, S.; Landoni, L.; Bortolato, C.; Iudici, L.; Tuveri, M.; Pea, A.; De Pastena, M.; Malleo, G.; Bonamini, D.; Manzini, G. Negative pressure wound therapy for prevention of surgical site infection in patients at high risk after clean-contaminated major pancreatic resections: A single-center, phase 3, randomized clinical trial. Surgery 2021, 169, 1069–1075. [Google Scholar] [CrossRef]
- Greene, B.; Lagrotteria, A.; Tsang, M.E.; Jayaraman, S. Closed incision negative pressure wound therapy following pancreaticoduodenectomy for prevention of surgical site infections in high-risk patients. Can. J. Surg. 2023, 66, E507. [Google Scholar] [CrossRef]
- DeLeon, G.; Rao, V.; Duggan, B.; Becker, T.P.; Pei, K. The ACS-NSQIP Analysis of Negative Pressure Wound Therapy Following Pancreatectomy for Pancreatic Diagnoses. Cureus 2024, 16, e59456. [Google Scholar] [CrossRef] [PubMed]
- Lenet, T.; Gilbert, R.W.; Abou-Khalil, J.; Balaa, F.K.; Martel, G.; Brind’Amour, A.; Bertens, K.A. The impact of prophylactic negative pressure wound therapy on surgical site infections in pancreatic resection: A systematic review and meta-analysis. HPB 2022, 24, 2035–2044. [Google Scholar] [CrossRef]
- User Guide for the 2021 ACS NSQIP Participant Use Data File. 2022. Available online: https://www.facs.org/media/1nrdyqmr/nsqip_puf_userguide_2022.pdf (accessed on 27 August 2024).
- Pulvirenti, A.; Ramera, M.; Bassi, C. Modifications in the International Study Group for Pancreatic Surgery (ISGPS) definition of postoperative pancreatic fistula. Transl. Gastroenterol. Hepatol. 2017, 2, 107. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Slankamenac, K.; Graf, R.; Barkun, J.; Puhan, M.A.; Clavien, P.-A. The comprehensive complication index: A novel continuous scale to measure surgical morbidity. Ann. Surg. 2013, 258, 1–7. [Google Scholar] [CrossRef]
- Ray, S.; Mehta, N.; Mangla, V.; Mehrotra, S.; Lalwani, S.; Yadav, A.; Nundy, S. The comprehensive complication index (CCI) vs the clavien dindo (CD) grading for measuring severity of post-operative complications: A prospective study in 1000 patients. HPB 2018, 20, S240. [Google Scholar] [CrossRef]
- Nadeem, S.O.; Jajja, M.R.; Maxwell, D.W.; Pouch, S.M.; Sarmiento, J.M. Neoadjuvant chemotherapy for pancreatic cancer and changes in the biliary microbiome. Am. J. Surg. 2021, 222, 3–7. [Google Scholar] [CrossRef]
- Scilletta, R.; Pagano, D.; Spada, M.; Mongiovì, S.; Pesce, A.; Portale, T.R.; Guardabasso, V.; Puleo, S.; Gruttadauria, S. Comparative analysis of the incidence of surgical site infections in patients with liver resection for colorectal hepatic metastases after neoadjuvant chemotherapy. J. Surg. Res. 2014, 188, 183–189. [Google Scholar] [CrossRef]
- Lordick, F.; Gockel, I. Chances, risks and limitations of neoadjuvant therapy in surgical oncology. Innov. Surg. Sci. 2016, 1, 3–11. [Google Scholar] [CrossRef]
- Suragul, W.; Rungsakulkij, N.; Vassanasiri, W.; Tangtawee, P.; Muangkaew, P.; Mingphruedhi, S.; Aeesoa, S. Predictors of surgical site infection after pancreaticoduodenectomy. BMC Gastroenterol. 2020, 20, 201. [Google Scholar] [CrossRef]
- Kim, P.J.; Lookess, S.; Bongards, C.; Griffin, L.P.; Gabriel, A. Economic model to estimate cost of negative pressure wound therapy with instillation vs control therapies for hospitalised patients in the United States, Germany, and United Kingdom. Int. Wound J. 2022, 19, 888–894. [Google Scholar] [CrossRef]
- D’Hondt, M.; Devriendt, D.; Van Rooy, F.; Vansteenkiste, F.; D’Hoore, A.; Penninckx, F.; Miserez, M. Treatment of small-bowel fistulae in the open abdomen with topical negative-pressure therapy. Am. J. Surg. 2011, 202, e20–e24. [Google Scholar] [CrossRef]
- Pricer, T. Wound Vac Cost 2024. Available online: https://www.thepricer.org/wound-vac-cost/ (accessed on 27 August 2024).
