Air Pollution and Primary DNA Damage among Zagreb (Croatia) Residents: A Cross-Sectional Study
Abstract
:1. Introduction
2. Results
2.1. Population Characteristics
2.2. The Levels of Primary DNA Damage Assessed by the Alkaline Comet Assay
2.3. Air Pollution Exposure
2.4. Influence of Air Pollution on the Alkaline Comet Assay Descriptors
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Comet Assay
4.3. Air Pollution Measurements
4.3.1. PM Sampling and Gravimetric Measurements
4.3.2. Analysis of PM10 Content
4.4. Data Processing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of Life Expectancy from Air Pollution Compared to Other Risk Factors: A Worldwide Perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef]
- Lelieveld, J.; Pöschl, U. Chemists Can Help to Solve the Air-Pollution Health Crisis. Nature 2017, 551, 291–293. [Google Scholar] [CrossRef]
- Boogaard, H.; Walker, K.; Cohen, A.J. Air Pollution: The Emergence of a Major Global Health Risk Factor. Int. Health 2019, 11, 417–421. [Google Scholar] [CrossRef]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature Mortality Due to Air Pollution in European Cities: A Health Impact Assessment. Lancet Planet. Health 2021, 5, e121–e134. [Google Scholar] [CrossRef]
- Vineis, P.; Demetriou, C.A.; Probst-Hensch, N. Long-Term Effects of Air Pollution: An Exposome Meet-in-the-Middle Approach. Int. J. Public Health 2020, 65, 125–127. [Google Scholar] [CrossRef]
- EEA. Air Quality in Europe—2022 Report—European Environment Agency (EEA); EEA: Copenhagen, Denmark, 2021. [Google Scholar]
- Stanek, L.W.; Brown, J.S.; Stanek, J.; Gift, J.; Costa, D.L. Air Pollution Toxicology—A Brief Review of the Role of the Science in Shaping the Current Understanding of Air Pollution Health Risks. Toxicol. Sci. 2011, 120 (Suppl. S1), S8–S27. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- Elkama, A.; Süküroǧlu, A.A.; Çakmak, G. Exposure to Particulate Matter: A Brief Review with a Focus on Cardiovascular Effects, Children, and Research Conducted in Turkey. Arh. Hig. Rada Toksikol. 2021, 72, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Rahimpoor, R.; Sarvi, F.; Rahimnejad, S.; Ebrahimi, S.M. Occupational Exposure to BTEX and Styrene in West Asian Countries: A Brief Review of Current State and Limits. Arh. Hig. Rada Toksikol. 2022, 73, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef] [PubMed]
- Agudelo-Castañeda, D.; Teixeira, E.; Schneider, I.; Lara, S.R.; Silva, L.F.O. Exposure to Polycyclic Aromatic Hydrocarbons in Atmospheric PM1.0 of Urban Environments: Carcinogenic and Mutagenic Respiratory Health Risk by Age Groups. Environ. Pollut. 2017, 224, 158–170. [Google Scholar] [CrossRef] [PubMed]
- WHO. Billions of People Still Breathe Unhealthy Air: New WHO Data; WHO: Geneva, Switzerland, 2022.
