Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish
2.2. Hepatocyte Isolation
2.3. Exposure Assays
2.4. Spheroids Morphological Parameters
2.5. Lactate Dehydrogenase (LDH) Assay
2.6. AlamarBlue™ HS Cell Viability Reagent Assay
2.7. Spheroids Morphology
2.8. RNA Extraction and cDNA Synthesis
2.9. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)
2.10. Immunohistochemistry
2.11. Statistical Analyses
3. Results
3.1. Morphological Parameters
3.2. Viability—LDH and Resazurin Assays
3.3. Morphology
3.4. RT-qPCR
3.5. Immunohistochemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciślak, M.; Kruszelnicka, I.; Zembrzuska, J.; Ginter-Kramarczyk, D. Estrogen pollution of the european aquatic environment: A critical review. Water Res. 2023, 229, 119413. [Google Scholar] [CrossRef]
- Sun, S.X.; Wu, J.L.; Lv, H.B.; Zhang, H.Y.; Zhang, J.; Limbu, S.M.; Qiao, F.; Chen, L.Q.; Yang, Y.; Zhang, M.L.; et al. Environmental estrogen exposure converts lipid metabolism in male fish to a female pattern mediated by AMPK and mTOR signaling pathways. J. Hazard. Mater. 2020, 394, 122537. [Google Scholar] [CrossRef] [PubMed]
- Voisin, A.S.; Kültz, D.; Silvestre, F. Early-life exposure to the endocrine disruptor 17-α-ethinylestradiol induces delayed effects in adult brain, liver and ovotestis proteomes of a self-fertilizing fish. J. Proteom. 2019, 194, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Goundadkar, B.B.; Katti, P. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 2017, 54, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Körner, O.; Kohno, S.; Schönenberger, R.; Suter, M.J.; Knauer, K.; Guillette, L.J., Jr.; Burkhardt-Holm, P. Water temperature and concomitant waterborne ethinylestradiol exposure affects the vitellogenin expression in juvenile brown trout (Salmo trutta). Aquat. Toxicol. 2008, 90, 188–196. [Google Scholar] [CrossRef]
- Madureira, T.V.; Malhão, F.; Simões, T.; Pinheiro, I.; Lopes, C.; Gonçalves, J.F.; Urbatzka, R.; Castro LF, C.; Lemos MF, L.; Rocha, E. Sex-steroids and hypolipidemic chemicals impacts on brown trout lipid and peroxisome signaling—Molecular, biochemical and morphological insights. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 212, 1–17. [Google Scholar] [CrossRef]
- Skillman, A.D.; Nagler, J.J.; Hook, S.E.; Small, J.A.; Schultz, I.R. Dynamics of 17alpha-ethynylestradiol exposure in rainbow trout (Oncorhynchus mykiss): Absorption, tissue distribution, and hepatic gene expression pattern. Environ. Toxicol. Chem. 2006, 25, 2997–3005. [Google Scholar] [CrossRef]
- Hultman, M.T.; Rundberget, J.T.; Tollefsen, K.E. Evaluation of the sensitivity, responsiveness and reproducibility of primary rainbow trout hepatocyte vitellogenin expression as a screening assay for estrogen mimics. Aquat. Toxicol. 2015, 159, 233–244. [Google Scholar] [CrossRef]
- Hultman, M.T.; Song, Y.; Tollefsen, K.E. 17α-Ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 2015, 169, 90–104. [Google Scholar] [CrossRef]
- Finne, E.F.; Cooper, G.A.; Koop, B.F.; Hylland, K.; Tollefsen, K.E. Toxicogenomic responses in rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to model chemicals and a synthetic mixture. Aquat. Toxicol. 2007, 81, 293–303. [Google Scholar] [CrossRef]