- Chiara, O.; Cimbanassi, S.; Biffl, W.; Leppaniemi, A.; Henry, S.; Scalea, T.M.; Catena, F.; Ansaloni, L.; Chieregato, A.; de Blasio, E. International consensus conference on open abdomen in trauma. J. Trauma Acute Care Surg. 2016, 80, 173–183. [Google Scholar] [CrossRef]
- Kreis, B.E.; Kreis, R.W. Open abdomen management: A review of its history and a proposed management algorithm. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2013, 19, 524. [Google Scholar] [CrossRef]
- Demetriades, D.; Salim, A. Management of the open abdomen. Surg. Clin. 2014, 94, 131–153. [Google Scholar] [CrossRef]
- Rogers, W.K.; Garcia, L. Intraabdominal hypertension, abdominal compartment syndrome, and the open abdomen. Chest 2018, 153, 238–245. [Google Scholar] [CrossRef]
- Morris, M.P.; Christopher, A.N.; Patel, V.; Onyekaba, G.; Broach, R.B.; Fischer, J.P. Negative pressure wound therapy after abdominal body contouring: A comparative matched analysis of outcomes and cost. Plast. Surg. 2022, 30, 360–367. [Google Scholar] [CrossRef]
- Hofmann, A.T.; Gruber-Blum, S.; Lechner, M.; Petter-Puchner, A.; Glaser, K.; Fortelny, R. Delayed closure of open abdomen in septic patients treated with negative pressure wound therapy and dynamic fascial suture: The long-term follow-up study. Surg. Endosc. 2017, 31, 4717–4724. [Google Scholar] [CrossRef]
- Morton, N.; Adderley, U.; Lee, R. How can we reduce the environmental impact of wound management. Nurs. Times 2022, 118, 8. [Google Scholar]
No NPWT (n = 12,355) | NPWT (n = 1689) | p-Value | |
---|---|---|---|
Demographics | |||
Female sex | 5772 (46.7%) | 789 (46.7%) | 0.998 |
Age | 65.5 ± 11.4 | 65.7 ± 11.3 | 0.601 |
BMI | 27.3 ± 5.7 | 27.6 ± 6.0 | 0.012 |
ASA class | <0.001 | ||
1 | 27 (0.2%) | 0 (0.0%) | |
2 | 2195 (17.8%) | 203 (12.0%) | |
3 | 9085 (73.6%) | 1344 (79.6%) | |
4 | 1041 (8.4%) | 142 (8.4%) | |
5 | 2 (0.0%) | 0 (0.0%) | |
None assigned | 5 (0.0%) | 0 (0.0%) | |
Functional status | 0.131 | ||
Partially dependent | 102 (0.8%) | 11 (0.7%) | |
Totally dependent | 5 (0.0%) | 3 (0.2%) | |
Unknown | 11 (0.1%) | 1 (0.1%) | |
Comorbidities | |||
COPD | 505 (4.1%) | 52 (3.1%) | 0.046 |
CHF | 110 (0.9%) | 12 (0.7%) | 0.455 |
Hypertension | 6498 (52.6%) | 895 (53.0%) | 0.760 |
Diabetes | 0.009 | ||
Non-insulin dependent | 1678 (13.6%) | 234 (13.9%) | |
Insulin dependent | 1661 (13.4%) | 272 (16.1%) | |
Smoker | 1993 (16.1%) | 217 (12.9%) | 0.001 |
Dialysis | 38 (0.3%) | 11 (0.7%) | 0.025 |
Steroid use | 465 (3.8%) | 45 (2.7%) | 0.023 |
Bleeding disorder | 393 (3.2%) | 29 (1.7%) | 0.001 |
Perioperative factors | |||
Broad-spectrum prophylactic antibiotics | 4881 (41.0%) | 418 (25.6%) | <0.001 |
Preoperative weight loss | 1123 (13.6%) | 126 (11.7%) | 0.089 |
