Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Microorganisms
2.2. Synthesis of Chitosan–Gum Acacia Nanocomposites
2.3. Size, Polydispersity Index (PDI) and Zeta Potential
2.4. Transmission Electron Microscopy (TEM)
2.5. Scanning Electron Microscopy (SEM)
2.6. X-ray Diffraction Spectroscopy (XRD)
2.7. Thermogravimetric Analysis (TGA)
2.8. Antimicrobial Activity Using Mycelium-Inhibition Method
2.9. Vero Cell Culture and Toxicity Testing
2.10. In Vivo Pot House Experiment
2.11. Statistical Analysis
3. Results and Discussion
3.1. Nanocomposites Synthesis, and Particle Size Analysis
3.2. Transmission Electron Microscope/Scanning Electron Microscope (TEM/SEM)
3.3. Thermogravemetric Ananlysis (TGA)
3.4. X-ray Diffraction Spectroscopy (XRD)
3.5. In Vitro Antifungal Activity
3.6. In Vivo Antifungal Efficacy
3.6.1. Effect of Treatment on Germination Percentage
3.6.2. Potato Dry Biomass Per Plant
3.6.3. Root-Shoot Ratio
3.7. Cytotoxicity of Nanoformulations on Vero Cell Culture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista.com. Available online: https://www.statista.com/statistics/1080566/india-economic-contribution-of-potatoes/ (accessed on 4 August 2021).
- Lal, M.; Sharma, S.; Yadav, S.; Kumar, S. Management of late blight of potato. In Potato-from Incas to All over the World; Mustafa, Y., Ed.; Intech Open: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Suganthi, D.; Sharma, O.P.; Mohan, G.; Pruthi, S.; Kaur, M. Importance of early blight of potato induced by (Alternaria solani) and its management. Biot. Res. Today 2020, 2, 870–873. [Google Scholar]
- Chaudhari, A.K.; Singh, A.; Singh, V.K.; Dwivedy, A.K.; Das, S.; Ramsdam, M.G.; Dkhar, M.S.; Kayang, H.; Dubey, N.K. Assessment of chitosan biopolymer encapsulated α-Terpineol against fungal, aflatoxin B1 (AFB1) and free radicals mediated deterioration of stored maize and possible mode of action. Food Chem. 2020, 311, 126010. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Souto, E.B.; et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Verma, D.K.; Malik, R.; Meena, J.; Rameshwari, R. Synthesis, characterization and applications of chitosan based metallic nanoparticles: A review. J. Appl. Nat. Sci. 2021, 13, 544–551. [Google Scholar] [CrossRef]
- Lupusoru, R.V.; Simion, L.; Sandu, I.; Pricop, D.A.; Chiriac, A.P.; Poroch, V. Aging study of gold nanoparticles functionalized with chitosan in aqueous solutions. Chem. Rev. 2017, 68, 2385–2388. [Google Scholar] [CrossRef]
- Anusuya, S.; Sathiyabama, M. Effect of chitosan on growth, yield and curcumin content in turmeric under field condition. Biocatal. Agric. Biotechnol. 2016, 6, 102–106. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep. 2017, 7, 9754. [Google Scholar] [CrossRef]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.; Rahman, A.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Fortunati, E.; Balestra, G.M. Lignocellulosic materials as novel carriers, also at nanoscale, of organic active principles for agri-food applications. In Biomass, Biopolymer-Based Materials, and Bioenergy; Woodhead Publishing Limited: Cambridge, UK, 2019; pp. 161–178. [Google Scholar]