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of Air Pollution on Human and Ecosystem Health, and Implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and Health: A Progress Update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Safiri, S.; Carson-Chahhoud, K.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Ahmadian Heris, J.; Ansarin, K.; Mansournia, M.A.; Collins, G.S.; Kolahi, A.A.; et al. Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990–2019: Results from the Global Burden of Disease Study 2019. BMJ 2022, 378, e069679. [Google Scholar] [CrossRef]
- Perera, F.; Nadeau, K. Climate Change, Fossil-Fuel Pollution, and Children’s Health. N. Engl. J. Med. 2022, 386, 2303–2314. [Google Scholar] [CrossRef]
- Stafoggia, M.; Oftedal, B.; Chen, J.; Rodopoulou, S.; Renzi, M.; Atkinson, R.W.; Bauwelinck, M.; Klompmaker, J.O.; Mehta, A.; Vienneau, D.; et al. Long-Term Exposure to Low Ambient Air Pollution Concentrations and Mortality among 28 Million People: Results from Seven Large European Cohorts within the ELAPSE Project. Lancet Planet. Health 2022, 6, e9–e18. [Google Scholar] [CrossRef]
- Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; et al. Polycyclic Aromatic Hydrocarbon and Its Effects on Human Health: An Overeview. Chemosphere 2022, 296, 133948. [Google Scholar] [CrossRef] [PubMed]
- Dzhambov, A.M.; Dikova, K.; Georgieva, T.; Panev, T.I.; Mukhtarov, P.; Dimitrova, R. Short-Term Effects of Air Pollution on Hospital Admissions for Cardiovascular Diseases and Diabetes Mellitus in Sofia, Bulgaria (2009–2018). Arh. Hig. Rada Toksikol. 2023, 74, 48–60. [Google Scholar] [CrossRef]
- Acito, M.; Fatigoni, C.; Villarini, M.; Moretti, M. Cytogenetic Effects in Children Exposed to Air Pollutants: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 6736. [Google Scholar] [CrossRef]
- Khan, Y.; Banerjee, R. Exposure to Air Pollution as a Risk Factor for Anaemia: A Global Scoping Review. Int. J. Environ. Health Res. 2024, 9, 1–13. [Google Scholar] [CrossRef]
- Bonassi, S.; Ceppi, M.; Møller, P.; Azqueta, A.; Milić, M.; Monica, N.; Brunborg, G.; Godschalk, R.; Koppen, G.; Langie, S.A.S.; et al. DNA Damage in Circulating Leukocytes Measured with the Comet Assay May Predict the Risk of Death. Sci. Rep. 2021, 11, 16793. [Google Scholar] [CrossRef]
- Lorenzo-López, L.; Lema-Arranz, C.; Fernández-Bertólez, N.; Costa, S.; Costa, C.; Teixeira, J.P.; Pásaro, E.; Valdiglesias, V.; Laffon, B. Relationship between DNA Damage Measured by the Comet-Assay and Cognitive Function. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 883–884, 503557. [Google Scholar] [CrossRef]
- Stang, A.; Brendamour, M.; Schunck, C.; Witte, I. Automated Analysis of DNA Damage in the High-Throughput Version of the Comet Assay. Mutat. Res. 2010, 698, 1–5. [Google Scholar] [CrossRef]
- Collins, A.; Koppen, G.; Valdiglesias, V.; Dusinska, M.; Kruszewski, M.; Møller, P.; Rojas, E.; Dhawan, A.; Benzie, I.; Coskun, E.; et al. The Comet Assay as a Tool for Human Biomonitoring Studies: The ComNet Project. Mutat. Res. Mutat. Res. 2014, 759, 27–39. [Google Scholar] [CrossRef]
