Sport as a Factor in Improving Visual Spatial Cognitive Deficits in Patients with Hearing Loss and Chronic Vestibular Deficit
Abstract
:1. Introduction
2. Methods
- 430 subjects without vestibular deficits and hearing loss (NORM); 224 females (52.1%) and 206 M (47.9%), 300 aged 17 to 64 years (mean 31.57, SD 12.41) and 130 aged 65 years or more (mean 72.2, SD 4.79).
- 404 subjects with chronical vestibular failure (CVF group); 210 females (51.9) and 194 males (48.1%), 234 aged 17 to 64 years (mean 48.94, SD 10.44) and 170 aged 65 years or more (mean 75.08, SD 5.25).
- 34 subjects without vestibular deficits and hearing loss who practice volleyball, basketball and football at an amateur level (SPORT group); 14 females and 31 males, with an average age of 25.44 years (SD 4.63).
- 50 professional athletes (PROF group) in basketball, volleyball, motorsport; 15 females and 35 males, with an average age of 23.94 years (SD 3.46) without vestibular deficits and hearing loss
- 18 females NORM who do not practice sport (NORM NS group) and 25 who often practice volleyball (NORM V group) at a professional level on par with the Italian national deaf volleyball team, without vestibular deficits and hearing loss. The average age was equivalent to the TEAM volley’s group.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guidetti, G. The role of cognitive processes in vestibular disorders. Hear. Balance Commun. 2013, 11, 3–35. [Google Scholar] [CrossRef]
- Hitier, M.; Besnard, S.; Smith, P.F. Vestibular pathways involved in cognition. Front. Integr. Neurosci. 2014, 8, 59. [Google Scholar] [CrossRef]
- De Kegel, A.; Maes, L.; Baetens, T.; Dhooge, I.; Van Waelvelde, H. The influence of a vestibular dysfunction on the motor development of hearing-impaired children. Laryngoscope 2012, 122, 2837–2843. [Google Scholar] [CrossRef]
- Dewey, R.S.; Hartley, D.E.H. Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy. Hear. Res. 2015, 325, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Stadio, A.; Dipietro, L.; De Lucia, A.; Ippolito, V.; Ishai, R.; Garofalo, S.; Pastore, V.; Ricci, G.; Della Volpe, A. A Novel Bone Conduction Hearing System May Improve Memory Function in Children with Single Side Hearing loss: A Case-Control Study. J. Int. Adv. Otol. 2020, 16, 158–164. [Google Scholar] [CrossRef]
- Glick, H.; Sharma, A. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications. Hear. Res. 2017, 343, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, R.T.; Agrawal, Y. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory. J. Vestib. Res. 2015, 25, 73–89. [Google Scholar] [CrossRef]
- Guidetti, G.; Monzani, D.; Trebbi, M.; Rovatti, V. Impaired navigation skills in patients with psychological distress and chronic peripheral vestibular hypofunction without vertigo. Acta Otorhinolaryngol. Ital. 2008, 28, 21–25. [Google Scholar]
- Hüfner, K.; Hamilton, D.A.; Kalla, R.; Stephan, T.; Glasauer, S.; Ma, J.; Brüning, R.; Markowitsch, H.J.; Labudda, K.; Schichor, C.; et al. Spatial memory and hippocampal volume in humans with unilateral vestibular deafferentation. Hippocampus 2007, 17, 471–485. [Google Scholar] [CrossRef]