- Kaur, P.; Duhan, J.S.; Thakur, R. Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2018, 14, 466–471. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.Y.; Kadam, A.; Shinde, S.; Saratale, R.G.; Patra, J.; Ghodake, G. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. J. Sci. Food Agric. 2018, 98, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Menossi, M.; Casalongué, C.; Alvarez, V.A. Bio-nanocomposites for Modern Agricultural Applications. In Handbook of Consumer Nanoproducts; Springer: Singapore, 2022; pp. 1–38. [Google Scholar]
- Avadi, M.R.; Sadeghi, A.M.; Mohamadpour Dounighi, N.; Dinarvand, R.; Atyabi, F.; Rafiee-Tehrani, M. Ex vivo evaluation of insulin nanoparticles using chitosan and Arabic gum. ISRN Pharm. 2011, 2011, 860109. [Google Scholar] [CrossRef] [Green Version]
- Chopra, M.; Kaur, P.; Bernela, M.; Thakur, R. Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens. Food Control 2014, 37, 158–164. [Google Scholar] [CrossRef]
- Campos, E.V.R.; de Oliveira, J.L.; da Silva, C.M.G.; Pascoli, M.; Pasquoto, T.; Lima, R.; Abhilash, P.C.; Fraceto, L.F. Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci. Rep. 2015, 5, 13809. [Google Scholar] [CrossRef] [Green Version]
- Bansal, P.; Kaur, P.; Kumar, A.; Duhan, J.S. Microwave assisted quick synthesis method of silver nanoparticles using citrus hybrid “Kinnow” and its potential against early blight of tomato. Res. Crop 2017, 18, 650–655. [Google Scholar] [CrossRef]
- Bansal, P.; Kaur, P.; Surekha; Kumar, A.; Duhan, J.S. Biogenesis of silver nanoparticles using Aspergillus terreus, its cytotoxicity and potential as therapeutic against human pathogens. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 898–906. [Google Scholar]
- Kaur, P.; Thakur, R.; Duhan, J.S.; Chaudhury, A. Management of wilt disease of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (Cicer arietinum). J. Chem. Technol. Biotechnol. 2018, 93, 3233–3243. [Google Scholar] [CrossRef]
- Vurro, M.; Miguel-Rojas, C.; Pérez-de-Luque, A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag. Sci. 2019, 75, 2403–2412. [Google Scholar] [CrossRef]
- Shekhar, S.; Sharma, S.; Kumar, A.; Taneja, A.; Sharma, B. The framework of nanopesticides: A paradigm in biodiversity. Mater. Adv. 2021, 2, 6569–6588. [Google Scholar] [CrossRef]
- Kaur, P.; Thakur, R.; Barnela, M.; Chopra, M.; Manuja, A.; Chaudhury, A. Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan–metal nanocomposites. J. Chem. Technol. Biotechnol. 2015, 90, 867–873. [Google Scholar] [CrossRef]
- Saharan, V.; Sharma, G.; Yadav, M.; Choudhary, M.K.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P. Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol. 2015, 75, 346–353. [Google Scholar] [CrossRef]
- Nuruzzaman, M.D.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, D.; Dilbaghi, N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 926–937. [Google Scholar]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef]
- Sarkar, M.R.; Rashid, H.O.; Rahman, A.; Kafi, A.; Hosen, I.; Rahman, S.; Khan, M.N. Recent advances in nanomaterials based sustainable agriculture: An overview. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100687. [Google Scholar] [CrossRef]
- Avadi, M.R.; Sadeghi, A.M.M.; Mohammadpour, N.; Abedin, S.; Atyabi, F.; Dinarvand, R.; Rafiee-Tehrani, M. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomed. Nanotechnol. Biol. Med. 2009, 6, 58–63. [Google Scholar] [CrossRef]