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.-C.; Sasaki, Y.F. Single Cell Gel/Comet Assay: Guidelines for in Vitro and in Vivo Genetic Toxicology Testing. Environ. Mol. Mutagen. 2000, 35, 206–221. [Google Scholar] [CrossRef]
- Collins, A.; Møller, P.; Gajski, G.; Vodenková, S.; Abdulwahed, A.; Anderson, D.; Bankoglu, E.E.; Bonassi, S.; Boutet-Robinet, E.; Brunborg, G.; et al. Measuring DNA Modifications with the Comet Assay: A Compendium of Protocols. Nat. Protoc. 2023, 18, 929–989. [Google Scholar] [CrossRef] [PubMed]
- Azqueta, A.; Collins, A.R. The Essential Comet Assay: A Comprehensive Guide to Measuring DNA Damage and Repair. Arch. Toxicol. 2013, 87, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R.; El Yamani, N.; Lorenzo, Y.; Shaposhnikov, S.; Brunborg, G.; Azqueta, A. Controlling Variation in the Comet Assay. Front. Genet. 2014, 5, 359. [Google Scholar] [CrossRef]
- Langie, S.A.S.; Azqueta, A.; Collins, A.R. The Comet Assay: Past, Present, and Future. Front. Genet. 2015, 6, 266. [Google Scholar] [CrossRef] [PubMed]
- Vodenkova, S.; Azqueta, A.; Collins, A.; Dusinska, M.; Gaivão, I.; Møller, P.; Opattova, A.; Vodicka, P.; Godschalk, R.W.L.; Langie, S.A.S. An Optimized Comet-Based in Vitro DNA Repair Assay to Assess Base and Nucleotide Excision Repair Activity. Nat. Protoc. 2020, 15, 3844–3878. [Google Scholar] [CrossRef]
- Bivehed, E. Evolving the Methodology for Detection of Primary DNA Damage. Development, Adaptation and Assessment of the Single Cell Gel Electrophoresis (Comet) Assay. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 20 October 2023. [Google Scholar]
- Collins, A.R. The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Al-Salmani, K.; Abbas, H.H.K.; Schulpen, S.; Karbaschi, M.; Abdalla, I.; Bowman, K.J.; So, K.K.; Evans, M.D.; Jones, G.D.D.; Godschalk, R.W.; et al. Simplified Method for the Collection, Storage, and Comet Assay Analysis of DNA Damage in Whole Blood. Free Radic. Biol. Med. 2011, 51, 719–725. [Google Scholar] [CrossRef]
- Bankoglu, E.E.; Stipp, F.; Gerber, J.; Seyfried, F.; Heidland, A.; Bahner, U.; Stopper, H. Effect of Cryopreservation on DNA Damage and DNA Repair Activity in Human Blood Samples in the Comet Assay. Arch. Toxicol. 2021, 95, 1831–1841. [Google Scholar] [CrossRef]
- Viegas, S.; Ladeira, C.; Costa-Veiga, A.; Perelman, J.; Gajski, G. Forgotten Public Health Impacts of Cancer—An Overview. Arh. Hig. Rada Toksikol. 2017, 68, 287–297. [Google Scholar] [CrossRef]
- EEA. Beating Cancer—The Role of Europe’s Environment; EEA: Copenhagen, Denmark, 2022. [Google Scholar]
- Ming Wong, C.; Tsang, H.; Kan Lai, H.; Neil Thomas, G.; Bong Lam, K.; Pan Chan, K.; Zheng, Q.; Ayres, J.G.; Yin Lee, S.; Hing Lam, T.; et al. Cancer Mortality Risks from Long-Term Exposure to Ambient Fine Particle. Cancer Epidemiol. Biomark. Prev. 2016, 25, 839–845. [Google Scholar] [CrossRef]