- Popp, P.; Wulff, M.; Finke, K.; Rühl, M.; Brandt, T.; Dieterich, M. Cognitive deficits in patients with a chronic vestibular failure. J. Neurol. 2017, 264, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Schautzer, F.; Hamilton, D.; Kalla, R.; Strupp, M.; Brandt, T. Spatial memory deficits in patients with chronic bilateral vestibular failure. Ann. N. Y. Acad. Sci. 2003, 1004, 316–324. [Google Scholar] [CrossRef]
- Redfern, M.S.; Talkowski, M.E.; Jennings, J.R.; Furman, J.M. Cognitive influences in postural control of patients with unilateral vestibular loss. Gait Posture 2004, 19, 105–114. [Google Scholar] [CrossRef]
- Lopez, C. The vestibular system: Balancing more than just the body. Curr. Opin. Neurol. 2016, 29, 74–83. [Google Scholar] [CrossRef]
- Smith, P.F. The vestibular system and cognition. Curr. Opin. Neurol. 2017, 30, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, E.; Edwards, M.G.; De Volder, A.; Noël, M.P.; Rombaux, P.; Deggouj, N. Neuropsychological profiles of children with vestibular loss. J. Vestib. Res. 2020, 30, 25–33. [Google Scholar] [CrossRef]
- Nixon, G.K.; Sarant, J.Z.; Tomlin, D. Peripheral and central hearing impairment and their relationship with cognition: A review. Int. J. Audiol. 2019, 58, 541–552. [Google Scholar] [CrossRef]
- Yuan, J.; Sun, Y.; Sang, S.; Pham, J.H.; Kong, W.J. The risk of cognitive impairment associated with hearing function in older adults: A pooled analysis of data from eleven studies. Sci. Rep. 2018, 8, 2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Kim, M.J.; Kim, H.L.; Kim, D.K.; Yeo, S.W.; Park, S.N. Cognitive decline and increased hippocampal p-tau expression in mice with hearing loss. Behav. Brain. Res. 2018, 342, 19–26. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, M.J.; Sikandaner, H.; Kim, D.K.; Yeo, S.W.; Park, S.N. A causal relationship between hearing loss and cognitive impairment. Acta Otolaryngol. 2016, 136, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Osler, M.; Christensen, G.T.; Mortensen, E.L.; Christensen, K.; Garde, E.; Rozing, M.P. Hearing loss, cognitive ability, and dementia in men age 19–78 years. Eur. J. Epidemiol. 2019, 34, 125–130. [Google Scholar] [CrossRef]
- Wei, E.X.; Oh, E.S.; Harun, A.; Ehrenburg, M.; Xue, Q.L.; Simonsick, E.; Agrawal, Y. Increased Prevalence of Vestibular Loss in Mild Cognitive Impairment and Alzheimer’s Disease. Curr. Alzheimer Res. 2019, 16, 1143–1150. [Google Scholar] [CrossRef]
- Dordevic, M.; Hökelmann, A.; Müller, P.; Rehfeld, K.; Müller, N.G. Improvements in Orientation and Balancing Abilities in Response to One Month of Intensive Slackline-Training. A Randomized Controlled Feasibility Study. Front. Hum. Neurosci. 2017, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogge, A.K.; Röder, B.; Zech, A.; Nagel, V.; Hollander, K.; Braumann, K.M.; Hötting, K. Balance training improves memory and spatial cognition in healthy adults. Sci. Rep. 2017, 7, 5661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pi, Y.L.; Wu, X.H.; Wang, F.J.; Liu, K.; Wu, Y.; Zhu, H.; Zhang, J. Motor skill learning induces brain network plasticity: A diffusion-tensor imaging study. PLoS ONE 2019, 14, e0210015. [Google Scholar] [CrossRef] [Green Version]
- Guidetti, G.; Guidetti, R.; Manfredi, M.; Manfredi, M. Vestibular pathology and spatial working memory. Acta Otorhinolaryngol. Ital. 2020, 40, 72–78. [Google Scholar] [CrossRef]
