Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects
Abstract
:1. Introduction
1.1. Endocrine-Disrupting Chemicals (EDCs)
1.1.1. Bisphenol A (BPA)
1.1.2. Cadmium (Cd)
1.1.3. Phthalates
1.1.4. Atrazine (ATR)
1.1.5. Dioxins
1.1.6. Arsenic (As)
1.1.7. Mycotoxins
1.2. Polyphenols
2. Endocrine-Disrupting Chemicals and Polyphenols: A Disjointed Action
2.1. Effects on Female Reproductive System
2.2. Effects on Male Reproductive System
2.3. Effects on Gastrointestinal System
2.4. Effects on the Urinary System
2.5. Effects on the Brain and Nervous System
2.6. Effects on Endocrine System
2.7. Effects on Cardiovascular System
3. Endocrine Disrupting Chemicals and Polyphenols: A Synergic Action
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine Disrupting Chemicals: Exposure, Effects on Human Health, Mechanism of Action, Models for Testing and Strategies for Prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.L.; Bradlow, H.L.; Wolff, M.; Woodruff, T.; Hoel, D.G.; Anton-Culver, H. Medical Hypothesis: Xenoestrogens as Preventable Causes of Breast Cancer. Environ. Health Perspect. 1993, 101, 372–377. [Google Scholar] [CrossRef]
- Shearston, J.A.; Upson, K.; Gordon, M.; Do, V.; Balac, O.; Nguyen, K.; Yan, B.; Kioumourtzoglou, M.-A.; Schilling, K. Tampons as a Source of Exposure to Metal(Loid)s. Environ. Int. 2024, 190, 108849. [Google Scholar] [CrossRef] [PubMed]
- Kabir, E.R.; Rahman, M.S.; Rahman, I. A Review on Endocrine Disruptors and Their Possible Impacts on Human Health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1503–1517. [Google Scholar] [CrossRef]
- Sharpe, R.M.; Drake, A.J. Obesogens and Obesity—An Alternative View? Obesity 2013, 21, 1081–1083. [Google Scholar] [CrossRef]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017, 6, 18–27. [Google Scholar] [CrossRef]
- Yilmaz, B.; Seyran, A.D.; Sandal, S.; Aydin, M.; Colakoglu, N.; Kocer, M.; Carpenter, D.O. Modulatory Effects of Aroclors 1221 and 1254 on Bone Turnover and Vertebral Histology in Intact and Ovariectomized Rats. Toxicol. Lett. 2006, 166, 276–284. [Google Scholar] [CrossRef]
- Bansal, A.; Henao-Mejia, J.; Simmons, R.A. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health. Endocrinology 2018, 159, 32–45. [Google Scholar] [CrossRef]
- Braun, J.M.; Kalkbrenner, A.E.; Calafat, A.M.; Bernert, J.T.; Ye, X.; Silva, M.J.; Barr, D.B.; Sathyanarayana, S.; Lanphear, B.P. Variability and Predictors of Urinary Bisphenol A Concentrations during Pregnancy. Environ. Health Perspect. 2011, 119, 131–137. [Google Scholar] [CrossRef]
- Buckley, J.P.; Kim, H.; Wong, E.; Rebholz, C.M. Ultra-Processed Food Consumption and Exposure to Phthalates and Bisphenols in the US National Health and Nutrition Examination Survey, 2013–2014. Environ. Int. 2019, 131, 105057. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.O.; Harnack, L.; Robien, K. Estimating Bisphenol A Exposure Levels Using a Questionnaire Targeting Known Sources of Exposure. Public Health Nutr. 2016, 19, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Martínez Steele, E.; Khandpur, N.; da Costa Louzada, M.L.; Monteiro, C.A. Association between Dietary Contribution of Ultra-Processed Foods and Urinary Concentrations of Phthalates and Bisphenol in a Nationally Representative Sample of the US Population Aged 6 Years and Older. PLoS ONE 2020, 15, e0236738. [Google Scholar] [CrossRef] [PubMed]