- Vos, T.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Gajski, G.; Gerić, M.; Pehnec, G.; Matković, K.; Rinkovec, J.; Jakovljević, I.; Godec, R.; Žužul, S.; Bešlić, I.; Cvitković, A.; et al. Associating Air Pollution with Cytokinesis-Block Micronucleus Assay Parameters in Lymphocytes of the General Population in Zagreb (Croatia). Int. J. Mol. Sci. 2022, 23, 10083. [Google Scholar] [CrossRef] [PubMed]
- Pehnec, G.; Jakovljević, I. Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size. Int. J. Environ. Res. Public Health 2018, 15, 2485. [Google Scholar] [CrossRef] [PubMed]
- Godec, R.; Jakovljević, I.; Šega, K.; Čačković, M.; Bešlić, I.; Davila, S.; Pehnec, G. Carbon Species in PM 10 Particle Fraction at Different Monitoring Sites. Environ. Pollut. 2016, 216, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Žero, S.; Žužul, S.; Huremović, J.; Pehnec, G.; Bešlić, I.; Rinkovec, J.; Godec, R.; Kittner, N.; Pavlović, K.; Požar, N.; et al. New Insight into the Measurements of Particle-Bound Metals in the Urban and Remote Atmospheres of the Sarajevo Canton and Modeled Impacts of Particulate Air Pollution in Bosnia and Herzegovina. Environ. Sci. Technol. 2022, 56, 7052–7062. [Google Scholar] [CrossRef]
- Pehnec, G.; Jakovljević, I.; Godec, R.; Sever Štrukil, Z.; Žero, S.; Huremović, J.; Džepina, K. Carcinogenic Organic Content of Particulate Matter at Urban Locations with Different Pollution Sources. Sci. Total Environ. 2020, 734, 139414. [Google Scholar] [CrossRef]
- Jakovljević, I.; Pehnec, G.; Vadić, V.; Cacković, M.; Tomasić, V.; Jelinić, J. Polycyclic Aromatic Hydrocarbons in PM10, PM2.5 and PM1 Particle Fractions in an Urban Area. Air Qual. Atmos. Health 2018, 11, 843–854. [Google Scholar] [CrossRef]
- Bencetić Klaić, Z.; Leiva-Guzmán, M.A.; Brozinčević, A. Influence of Number of Visitors and Weather Conditions on Airborne Particulate Matter Mass Concentrations at the Plitvice Lakes National Park, Croatia during Summer and Autumn. Arh. Hig. Rada Toksikol. 2022, 73, 1–14. [Google Scholar] [CrossRef]
- Jeričević, A.; Grgičin, V.D.; Prtenjak, M.T.; Vidič, S.; Bloemen, H. Analyses of Urban and Rural Particulate Matter Mass Concentrations in Croatia in the Period 2006-2014. Geofizika 2016, 33, 157–181. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air Pollution and Lung Cancer Incidence in 17 European Cohorts: Prospective Analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Sopian, N.A.; Jalaludin, J.; Abu Bakar, S.; Hamedon, T.R.; Latif, M.T. Exposure to Particulate PAHs on Potential Genotoxicity and Cancer Risk among School Children Living Near the Petrochemical Industry. Int. J. Environ. Res. Public Health 2021, 18, 2575. [Google Scholar] [CrossRef] [PubMed]
- Coronas, M.V.; Pereira, T.S.; Rocha, J.A.V.; Lemos, A.T.; Fachel, J.M.G.; Salvadori, D.M.F.; Vargas, V.M.F. Genetic Biomonitoring of an Urban Population Exposed to Mutagenic Airborne Pollutants. Environ. Int. 2009, 35, 1023–1029. [Google Scholar] [CrossRef]