- Manuja, A.; Kumar, S.; Dilbaghi, N.; Bhanjana, G.; Chopra, M.; Kaur, H.; Kumar, R.; Manuja, B.K.; Singh, S.K.; Yadav, S.C. Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedcine 2014, 9, 1625–1634. [Google Scholar] [CrossRef]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Hilmi, Z.; Jeffery Daim, L.D. Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules 2019, 24, 2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, M.K.; Boateng, J.S. Enhancing stability and mucoadhesive properties of chitosan nanoparticles by surface modification with sodium alginate and polyethylene glycol for potential oral mucosa vaccine delivery. Mar. Drugs 2022, 20, 156. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; da Costa, A.M.R.; Grenha, A. Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr. Polym. 2012, 89, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chauhan, N.; Gopal, M.; Kumar, R.; Dilbaghi, N. Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int. J. Biol. Macromol. 2015, 81, 631–637. [Google Scholar] [CrossRef]
- Giroud, N.; Dorge, S.; Trouvé, G. Mechanism of thermal decomposition of a pesticide for safety concerns: Case of Mancoze. J. Hazard. Mater. 2010, 184, 6–15. [Google Scholar] [CrossRef]
- Sun, X.; Liu, C.; Omer, A.M.; Yang, L.Y.; Ouyang, X.K. Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int. J. Biol. Macromol. 2019, 132, 487–494. [Google Scholar] [CrossRef]
- Long, J.; Yu, X.; Xu, E.; Wu, Z.; Xu, X.; Jin, Z.; Jiao, A.; Jiao, A. In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr. Polym. 2015, 131, 98–107. [Google Scholar] [CrossRef]
- Piyakulawat, P.; Praphairaksit, N.; Chantarasiri, N.; Muangsin, N. Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac. AAPS PharmSciTech 2007, 8, 120–130. [Google Scholar] [CrossRef]
- Yien, L.; Zin, N.M.; Sarwar, A.; Katas, H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int. J. Biomater. 2012, 2012, 632698. [Google Scholar] [CrossRef]
- Ippólito, S.D.; Mendieta, J.R.; Terrile, M.C.; Tonón, C.V.; Mansilla, A.Y.; Colman, S.; Albertengo, L.; Rodríguez, M.S.; Casalongué, C.A. Chitosan as source for pesticide formulations. In Biological Activities and Application of Marine Polysaccharides, 1st ed.; Shalaby, E., Ed.; InTech: London, UK, 2017; pp. 3–15. [Google Scholar]
- Machado, T.O.; Beckers, S.J.; Fischer, J.; Müller, B.; Sayer, C.; de Araújo, P.H.; Landfester, K.; Wurm, F.R. Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants. Biomacromolecules 2020, 21, 2755–2763. [Google Scholar] [CrossRef]
- Vanti, G.L.; Masaphy, S.; Kurjogi, M.; Chakrasali, S.; Nargund, V.B. Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. Int. J. Biol. Macromol. 2020, 156, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cao, L.D.; Li, F.M.; Wang, X.J.; Huang, Q.L. Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. J. Dispers. Sci. Technol. 2014, 35, 544–550. [Google Scholar] [CrossRef]
- Ilk, S.; Saglam, N.; Özgen, M. Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artif. Cells Nanomed. Biotechnol. 2017, 45, 907–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maluin, F.N.; Hussein, M.Z.; Azah Yusof, N.; Fakurazi, S.; Idris, A.S.; Zainol Hilmi, N.H.; Jeffery Daim, L.D. Chitosan-based agronanofungicides as a sustainable alternative in the basal stem rot disease management. J. Agric. Food Chem. 2020, 68, 4305–4314. [Google Scholar] [CrossRef] [PubMed]