- van Woerden, I.; Payne-Sturges, D.C.; Whisner, C.M.; Bruening, M. Dietary Quality and Bisphenols: Trends in Bisphenol A, F, and S Exposure in Relation to the Healthy Eating Index Using Representative Data from the NHANES 2007-2016. Am. J. Clin. Nutr. 2021, 114, 669–682. [Google Scholar] [CrossRef]
- Morgan, M.K.; Nash, M.; Barr, D.B.; Starr, J.M.; Scott Clifton, M.; Sobus, J.R. Distribution, Variability, and Predictors of Urinary Bisphenol A Levels in 50 North Carolina Adults over a Six-Week Monitoring Period. Environ. Int. 2018, 112, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Michałowicz, J. Bisphenol A—Sources, Toxicity and Biotransformation. Environ. Toxicol. Pharmacol. 2014, 37, 738–758. [Google Scholar] [CrossRef]
- Hoekstra, E.J.; Simoneau, C. Release of Bisphenol A from Polycarbonate: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 386–402. [Google Scholar] [CrossRef]
- Sajiki, J.; Takahashi, K.; Yonekubo, J. Sensitive Method for the Determination of Bisphenol-A in Serum Using Two Systems of High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Wetherill, Y.B.; Akingbemi, B.T.; Kanno, J.; McLachlan, J.A.; Nadal, A.; Sonnenschein, C.; Watson, C.S.; Zoeller, R.T.; Belcher, S.M. In Vitro Molecular Mechanisms of Bisphenol A Action. Reprod. Toxicol. 2007, 24, 178–198. [Google Scholar] [CrossRef]
- Alonso-Magdalena, P.; Ropero, A.B.; Soriano, S.; García-Arévalo, M.; Ripoll, C.; Fuentes, E.; Quesada, I.; Nadal, Á. Bisphenol-A Acts as a Potent Estrogen via Non-Classical Estrogen Triggered Pathways. Mol. Cell Endocrinol. 2012, 355, 201–207. [Google Scholar] [CrossRef]
- Markey, C.M.; Coombs, M.A.; Sonnenschein, C.; Soto, A.M. Mammalian Development in a Changing Environment: Exposure to Endocrine Disruptors Reveals the Developmental Plasticity of Steroid-Hormone Target Organs. Evol. Dev. 2003, 5, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.A.; Birnbaum, L.S.; Farabollini, F.; Newbold, R.R.; Rubin, B.S.; Talsness, C.E.; Vandenbergh, J.G.; Walser-Kuntz, D.R.; vom Saal, F.S. In Vivo Effects of Bisphenol A in Laboratory Rodent Studies. Reprod. Toxicol. 2007, 24, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Melzer, D.; Harries, L.; Cipelli, R.; Henley, W.; Money, C.; McCormack, P.; Young, A.; Guralnik, J.; Ferrucci, L.; Bandinelli, S.; et al. Bisphenol A Exposure Is Associated with In Vivo Estrogenic Gene Expression in Adults. Environ. Health Perspect. 2011, 119, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Vom Saal, F.S.; Nagel, S.C.; Coe, B.L.; Angle, B.M.; Taylor, J.A. The Estrogenic Endocrine Disrupting Chemical Bisphenol A (BPA) and Obesity. Mol. Cell Endocrinol. 2012, 354, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Bodin, J.; Bølling, A.K.; Samuelsen, M.; Becher, R.; Løvik, M.; Nygaard, U.C. Long-Term Bisphenol A Exposure Accelerates Insulitis Development in Diabetes-Prone NOD Mice. Immunopharmacol. Immunotoxicol. 2013, 35, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Bodin, J.; Kocbach Bølling, A.; Wendt, A.; Eliasson, L.; Becher, R.; Kuper, F.; Løvik, M.; Nygaard, U.C. Exposure to Bisphenol A, but Not Phthalates, Increases Spontaneous Diabetes Type 1 Development in NOD Mice. Toxicol. Rep. 2015, 2, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Weldingh, N.M.; Jørgensen-Kaur, L.; Becher, R.; Holme, J.A.; Bodin, J.; Nygaard, U.C.; Bølling, A.K. Bisphenol A Is More Potent than Phthalate Metabolites in Reducing Pancreatic β-Cell Function. BioMed Res. Int. 2017, 2017, 4614379. [Google Scholar] [CrossRef]