- Hisamuddin, N.H.; Jalaludin, J.; Abu Bakar, S.; Latif, M.T. The Influence of Environmental Polycyclic Aromatic Hydrocarbons (PAHs) Exposure on DNA Damage among School Children in Urban Traffic Area, Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 2193. [Google Scholar] [CrossRef]
- Gamboa, R.T.; Gamboa, A.R.; Bravo, A.H.; Ostrosky, W.P. Genotoxicity in Child Populations Exposed to Polycyclic Aromatic Hydrocarbons (PAHs) in the Air from Tabasco, Mexico. Int. J. Environ. Res. Public Health 2008, 5, 349–355. [Google Scholar] [CrossRef]
- Tuntawiroon, J.; Mahidol, C.; Navasumrit, P.; Autrup, H.; Ruchirawat, M. Increased Health Risk in Bangkok Children Exposed to Polycyclic Aromatic Hydrocarbons from Traffic-Related Sources. Carcinogenesis 2007, 28, 816–822. [Google Scholar] [CrossRef]
- Silva da Silva, C.; Rossato, J.M.; Vaz Rocha, J.A.; Vargas, V.M.F. Characterization of an Area of Reference for Inhalable Particulate Matter (PM2.5) Associated with Genetic Biomonitoring in Children. Mutat. Res. Toxicol. Environ. Mutagen. 2015, 778, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Zani, C.; Ceretti, E.; Zerbini, I.; Viola, G.C.V.; Donato, F.; Gelatti, U.; Feretti, D. Comet Test in Saliva Leukocytes of Pre-School Children Exposed to Air Pollution in North Italy: The Respira Study. Int. J. Environ. Res. Public Health 2020, 17, 3276. [Google Scholar] [CrossRef]
- Cetkovic, T.; Haveric, A.; Behmen, S.; Hadzic Omanovic, M.; Caluk Klacar, L.; Dzaferspahic, A.; Durmisevic, I.; Mehanovic, M.; Haveric, S. A Pilot Biomonitoring Study of Air Pollution in the Urban Area of Sarajevo, Bosnia and Herzegovina: Genotoxicity Assessment in Buccal Cells. Mutagenesis 2023, 38, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Feretti, D.; Pedrazzani, R.; Ceretti, E.; Dal Grande, M.; Al, E. “Risk Is In The Air”: Polycyclic Aromatic Hydrocarbons, Metals And Mutagenicity Of Atmospheric Particulate Matter In A Town Of Northern Italy (RESPIRA STUDY). Mutat. Res. 2019, 842, 35–49. [Google Scholar] [CrossRef]
- Bonetta, S.; Bonetta, S.; Schiliro, T.; Ceretti, E.; Feretti, D.; Al, E. Mutagenic and Genotoxic Effects Induced by PM0.5 of Different Italian Towns in Human Cells and Bacteria: The MAPEC_LIFE Study. Environ. Pollut. 2019, 245, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Gábelová, A.; Valovičová, Z.; Horváthová, E.; Slameňová, D.; Binková, B.; Šrám, R.J.; Farmer, P.B. Genotoxicity of Environmental Air Pollution in Three European Cities: Prague, Košice and Sofia. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2004, 563, 49–59. [Google Scholar] [CrossRef]
- Bełcik, M.K.; Trusz-Zdybek, A.; Zaczyńska, E.; Czarny, A.; Piekarska, K. Genotoxic and Cytotoxic Properties of PM2.5 Collected over the Year in Wrocław (Poland). Sci. Total Environ. 2018, 637–638, 480–497. [Google Scholar] [CrossRef] [PubMed]
- Demircigil, G.Ç.; Erdem, O.; Gaga, E.O.; Altuğ, H.; Demirel, G.; Özden, Ö.; Arı, A.; Örnektekin, S.; Döğeroğlu, T.; van Doorn, W.; et al. Cytogenetic Biomonitoring of Primary School Children Exposed to Air Pollutants: Micronuclei Analysis of Buccal Epithelial Cells. Environ. Sci. Pollut. Res. 2014, 21, 1197–1207. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. Int. J. Environ. Res. Public Health 2013, 10, 3886–3907. [Google Scholar] [CrossRef]