- Kheiri, A.; Jorf, S.M.; Malihipour, A.; Saremi, H.; Nikkhah, M. Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. Int. J. Biol. Macromol. 2017, 102, 526–538. [Google Scholar] [CrossRef]
- Sabry, A.K.H.; Salem, H.A.N.; Metwally, H.M. Development of imidacloprid and indoxacarb formulations to nanoformulations and their efficacy against Spodoptera littoralis (Boisd). Bull. Natl. Res. Cent. 2021, 45, 16. [Google Scholar] [CrossRef]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Ekner-Grzyb, A.; Chmielowska-Bąk, J.; Szczeszak, A. Influence of GdVO4: Eu3+ nanocrystals on growth, germination, root cell viability and oxidative stress of wheat (Triticum aestivum L.) seedlings. Plants 2021, 10, 1187. [Google Scholar] [CrossRef]
- Verma, A.; Prasher, P.; Sharma, M.; Kumar, A.; Mudila, H. Zinc oxide nanoparticles: Physiological and molecular responses in plants. In Zinc-Based Nanostructures for Environmental and Agricultural Applications; Kamel, A.A.-E., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 339–365. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A. Plant response to silver nanoparticles: A critical review. Crit. Rev. Biotechnol. 2021, 14, 1–18. [Google Scholar] [CrossRef]
- Mazumdar, H.; Ahmed, G.U. Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiata and Brassica campestris. Int. J. Adv. Biotechnol. Res. 2011, 2, 404–413. [Google Scholar]
- Yasmeen, F.; Razzaq, A.; Iqbal, M.N.; Jhanzab, H.M. Effect of silver, copper and iron nanoparticles on wheat germination. Int. J. Biosci. 2015, 6, 112–117. [Google Scholar]
- González-García, Y.; Cadenas-Pliego, G.; Alpuche-Solís, Á.G.; Cabrera, R.I.; Juárez-Maldonado, A. Carbon nanotubes decrease the negative impact of Alternaria solani in tomato crop. Nanomaterials 2021, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.A.; Sweed, A.A.; Rady, M.M.; Majrashi, A.; Ali, E.F. Rebalance the nutritional status and the productivity of high CaCo3-stressed sweet potato plants by foliar nourishment with zinc oxide nanoparticles and ascorbic acid. Agronomy 2021, 11, 1443. [Google Scholar] [CrossRef]
- da Cruz, T.N.; Savassa, S.M.; Montanha, G.S.; Ishida, J.K.; de Almeida, E.; Tsai, S.M.; Lavres Junior, J.; de Carvalho, H.W.P. A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. Sci. Rep. 2019, 9, 10416. [Google Scholar] [CrossRef] [Green Version]
- Bansal, P.; Kaur, P.; Duhan, J.S. Biogenesis of silver nanoparticles using Fusarium pallidoroseum and its potential against human pathogens. Ann. Biol. 2017, 33, 180–185. [Google Scholar]
- Bansal, P.; Duhan, J.S.; Gahlawat, S.K. Biogenesis of nanoparticles: A review. Afr. J. Biotechnol. 2014, 13, 2778–2785. [Google Scholar]
- Kumar, R.; Najda, A.; Duhan, J.S.; Kumar, B.; Chawla, P.; Klepacka, J.; Malawski, S.; Sadh, P.K.; Poonia, A.K. Assessment of antifungal efficacy and release behavior of fungicide-loaded chitosan-carrageenan nanoparticles against phytopathogenic fungi. Polymers 2022, 14, 41. [Google Scholar] [CrossRef]