- Lawrence, B.J.; Jayakody, D.M.P.; Henshaw, H.; Ferguson, M.A.; Eikelboom, R.H.; Loftus, A.M.; Friedland, P.L. Auditory and Cognitive Training for Cognition in Adults With Hearing Loss: A Systematic Review and Meta-Analysis. Trends Hear. 2018, 22. [Google Scholar] [CrossRef]
- Nkyekyer, J.; Meyer, D.; Pipingas, A.; Reed, N.S. The cognitive and psychosocial effects of auditory training and hearing aids in adults with hearing loss. Clin. Interv. Aging. 2019, 14, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Volpe, A.; Ippolito, V.; Roccamatisi, D.; Garofalo, S.; De Lucia, A.; Gambacorta, V.; Longari, F.; Ricci, G.; Di Stadio, A. Does Unilateral Hearing Loss Impair Working Memory? An Italian Clinical Study Comparing Patients With and Without Hearing Aids. Front. Neurosci. 2020, 14, 905. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, S.V.; Green, D.M.L.; Allman, T. Working memory, short-term memory and reading proficiency in school-age children with cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 1647–1653. [Google Scholar] [CrossRef]
- Halmagyi, G.M.; Chen, L.; MacDougall, H.G.; Weber, K.P.; McGarvie, L.A.; Curthoys, I.S. The Video Head Impulse Test. Front. Neurol. 2017, 8, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhabib, S.F.; Saliba, I. Video head impulse test: A review of the literature. Eur. Arch. Otorhinolaryngol. 2017, 274, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Welgampola, M.S.; Taylor, R.L.; Halmagyi, G.M. Video Head Impulse Testing. Adv. Otorhinolaryngol. 2019, 82, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Tapper, A.; Gonzalez, D.; Roy, E.; Niechwiej-Szwedo, E. Executive function deficits in team sport athletes with a history of concussion revealed by a visual-auditory dual task paradigm. J. Sports. Sci. 2017, 35, 231–240. [Google Scholar] [CrossRef]
- Richardson, J.T. Measures of short-term memory: A historical review. Cortex 2007, 43, 635–650. [Google Scholar] [CrossRef]
- Brunetti, R.; Del Gatto, C.; Delogu, F. eCorsi: Implementation and testing of the Corsi block-tapping task for digital tablets. Front. Psychol. 2014, 5, 939. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, M.; Baart, M.; Kapnoula, E.C.; Molinaro, N. Lip-Reading Enables the Brain to Synthesize Auditory Features of Unknown Silent Speech. J. Neurosci. 2020, 40, 1053–1065. [Google Scholar] [CrossRef] [Green Version]
- Tlauka, M.; Williams, J.; Williamson, P. Spatial ability in secondary school students: Intra-sex differences based on self-selection for physical education. Br. J. Psychol. 2008, 99 Pt 3, 427–440. [Google Scholar] [CrossRef]
- Verde, P.; Piccardi, L.; Bianchini, F.; Guariglia, C.; Carrozzo, P.; Morgagni, F.; Boccia, M.; Di Fiore, G.; Tomao, E. Gender differences in navigational memory: Pilots vs. nonpilots. Aerosp. Med. Hum. Perform. 2015, 86, 103–111. [Google Scholar] [CrossRef]
- Voyer, D.; Voyer, S.D.; Saint-Aubin, J. Sex differences in visual-spatial working memory: A meta-analysis. Psychon. Bull. Rev. 2017, 24, 307–334. [Google Scholar] [CrossRef] [Green Version]
- Nazareth, A.; Huang, X.; Voyer, D.; Newcombe, N. A meta-analysis of sex differences in human navigation skills. Psychon. Bull. Rev. 2019, 26, 1503–1528. [Google Scholar] [CrossRef]
- Ma, C.; Ma, X.; Wang, J.; Liu, H.; Chen, Y.; Yang, Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav. Brain. Res. 2017, 317, 332–339. [Google Scholar] [CrossRef]