Preoperative sepsis | 184 (1.5%) | 12 (0.7%) | 0.045 |
Disease factors | |||
Invasive disease (≥T3) | 3029 (25.0%) | 408 (24.6%) | 0.716 |
Neoadjuvant therapy | 3497 (28.4%) | 565 (33.8%) | <0.001 |
Pancreatic gland texture | <0.001 | ||
Hard | 4014 (32.5%) | 571 (33.8%) | |
Intermediate | 1220 (9.9%) | 267 (15.8%) | |
Soft | 4397 (35.6%) | 560 (33.2%) | |
Unknown | 2724 (22.1%) | 291 (17.2%) |
No NPWT (n = 12,355) | NPWT (n = 1689) | p-Value | |
---|---|---|---|
Postoperative course | |||
Operative time (min) | 383.3 ± 127.6 | 378.2 ± 137.2 | 0.127 |
Length of stay (d) | 9.5 ± 5.8 | 10.4 ± 6.0 | <0.001 |
Days from operation to discharge | 9.0 ± 5.1 | 9.9 ± 5.3 | <0.001 |
Hospital stay > 30 d | 401 (3.3%) | 49 (2.9%) | 0.451 |
Postoperative blood transfusion | 2291 (18.5%) | 317 (18.85) | 0.823 |
Readmission | 2140 (17.3%) | 327 (19.4%) | 0.039 |
Unplanned intubation | 388 (3.1%) | 45 (2.7%) | 0.288 |
Reoperation | 651 (5.3%) | 91 (5.4%) | 0.838 |
Serious complication | 2214 (17.9%) | 284 (16,8%) | 0.265 |
Death | 222 (1.8%) | 40 (2.4%) | 0.104 |
Wound and infectious complications | |||
Superficial surgical site infection | 757 (6.1%) | 105 (6.2%) | 0.886 |
Deep surgical site infection | 70 (0.6%) | 12 (0.7%) | 0.467 |
Organ space surgical site infection | 2143 (17.4%) | 382 (22.6%) | <0.001 |
Wound disruption | 154 (1.3%) | 25 (1.5%) | 0.422 |
Pneumonia | 506 (4.1%) | 65 (3.9%) | 0.630 |
Urinary tract infection | 287 (2.3%) | 24 (1.4%) | 0.018 |
Sepsis | 1062 (8.6%) | 161 (9.5%) | 0.200 |
Septic shock | 380 (3.1%) | 47 (2.8%) | 0.511 |
Other complications | |||
Pulmonary embolism | 165 (1.3%) | 29 (1.7%) | 0.208 |
Deep vein thrombosis, thrombophlebitis | 342 (2.8%) | 55 (3.3%) | 0.256 |
Acute renal failure | 139 (1.1%) | 21 (1.2%) | 0.667 |
Cerebrovascular accident | 29 (0.2%) | 2 (0.1%) | 0.339 |
Cardiac arrest | 151 (1.2%) | 19 (1.1%) | 0.732 |
Myocardial infarction | 179 (1.5%) | 15 (0.9%) | 0.064 |
Disease related | |||
Postoperative pancreatic fistula | 0.013 | ||
None | 9712 (79.2%) | 1278 (76.4%) | |
Grade A | 839 (6.9%) | 113 (6.8%) | |
Grade B | 1554 (12.7%) | 260 (15.6%) | |
Grade C | 152 (1.2%) | 21 (1.3%) |
n = 6941 | Multivariable OR | 95% CI | p-Value |
---|---|---|---|
NPWT | 0.94 | 0.70–1.26 | 0.691 |
Age | 1.00 | 0.99–1.01 | 0.688 |
BMI | 1.03 | 1.02–1.05 | <0.001 |
Female | 1.17 | 0.96–1.42 | 0.107 |
COPD | 1.15 | 0.72–1.86 | 0.557 |
CHF | 0.56 | 0.08–4.17 | 0.572 |
Hypertension | 1.03 | 0.84–1.27 | 0.771 |
Diabetes | |||
Insulin dependent | 0.97 | 0.72–1.30 | 0.831 |
Non-insulin dependent | 0.75 | 0.55–1.02 | 0.063 |
Smoker | 1.06 | 0.80–1.39 | 0.689 |
Dialysis dependent | 1.56 | 0.46–5.28 | 0.474 |
Steroid use | 1.38 | 0.84–2.27 | 0.202 |