- de Oliveira Alves, N.; Martins Pereira, G.; Di Domenico, M.; Costanzo, G.; Benevenuto, S.; de Oliveira Fonoff, A.M.; de Souza Xavier Costa, N.; Ribeiro Júnior, G.; Satoru Kajitani, G.; Cestari Moreno, N.; et al. Inflammation Response, Oxidative Stress and DNA Damage Caused by Urban Air Pollution Exposure Increase in the Lack of DNA Repair XPC Protein. Environ. Int. 2020, 145, 106150. [Google Scholar] [CrossRef]
- Øvrevik, J.; Refsnes, M.; Låg, M.; Brinchmann, B.C.; Schwarze, P.E.; Holme, J.A. Triggering Mechanisms and Inflammatory Effects of Combustion Exhaust Particles with Implication for Carcinogenesis. Basic Clin. Pharmacol. Toxicol. 2017, 121, 55–62. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human Health Effects of Air Pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Avogbe, P.H.; Ayi-Fanou, L.; Autrup, H.; Loft, S.; Fayomi, B.; Sanni, A.; Vinzents, P.; Møller, P. Ultrafine Particulate Matter and High-Level Benzene Urban Air Pollution in Relation to Oxidative DNA Damage. Carcinogenesis 2005, 26, 613–620. [Google Scholar] [CrossRef]
- Barth, A.; Brucker, N.; Moro, A.M.; Nascimento, S.; Goethel, G.; Souto, C.; Fracasso, R.; Sauer, E.; Altknecht, L.; da Costa, B.; et al. Association between Inflammation Processes, DNA Damage, and Exposure to Environmental Pollutants. Environ. Sci. Pollut. Res. 2017, 24, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Bagryantseva, Y.; Novotna, B.; Rossner, P.; Chvatalova, I.; Milcova, A.; Svecova, V.; Lnenickova, Z.; Solansky, I.; Sram, R.J. Oxidative Damage to Biological Macromolecules in Prague Bus Drivers and Garagemen: Impact of Air Pollution and Genetic Polymorphisms. Toxicol. Lett. 2010, 199, 60–68. [Google Scholar] [CrossRef]
- Novotna, B.; Topinka, J.; Solansky, I.; Chvatalova, I.; Lnenickova, Z.; Sram, R.J. Impact of Air Pollution and Genotype Variability on DNA Damage in Prague Policemen. Toxicol. Lett. 2007, 172, 37–47. [Google Scholar] [CrossRef]
- Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.; et al. Human Biomonitoring in Health Risk Assessment in Europe: Current Practices and Recommendations for the Future. Int. J. Hyg. Environ. Health 2019, 222, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Santonen, T.; Mahiout, S.; Alvito, P.; Apel, P.; Bessems, J.; Bil, W.; Borges, T.; Bose-O’Reilly, S.; Buekers, J.; Cañas Portilla, A.I.; et al. How to Use Human Biomonitoring in Chemical Risk Assessment: Methodological Aspects, Recommendations, and Lessons Learned from HBM4EU. Int. J. Hyg. Environ. Health 2023, 249, 114139. [Google Scholar] [CrossRef]
- Wollin, K.M.; Apel, P.; Chovolou, Y.; Pabel, U.; Schettgen, T.; Kolossa-Gehring, M.; Röhl, C. Concept for the Evaluation of Carcinogenic Substances in Population-Based Human Biomonitoring. Int. J. Environ. Res. Public Health 2022, 19, 7235. [Google Scholar] [CrossRef] [PubMed]