- Madureira, T.V.; Malhão, F.; Pinheiro, I.; Lopes, C.; Ferreira, N.; Urbatzka, R.; Castro, L.F.; Rocha, E. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors. Aquat. Toxicol. 2015, 169, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, C.J.; Feswick, A.; Munkittrick, K.R.; Dreier, D.A.; Denslow, N.D. Twenty years of transcriptomics, 17alpha-ethinylestradiol, and fish. Gen. Comp. Endocrinol. 2020, 286, 113325. [Google Scholar] [CrossRef] [PubMed]
- Yadetie, F.; Zhang, X.; Hanna, E.M.; Aranguren-Abadía, L.; Eide, M.; Blaser, N.; Brun, M.; Jonassen, I.; Goksøyr, A.; Karlsen, O.A. RNA-Seq analysis of transcriptome responses in Atlantic cod (Gadus morhua) precision-cut liver slices exposed to benzo[a]pyrene and 17α-ethynylestradiol. Aquatic Toxicology 2018, 201, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Mcgovarin, S.; Nishikawa, J.; Metcalfe, C.D. Vitellogenin induction in mucus from brook trout (salvelinus fontinalis). Bull. Environ. Contam. Toxicol. 2022, 108, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.H.; Westerlund, L.; Olsson, P.E. Regulation of arctic char (Salvelinus alpinus) egg shell proteins and vitellogenin during reproduction and in response to 17beta-estradiol and cortisol. Gen. Comp. Endocrinol. 2004, 135, 276–285. [Google Scholar] [CrossRef]
- Kozyra, M.; Johansson, I.; Nordling, Å.; Ullah, S.; Lauschke, V.M.; Ingelman-Sundberg, M. Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci. Rep. 2018, 8, 14297. [Google Scholar] [CrossRef] [PubMed]
- Kanebratt, K.P.; Janefeldt, A.; Vilén, L.; Vildhede, A.; Samuelsson, K.; Milton, L.; Björkbom, A.; Persson, M.; Leandersson, C.; Andersson, T.B.; et al. Primary human hepatocyte spheroid model as a 3D in vitro platform for metabolism studies. J. Pharm. Sci. 2021, 110, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.C.; Hendriks, D.F.; Moro, S.M.; Ellis, E.; Walsh, J.; Renblom, A.; Fredriksson, P.L.; Dankers, A.C.; Jacobs, F.; Snoeys, J.; et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci. Rep. 2016, 6, 25187. [Google Scholar] [CrossRef] [PubMed]
- Foster, A.J.; Chouhan, B.; Regan, S.L.; Rollison, H.; Amberntsson, S.; Andersson, L.C.; Srivastava, A.; Darnell, M.; Cairns, J.; Lazic, S.E.; et al. Integrated in vitro models for hepatic safety and metabolism: Evaluation of a human Liver-Chip and liver spheroid. Arch. Toxicol. 2019, 93, 1021–1037. [Google Scholar] [CrossRef]
- Song, Y.; Kim, N.; Heo, J.; Shum, D.; Heo, T.; Seo, H.R. Inhibition of DNMT3B expression in activated hepatic stellate cells overcomes chemoresistance in the tumor microenvironment of hepatocellular carcinoma. Sci. Rep. 2024, 14, 115. [Google Scholar] [CrossRef]
- Pereira, I.L.; Lopes, C.; Rocha, E.; Madureira, T.V. Establishing brown trout primary hepatocyte spheroids as a new alternative experimental model–Testing the effects of 5α-dihydrotestosterone on lipid pathways. Aquat. Toxicol. 2022, 253, 106331. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.F.; Lopes, C.; Rocha, E.; Madureira, T.V. A step forward in the characterization of primary brown trout hepatocytic spheroids as experimental models. Animals 2023, 13, 2277. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Desmet, J.; Pérez-Albaladejo, E.; Porte, C. Development of fish liver PLHC-1 spheroids and its applicability to investigate the toxicity of plastic additives. Ecotoxicol. Environ. Saf. 2023, 259, 115016. [Google Scholar] [CrossRef] [PubMed]