- Djiwanti, S.R.; Kaushik, S. Nanopesticide: Future Application of Nanomaterials in Plant Protection. In Plant Nanobionics. Nanotechnology in the Life Sciences; Prasad, R., Ed.; Springer: Cham, Switzerland, 2019; pp. 235–298. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, M.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef] [Green Version]
- Macedo, D.F.; Dourado, S.M., Jr.; Nunes, E.S.; Marques, R.P.; Moreto, J.A. Controlled release of TBH herbicide encapsulated on Ca-ALG microparticles: Leaching and phytointoxication plants. Planta Daninha 2019, 37, 5–8. [Google Scholar] [CrossRef] [Green Version]
Nanoformulation | Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
CSGA Blank | 211.8 ± 0.9 | 1.000 ± 0.7 | −17.1 ± 0.8 |
CSGA-M-1.0 | 363.6 ± 0.7 | 0.969 ± 0.8 | −6.99 ± 0.7 |
Fungus | Nanoformulation with Mancozeb (ppm) | CSGA NCs | CSGA NCs% Inhibition = dc − dt/dc × 100 | Mancozeb (ppm) | Mancozeb | Mancozeb% Inhibition = dc − dt/dc × 100 |
---|---|---|---|---|---|---|
Fungus Diameter (mm) | Fungus Diameter (mm) | |||||
A. solani (ITCC3640) | Blank NC, N 1.0 | 22.5 ± 0.6 | 65.4 ± 0.7c | - | - | - |
Loaded NC, NF 0.5 | 17.5 ± 0.7 | 73.1 ± 1.2bc | F 0.5 | 10.5 ± 0.5 | 83.8 ± 0.7b | |
Loaded NC, NF 1.0 | 17.0 ± 0.5 | 75.8 ± 1.4bc | F 1.0 | 10 ± 0.8 | 84.6 ± 0b | |
Loaded NC, NF 1.5 | 10.5 ± 0.8 | 83.8 ± 0.7b | F 1.5 | 10 ± 0.6 | 84.6 ± 0b | |
S. sclerotiorum (ITCC5492) | Blank NC, N 1.0 | 12.5 ± 0.8 | 63.2 ± 0.7c | - | - | - |
Loaded NC, NF 0.5 | 13.0 ± 0.9 | 59.9 ± 1.4c | F 0.5 | 10.5 ± 0.7 | 69.1 ± 0.7c | |
Loaded NC, NF 1.0 | 0 | 100 ± 0a | F 1.0 | 0 | 100 ± 0a | |
Loaded NC, NF 1.5 | 0 | 100 ± 0a | F 1.5 | 0 | 100 ± 0a |
Treatments | A. solani (Potato Early Blight) P1 | S. sclerotiorum (Potato Stem Rot) P2 | ||
---|---|---|---|---|
Disease Severity (%) | DCE (%) | Disease Severity (%) | DCE (%) | |
Pure control C | 10.5 ± 0.7 | 00.0 ± 0.0 | 13.5 ± 2.1 | 00.0 ± 0.0 |
Control CP | 29.4 ± 1.6 | 00.0 ± 0.0c | 27.4 ± 1.6 | 00.0 ± 0.0c |
Fungicide F | 08.0 ± 0.6 | 72.8 ± 1.1a | 08.7 ± 1.0 | 68.2 ± 6.9a |
Fungicide FP | 09.9 ± 0.5 | 66.3 ± 2.2 | 12.9 ± 2.4 | 52.9 ± 3.4c |
Blank NCs N1 | 08.8 ± 0.9 | 70.1 ± 1.4a | 09.6 ± 1.4 | 65.0 ± 0.5b |
Blank NCs N1P | 10.3 ± 1.8 | 65.0 ± 0.6b | 12.9 ± 2.3 | 52.9 ± 3.4c |
Loaded NCs N1F | 08.2 ± 0.7 | 72.1 ± 1.7b | 09.4 ± 2.1 | 65.7 ± 4.2a |
Loaded NCs N1FP | 10.4 ± 2.6 | 64.6 ± 5.0a | 10.9 ± 1.9 | 60.2 ± 1.4b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Duhan, J.S.; Manuja, A.; Kaur, P.; Kumar, B.; Sadh, P.K. Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites. J. Xenobiot. 2022, 12, 74-90. https://doi.org/10.3390/jox12020008
Kumar R, Duhan JS, Manuja A, Kaur P, Kumar B, Sadh PK. Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites. Journal of Xenobiotics. 2022; 12(2):74-90. https://doi.org/10.3390/jox12020008
Chicago/Turabian StyleKumar, Ravinder, Joginder Singh Duhan, Anju Manuja, Pawan Kaur, Balvinder Kumar, and Pardeep Kumar Sadh. 2022. "Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites" Journal of Xenobiotics 12, no. 2: 74-90. https://doi.org/10.3390/jox12020008
APA StyleKumar, R., Duhan, J. S., Manuja, A., Kaur, P., Kumar, B., & Sadh, P. K. (2022). Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites. Journal of Xenobiotics, 12(2), 74-90. https://doi.org/10.3390/jox12020008