- Boraxbekk, C.J.; Salami, A.; Wåhlin, A.; Nyberg, L. Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network—A multimodal approach. Neuroimage 2016, 131, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Rine, R.M.; Wiener-Vacher, S. Evaluation and treatment of vestibular dysfunction in children. NeuroRehabilitation 2013, 32, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Wiener-Vacher, S.R.; Hamilton, D.A.; Wiener, S.I. Vestibular activity and cognitive development in children: Perspectives. Front. Integr. Neurosci. 2013, 7, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidetti, G.; Guidetti, R.; Manfredi, M.; Manfredi, M.; Lucchetta, A.; Livio, S. Saccades and driving. Acta. Otorhinolaryngol. Ital. 2019, 39, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Guidetti, G.; Sgalla, R.; Guidetti, R. The saccadic training for driving safety. Hear. Balance Commun. 2019, 16, 1–11. [Google Scholar] [CrossRef]
Group | Number | Mean | SD |
---|---|---|---|
NORM | 430 | 6.181 | 0.0991 |
<65 years | 300 | 6.58 | 0.778 |
>65 years | 130 | 5.294 | 0.774 |
CVF | 404 | 4.732 | 2.720 |
<65 years | 234 | 5.184 | 3.387 |
>65 years | 170 | 4.112 | 1.074 |
ENS | 104 | 5.653 | 1.453 |
<65 years | 78 | 5.935 | 1.332 |
>65 years | 26 | 4.692 | 1.435 |
FSSI | 73 | 6.068 | 1.377 |
ENS NS | 31 | 4.677 | 1.136 |
ENS VF | 66 | 5.697 | 1.435 |
ENS noVF | 38 | 5.579 | 1.5 |
Group | Number | Age | Mean | SD |
---|---|---|---|---|
FSSI | 34 | 30.558 (SD 6.679) | 6.714 | 1.045 |
SPORT | 34 | 25.44 (SD 4.637) | 6.72 | 0.678 |
PROF | 50 | 23.94 (SD 3.460) | 7.28 | 1.088718 |
t-test FSSI/SPORT | p 0.0005 | p 0.9777 | ||
t-testSPORT/PROF | p 0.0596 | p 0.0001 |
Group | Number | Mean | SD |
---|---|---|---|
NORM NS | 18 | 5.611 | 1.289 |
NORM Volley | 25 | 6.51 | 1.157 |
TEAM Volley | 15 | 6.46 | 1.25 |
Gender | Number | Means | SD |
---|---|---|---|
M | 77 | 6.090 | 1.273 |
F | 42 | 5.404 | 1.531 |
t-test | p 0.0123 |
Gender | Number | Means | SD |
---|---|---|---|
M | 206 | 6.373 | 0.921 |
F | 224 | 6.061 | 0.991 |
t-test | p 0.0008 |
Gender | Number | Means | SD |
---|---|---|---|
M | 194 | 4.804 | 1.226 |
F | 210 | 4.666 | 3.587 |
t-test | p 0.6110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guidetti, G.; Guidetti, R.; Quaglieri, S. Sport as a Factor in Improving Visual Spatial Cognitive Deficits in Patients with Hearing Loss and Chronic Vestibular Deficit. Audiol. Res. 2021, 11, 291-300. https://doi.org/10.3390/audiolres11020027
Guidetti G, Guidetti R, Quaglieri S. Sport as a Factor in Improving Visual Spatial Cognitive Deficits in Patients with Hearing Loss and Chronic Vestibular Deficit. Audiology Research. 2021; 11(2):291-300. https://doi.org/10.3390/audiolres11020027
Chicago/Turabian StyleGuidetti, Giorgio, Riccardo Guidetti, and Silvia Quaglieri. 2021. "Sport as a Factor in Improving Visual Spatial Cognitive Deficits in Patients with Hearing Loss and Chronic Vestibular Deficit" Audiology Research 11, no. 2: 291-300. https://doi.org/10.3390/audiolres11020027
APA StyleGuidetti, G., Guidetti, R., & Quaglieri, S. (2021). Sport as a Factor in Improving Visual Spatial Cognitive Deficits in Patients with Hearing Loss and Chronic Vestibular Deficit. Audiology Research, 11(2), 291-300. https://doi.org/10.3390/audiolres11020027