- Lammel, T.; Tsoukatou, G.; Jellinek, J.; Sturve, J. Development of threedimensional (3D) spheroid cultures of the continuous rainbow trout liver cell line RTLW1. Ecotoxicol. Environ. Saf. 2019, 167, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Park, C.G.; Ryu, C.S.; Sung, B.; Manz, A.; Kong, H.; Kim, Y.J. Transcriptomic and physiological analysis of endocrine disrupting chemicals impacts on 3D zebrafish liver cell culture system. Aquat. Toxicol. 2022, 245, 106105. [Google Scholar] [CrossRef] [PubMed]
- Rodd, A.L.; Messier, N.J.; Vaslet, C.A.; Kane, A.B. A 3D fish liver model for aquatic toxicology: Morphological changes and Cyp1a induction in PLHC-1 microtissues after repeated benzo(a)pyrene exposures. Aquat. Toxicol. 2017, 186, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Flouriot, G.; Vaillant, C.; Salbert, G.; Pelissero, C.; Guiraud, J.M.; Valotaire, Y. Monolayer and aggregate cultures of rainbow trout hepatocytes: Long-term and stable liver-specific expression in aggregates. J. Cell Sci. 1993, 105, 407–416. [Google Scholar] [CrossRef]
- Piccinini, F. AnaSP: A software suite for automatic image analysis of multicellular spheroids. Comput. Methods Programs Biomed. 2015, 119, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RTPCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Madureira, T.V.; Pinheiro, I.; Malhão, F.; Lopes, C.; Urbatzka, R.; Castro LF, C.; Rocha, E. Cross-interference of two model peroxisome proliferators in peroxisomal and estrogenic pathways in brown trout hepatocytes. Aquat. Toxicol. 2017, 187, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Batista-Pinto, C. Peroxisomes in Brown trout (Salmo trutta f. fario): Regulation by Estrogens. Ph.D Thesis, Institute of Biomedical Sciences Abel Salazar, Porto, Portugal, 2007. [Google Scholar]
- Uren Webster, T.M.; Shears, J.A.; Moore, K.; Santos, E.M. Identification of conserved hepatic transcriptomic responses to 17β-estradiol using high-throughput sequencing in brown trout. Physiol. Genom. 2015, 47, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Madureira, T.V.; Pinheiro, I.; De Paula Freire, R.; Rocha, E.; Castro, L.F.; Urbatzka, R. Genome specific PPARαB duplicates in salmonids and insights into estrogenic regulation in brown trout. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2017, 208, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.; Madureira, T.V.; Gonçalves, J.F.; Rocha, E. Disruption of classical estrogenic targets in brown trout primary hepatocytes by the model androgens testosterone and dihydrotestosterone. Aquat. Toxicol. 2020, 227, 105586. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Alves, R.F.; Rocha, E.; Madureira, T.V. Fish hepatocyte spheroids—A powerful (though underexplored) alternative in vitro model to study hepatotoxicity. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 262, 109470. [Google Scholar] [CrossRef] [PubMed]
- Park, C.G.; Jun, I.; Lee, S.; Ryu, C.S.; Lee, S.A.; Park, J.; Han, H.S.; Park, H.; Manz, A.; Shin, H.; et al. Integration of bioinspired fibrous strands with 3D spheroids for environmental hazard monitoring. Small 2022, 18, e2200757. [Google Scholar] [CrossRef] [PubMed]