- Neri, M.; Milazzo, D.; Ugolini, D.; Milic, M.; Campolongo, A.; Pasqualetti, P.; Bonassi, S. Worldwide Interest in the Comet Assay: A Bibliometric Study. Mutagenesis 2015, 30, 155–163. [Google Scholar] [CrossRef]
- Macrì, M.; Gea, M.; Piccini, I.; Dessì, L.; Santovito, A.; Bonelli, S.; Schilirò, T.; Bonetta, S. Cabbage Butterfly as Bioindicator Species to Investigate the Genotoxic Effects of PM10. Environ. Sci. Pollut. Res. 2023, 30, 45285–45294. [Google Scholar] [CrossRef]
- Hasanovic, M.; Cetkovic, T.; Pourrut, B.; Caluk Klacar, L.; Hadzic Omanovic, M.; Durmic-Pasic, A.; Haveric, S.; Haveric, A. Air Pollution in Sarajevo, Bosnia and Herzegovina, Assessed by Plant Comet Assay. Mutagenesis 2023, 38, 43–50. [Google Scholar] [CrossRef]
- Li, T.; Zhang, M.; Gu, K.; Herman, U.; Crittenden, J.; Lu, Z. DNA Damage in Euonymus Japonicus Leaf Cells Caused by Roadside Pollution in Beijing. Int. J. Environ. Res. Public Health 2016, 13, 742. [Google Scholar] [CrossRef]
- Rocha, B.; Matos, P.; Giordani, P.; Piret, L.; Branquinho, C.; Casanelles-Abella, J.; Aleixo, C.; Deguines, N.; Hallikma, T.; Laanisto, L.; et al. Modelling the Response of Urban Lichens to Broad-Scale Changes in Air Pollution and Climate. Environ. Pollut. 2022, 315, 120330. [Google Scholar] [CrossRef] [PubMed]
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for Describing Comet Assay Procedures and Results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef]
- Bešlić, I.; Burger, J.; Cadoni, F.; Centioli, D.; Kranjc, I.; Van den Bril, B.; Rinkovec, J.; Šega, K.; Zang, T.; Žužul, S.; et al. Determination of As, Cd, Ni and Pb in PM10—Comparison of Different Sample Work-up and Analysis Methods. Gefahrstoffe Reinhaltung Der Luft 2020, 81, 227–233. [Google Scholar] [CrossRef]
- Jakovljević, I.; Pehnec, G.; Vadjić, V.; Šišović, A.; Davila, S.; Bešlić, I. Carcinogenic Activity of Polycyclic Aromatic Hydrocarbons Bounded on Particle Fraction. Environ. Sci. Pollut. Res. 2015, 22, 15931–15940. [Google Scholar] [CrossRef] [PubMed]
Total | Women | Men | |
---|---|---|---|
N | 123 | 83 | 40 |
Age (years) | 39.8 ± 13.6 | 40.2 ± 14.3 | 38.9 ± 12.0 |
Age range (years) | 19–77 | 19–77 | 24–64 |
BMI (kg/m2) | 24.1 ± 4.0 | 23.4 ± 4.1 | 25.7 ± 3.4 |
Current smokers (%) | 28.5 | 30.1 | 25.0 |
Family history of cancer (%) | 41.5 | 50.6 | 22.5 |
Total | Women | Men | |
---|---|---|---|
Tail length (µm) | 14.32 ± 1.40 | 14.30 ± 1.50 | 14.35 ± 1.18 |
[range] | [12.04–19.45] | [12.04–19.45] | [12.69–16.74] |
Tail intensity (%) | 1.62 ± 0.86 | 1.57 ± 0.82 | 1.74 ± 0.93 |
[range] | [0.51–4.19] | [0.51–4.09] | [0.57–4.19] |
Tail moment | 0.21 ± 0.12 | 0.21 ± 0.12 | 0.23 ± 0.13 |
[range] | [0.06–0.63] | [0.06–0.63] | [0.07–0.57] |
LTN | 4.23 ± 5.80 | 4.46 ± 6.55 | 3.75 ± 3.81 |
[range] | [0–33.5] | [0–33.5] | [0–16.5] |
AST | 5.30 ± 4.23 | 4.95 ± 3.87 | 6.04 ± 4.87 |
[range] | [0–20.5] | [0–15.5] | [0–20.5] |
Pollutant | Average 1 Day Before | Average 3 Days Before | Average 7 Days Before | |||
---|---|---|---|---|---|---|