Bleeding disorder | 1.20 | 0.70–2.06 | 0.518 |
Preoperative sepsis | 1.01 | 0.44–2.34 | 0.976 |
Functional status | 1.55 | 0.60–3.96 | 0.362 |
Neoadjuvant received | 1.03 | 0.83–1.29 | 0.777 |
Invasive disease (≥T3) | 1.03 | 0.76–1.20 | 0.662 |
Soft pancreas | 1.10 | 0.90–1.34 | 0.360 |
Preoperative weight loss | 0.87 | 0.64–1.17 | 0.346 |
Broad-spectrum prophylactic antibiotics | 0.76 | 0.62–0.93 | 0.009 |
Minimally invasive technique | 0.61 | 0.40–0.91 | 0.016 |
n = 6941 | Multivariable OR | 95% CI | p-Value |
---|---|---|---|
NPWT | 0.96 | 0.79–1.17 | 0.669 |
Age | 1.01 | 1.00–1.01 | 0.020 |
BMI | 1.02 | 1.01–1.03 | <0.001 |
Female | 0.74 | 0.65–0.85 | <0.001 |
COPD | 1.50 | 1.12–2.00 | 0.007 |
CHF | 1.20 | 0.50–2.90 | 0.684 |
Hypertension | 1.25 | 1.08–1.43 | 0.002 |
Diabetes insulin dependent | 0.97 | 0.80–1.17 | 0.752 |
Diabetes non-insulin dependent | 0.97 | 0.81–1.17 | 0.770 |
Smoker | 1.16 | 0.97–1.38 | 0.111 |
Dialysis | 1.26 | 0.53–3.03 | 0.539 |
Steroid use | 1.12 | 0.78–1.60 | 0.539 |
Bleeding disorder | 1.33 | 0.94–1.89 | 0.112 |
Preoperative sepsis | 2.41 | 1.55–3.75 | <0.001 |
Functional status | 1.71 | 0.91–3.23 | 0.095 |
Neoadjuvant chemotherapy | 0.91 | 0.78–1.06 | 0.211 |
Invasive (≥T3) | 1.09 | 0.95–1.78 | <0.001 |
MIS (vs. open) | 0.88 | 0.70–1.11 | 0.295 |
Soft pancreas | 1.56 | 1.36–1.78 | <0.001 |
Weight loss | 1.24 | 1.03–1.48 | 0.022 |
Prophylactic broad antibiotics | 0.84 | 0.74–0.96 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peabody, J.; Jatana, S.; Verhoeff, K.; Shapiro, A.M.J.; Bigam, D.L.; Anderson, B.; Dajani, K. Impact of Negative Pressure Wound Therapy on Outcomes Following Pancreaticoduodenectomy: An NSQIP Analysis of 14,044 Patients. Surg. Tech. Dev. 2025, 14, 8. https://doi.org/10.3390/std14010008
Peabody J, Jatana S, Verhoeff K, Shapiro AMJ, Bigam DL, Anderson B, Dajani K. Impact of Negative Pressure Wound Therapy on Outcomes Following Pancreaticoduodenectomy: An NSQIP Analysis of 14,044 Patients. Surgical Techniques Development. 2025; 14(1):8. https://doi.org/10.3390/std14010008
Chicago/Turabian StylePeabody, Jeremy, Sukhdeep Jatana, Kevin Verhoeff, A. M. James Shapiro, David L. Bigam, Blaire Anderson, and Khaled Dajani. 2025. "Impact of Negative Pressure Wound Therapy on Outcomes Following Pancreaticoduodenectomy: An NSQIP Analysis of 14,044 Patients" Surgical Techniques Development 14, no. 1: 8. https://doi.org/10.3390/std14010008
APA StylePeabody, J., Jatana, S., Verhoeff, K., Shapiro, A. M. J., Bigam, D. L., Anderson, B., & Dajani, K. (2025). Impact of Negative Pressure Wound Therapy on Outcomes Following Pancreaticoduodenectomy: An NSQIP Analysis of 14,044 Patients. Surgical Techniques Development, 14(1), 8. https://doi.org/10.3390/std14010008