- Langanl, M.; Dodd, N.J.; Owen, S.F.; Purcell, W.M.; Jackson, S.K.; Jha, A.N. Direct measurements of oxygen gradients in spheroid culture system using electron parametric resonance oximetry. PLoS ONE 2016, 11, e0149492. [Google Scholar] [CrossRef]
- Avar, P.; Zrínyi, Z.; Maász, G.; Takátsy, A.; Lovas, S.; G-Tóth, L.; Pirger, Z. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin. Environ. Sci. Pollut. Res. Int. 2016, 23, 11630–11638. [Google Scholar] [CrossRef]
- Griffero, L.; Alcántara-Durán, J.; Alonso, C.; Rodríguez-Gallego, L.; Moreno-González, D.; García-Reyes, J.F.; Molina-Díaz, A.; Pérez-Parada, A. Basin-scale monitoring and risk assessment of emerging contaminants in South American Atlantic coastal lagoons. Sci. Total Environ. 2019, 697, 134058. [Google Scholar] [CrossRef]
- Valdés, M.E.; Marino, D.J.; Wunderlin, D.A.; Somoza, G.M.; Ronco, A.E.; Carriquiriborde, P. Screening concentration of E1, E2 and EE2 in sewage effluents and surface waters of the “Pampas” region and the “Río de la Plata” estuary (Argentina). Bull. Environ. Contam. Toxicol. 2015, 94, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Klaic, M.; Jirsa, F. 17α-Ethinylestradiol (EE2): Concentrations in the environment and methods for wastewater treatment—An update. RSC Adv. 2022, 12, 12794–12805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhong, H.; Han, Z.; Tang, Z.; Xiao, J.; Guo, Z.; Wang, F.; Luo, Y.; Zhou, Y. Effects of waterborne exposure to 17β-estradiol on hepatic lipid metabolism genes in tilapia (Oreochromis niloticus). Aquac. Rep. 2020, 17, 100382. [Google Scholar] [CrossRef]
- Lourenço, T.; Rocha, E.; Gonçalves, J.F.; Rocha, M.J.; Madureira, T.V. A proof-of-concept for a hypolipidemic brown trout model. Toxics 2024, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, C.J.; Gerrie, E.R.; Popesku, J.T.; Ekker, M.; Trudeau, V.L. Microarray analysis in the zebrafish (Danio rerio) liver and telencephalon after exposure to low concentration of 17alpha-ethinylestradiol. Aquat. Toxicol. 2007, 84, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Celius, T.; Matthews, J.B.; Giesy, J.P.; Zacharewski, T.R. Quantification of rainbow trout (Oncorhynchus mykiss) zona radiata and vitellogenin mRNA levels using real-time PCR after in vivo treatment with estradiol-17 beta or alpha-zearalenol. J. Steroid Biochem. Mol. Biol. 2000, 75, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Scholz, S.; Kordes, C.; Hamann, J.; Gutzeit, H.O. Induction of vitellogenin in vivo and in vitro in the model teleost medaka (Oryzias latipes): Comparison of gene expression and protein levels. Mar. Environ. Res. 2004, 57, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Leaños-Castañeda, O.; Van Der Kraak, G. Functional characterization of estrogen receptor subtypes, ERalpha and ERbeta, mediating vitellogenin production in the liver of rainbow trout. Toxicol. Appl. Pharmacol. 2007, 224, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, A.S.; Arukwe, A. Effects of 17alpha-ethynylestradiol on hormonal responses and xenobiotic biotransformation system of Atlantic salmon (Salmo salar). Aquat. Toxicol. 2007, 85, 113–123. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Park, C.G.; Ito, J.D.; Kandel, M.; Popescu, G.; Kim, Y.J.; Kong, H. Matrix softness-mediated 3D zebrafish hepatocyte modulates response to endocrine disrupting chemicals. Environ. Sci. Technol. 2020, 54, 13797–13806. [Google Scholar] [CrossRef]