Mean (SD) | Range | Mean (SD) | Range | Mean (SD) | Range | |
PM10 (µg/m3) | 31 (17) | 5–88 | 29 (15) | 9–79 | 29 (13) | 12–67 |
PM2.5 (µg/m3) | 24 (16) | 3–73 | 23 (14) | 6–68 | 22 (12) | 7–59 |
PM1 (µg/m3) | 17 (10) | 1–44 | 16 (9) | 6–39 | 16 (8) | 7–37 |
OC (µg/m3) | 8.29 (4.70) | 1.91–18.54 | 7.87 (4.23) | 3.02–18.73 | 7.85 (3.90) | 3.50–18.20 |
EC (µg/m3) | 1.05 (0.55) | 0.24–2.62 | 1.03 (0.57) | 0.31–2.94 | 1.13 (0.59) | 0.42–3.57 |
SO42− (µg/m3) | 5.49 (7.27) | 1.03–40.63 | 4.45 (5.24) | 1.07–31.30 | 4.11 (3.47) | 1.17–19.88 |
NO3− (µg/m3) | 3.15 (3.52) | 0.04–15.96 | 3.21 (3.28) | 0.25–12.15 | 3.39 (3.19) | 0.34–16.10 |
Cl− (µg/m3) | 0.19 (0.31) | 0.01–1.30 | 0.19 (0.29) | 0.01–1.42 | 0.22 (0.31) | 0.01–1.44 |
Pb (µg/m3) | 0.007 (0.005) | 0.001–0.034 | 0.006 (0.004) | 0.002–0.017 | 0.006 (0.003) | 0.002–0.016 |
Mn (µg/m3) | 0.005 (0.002) | 0.002–0.012 | 0.005 (0.002) | 0.001–0.012 | 0.006 (0.002) | 0.002–0.010 |
Cd (ng/m3) | 0.270 (0.293) | 0.041–1.698 | 0.215 (0.169) | 0.025–0.884 | 0.217 (0.163) | 0.039–0.837 |
As (ng/m3) | 0.649 (0.603) | 0.077–3.162 | 0.532 (0.428) | 0.132–2.118 | 0.524 (0.316) | 0.179–1.640 |
Ni (ng/m3) | 1.139 (1.888) | LOD–10.479 | 1.004 (1.082) | LOD–5.018 | 1.044 (0.973) | LOD–5.454 |
Cu (µg/m3) | 0.012 (0.007) | 0.003–0.033 | 0.012 (0.006) | 0.003–0.034 | 0.013 (0.005) | 0.004–0.025 |
Fe (µg/m3) | 0.297 (0.168) | 0.076–0.775 | 0.295 (0.160) | 0.073–0.958 | 0.318 (0.126) | 0.092–0.712 |
Zn (µg/m3) | 0.023 (0.014) | 0.005–0.071 | 0.020 (0.010) | 0.004–0.057 | 0.021 (0.009) | 0.005–0.055 |
B[a]P (ng/m3) | 1.035 (1.577) | LOD–9.541 | 1.049 (1.233) | 0.029–5.307 | 0.988 (1.037) | 0.039–3.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerić, M.; Pehnec, G.; Matković, K.; Rinkovec, J.; Jakovljević, I.; Godec, R.; Žužul, S.; Bešlić, I.; Cvitković, A.; Delić, L.; et al. Air Pollution and Primary DNA Damage among Zagreb (Croatia) Residents: A Cross-Sectional Study. J. Xenobiot. 2024, 14, 368-379. https://doi.org/10.3390/jox14010023
Gerić M, Pehnec G, Matković K, Rinkovec J, Jakovljević I, Godec R, Žužul S, Bešlić I, Cvitković A, Delić L, et al. Air Pollution and Primary DNA Damage among Zagreb (Croatia) Residents: A Cross-Sectional Study. Journal of Xenobiotics. 2024; 14(1):368-379. https://doi.org/10.3390/jox14010023
Chicago/Turabian StyleGerić, Marko, Gordana Pehnec, Katarina Matković, Jasmina Rinkovec, Ivana Jakovljević, Ranka Godec, Silva Žužul, Ivan Bešlić, Ante Cvitković, Luka Delić, and et al. 2024. "Air Pollution and Primary DNA Damage among Zagreb (Croatia) Residents: A Cross-Sectional Study" Journal of Xenobiotics 14, no. 1: 368-379. https://doi.org/10.3390/jox14010023
APA StyleGerić, M., Pehnec, G., Matković, K., Rinkovec, J., Jakovljević, I., Godec, R., Žužul, S., Bešlić, I., Cvitković, A., Delić, L., Wild, P., Guseva Canu, I., Hopf, N. B., & Gajski, G. (2024). Air Pollution and Primary DNA Damage among Zagreb (Croatia) Residents: A Cross-Sectional Study. Journal of Xenobiotics, 14(1), 368-379. https://doi.org/10.3390/jox14010023