- Pelissero, C.; Flouriot, G.; Foucher, J.L.; Bennetau, B.; Dunoguès, J.; Le Gac, F.; Sumpter, J.P. Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J. Steroid Biochem. Mol. Biol. 1993, 44, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Arukwe, A.; Røe, K. Molecular and cellular detection of expression of vitellogenin and zona radiata protein in liver and skin of juvenile salmon (Salmo salar) exposed to nonylphenol. Cell Tissue Res. 2008, 331, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Arukwe, A.; Nilsen, B.M.; Berg, K.; Goksoyr, A. Immunohistochemical analysis of the vitellogenin response in the liver of Atlantic salmon exposed to environmental oestrogens. Biomarkers 1999, 4, 373–380. [Google Scholar] [CrossRef]
Gene | Abbreviation | Primer Sequences | AT (°C) | E (%) | References |
---|---|---|---|---|---|
Acyl-CoA long chain synthetase 1 | Acsl1 | F: 5′-CGACCAAGCCGCTATCTC-3′ R: 5′-CCAACAGCCTCCACATCC-3′ | 55.0 | 97.8 | [6] |
Apolipoprotein AI | ApoAI | F: 5′-ATGAAATTCCTGGCTCTTG-3′ R: 5′-TACTCTTTGAACTCTGTGTC-3′ | 55.0 | 89.9 | [31] |
Catalase | Cat | F: 5′-CACTGATGAGGGCAACTGGG-3′ R: 5′-CTTGAAGTGGAACTTGCAG-3′ | 58.0 | 91.4 | [32] |
Estrogen receptor α | ERα | F: 5′-GACATGCTCCTGGCCACTGT-3′ R: 5′-TGGCTTTGAGGCACACAAAC-3′ | 61.6 | 91.2 | [5] |
Estrogen receptor β | ERβ | F: 5′-TGTGGACCTGTGCCTGTTC-3′ R: 5′-ACATGAGCCCTAGCATCAGC-3′ | 66.5 | 103.3 | [5] |
Fatty acid binding protein 1 | Fabp1 | F: 5′-GTCCGTCACCAACTCCTTC-3′ R: 5′-GCGTCTCAACCATCTCTCC-3′ | 57.0 | 97.7 | [31] |
Urate oxidase | Uox | F: 5′-CTTCCGAGACCGCTTCAC-3′ R: 5′-CATTCTGGACCTTGTTGTAGC-3′ | 59.0 | 90.6 | [5] |
Vitellogenin A | VtgA | F: 5′-AACGGTGCTGAATGTCCATAG-3′ R: 5′-ATTGAGATCCTTGCTCTTGGTC-3′ | 62.9 | 99.0 | [5] |
Zona pellucida glycoprotein 2.5 | ZP2.5 | F: 5′-ATCAATAACCACAGCCACAATG-3′ R: 5′-ACCAGGGACAGCCAATATG-3′ | 55.0 | 99.0 | [33] |
Zona pellucida glycoprotein 3a.2 | ZP3a.2 | F: 5′-AACTACACTCCACTTCATC-3′ R: 5′-CACATCTCCTTCATCTTCA-3′ | 54.5 | 101.8 | [33] |
Glyceraldehyde-3-phosphate dehydrogenase | Gapdh | F: 5′-CCACCTATGTAGTTGAGTC-3′ R: 5′-ACCTTGAGGGAGTTATCG-3′ | 55.0 | 92.8 | [34] |
Ribosomal protein l8 | rpl8 | F: 5′-TCAGCTGAGCTTTCTTGCCAC-3′ R: 5′-AGGACTGAGCTGTTCATTGCG-3′ | 59.0 | 93.8 | [5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, R.F.; Lopes, C.; Rocha, E.; Madureira, T.V. Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol. J. Xenobiot. 2024, 14, 1064-1078. https://doi.org/10.3390/jox14030060
Alves RF, Lopes C, Rocha E, Madureira TV. Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol. Journal of Xenobiotics. 2024; 14(3):1064-1078. https://doi.org/10.3390/jox14030060
Chicago/Turabian StyleAlves, Rodrigo F., Célia Lopes, Eduardo Rocha, and Tânia Vieira Madureira. 2024. "Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol" Journal of Xenobiotics 14, no. 3: 1064-1078. https://doi.org/10.3390/jox14030060
APA StyleAlves, R. F., Lopes, C., Rocha, E., & Madureira, T. V. (2024). Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol. Journal of Xenobiotics, 14(3), 1064-1078. https://doi.org/10.3390/jox14030060