- Hassan, Z.K.; Elobeid, M.A.; Virk, P.; Omer, S.A.; ElAmin, M.; Daghestani, M.H.; AlOlayan, E.M. Bisphenol A Induces Hepatotoxicity through Oxidative Stress in Rat Model. Oxid. Med. Cell Longev. 2012, 2012, 194829. [Google Scholar] [CrossRef]
- Lee, S.; Suk, K.; Kim, I.K.; Jang, I.-S.; Park, J.-W.; Johnson, V.J.; Kwon, T.K.; Choi, B.-J.; Kim, S.-H. Signaling Pathways of Bisphenol A-Induced Apoptosis in Hippocampal Neuronal Cells: Role of Calcium-Induced Reactive Oxygen Species, Mitogen-Activated Protein Kinases, and Nuclear Factor-KappaB. J. Neurosci. Res. 2008, 86, 2932–2942. [Google Scholar] [CrossRef]
- Rogers, J.A.; Metz, L.; Yong, V.W. Review: Endocrine Disrupting Chemicals and Immune Responses: A Focus on Bisphenol-A and Its Potential Mechanisms. Mol. Immunol. 2013, 53, 421–430. [Google Scholar] [CrossRef]
- Focaccetti, C.; Nardozi, D.; Benvenuto, M.; Lucarini, V.; Angiolini, V.; Carrano, R.; Scimeca, M.; Servadei, F.; Mauriello, A.; Mancini, P.; et al. Bisphenol-A in Drinking Water Accelerates Mammary Cancerogenesis and Favors an Immunosuppressive Tumor Microenvironment in BALB–NeuT Mice. Int. J. Mol. Sci. 2024, 25, 6259. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kwon, J.; Chung, M.-K. Enhanced Prediction of Potential Rodent Carcinogenicity by Utilizing Comet Assay and Apoptotic Assay in Combination. Mutat. Res. 2003, 541, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Tayama, S.; Nakagawa, Y.; Tayama, K. Genotoxic Effects of Environmental Estrogen-like Compounds in CHO-K1 Cells. Mutat. Res. 2008, 649, 114–125. [Google Scholar] [CrossRef]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, Environmental Exposure, and Health Outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef]
- Poland, C.A.; Lombaert, N.; Mackie, C.; Renard, A.; Sinha, P.; Verougstraete, V.; Lourens, N.J.J. Bioaccessibility as a Determining Factor in the Bioavailability and Toxicokinetics of Cadmium Compounds. Toxicology 2021, 463, 152969. [Google Scholar] [CrossRef]
- Staessen, J.A.; Buchet, J.P.; Ginucchio, G.; Lauwerys, R.R.; Lijnen, P.; Roels, H.; Fagard, R. Public Health Implications of Environmental Exposure to Cadmium and Lead: An Overview of Epidemiological Studies in Belgium. Working Groups. J. Cardiovasc. Risk 1996, 3, 26–41. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Il’yasova, D.; Ivanova, A. Urinary Cadmium, Impaired Fasting Glucose, and Diabetes in the NHANES III. Diabetes Care 2003, 26, 468–470. [Google Scholar] [CrossRef]
- Eum, K.-D.; Lee, M.-S.; Paek, D. Cadmium in Blood and Hypertension. Sci. Total Environ. 2008, 407, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Plaza, M.; Navas-Acien, A.; Crainiceanu, C.M.; Sharrett, A.R.; Guallar, E. Cadmium and Peripheral Arterial Disease: Gender Differences in the 1999-2004 US National Health and Nutrition Examination Survey. Am. J. Epidemiol. 2010, 172, 671–681. [Google Scholar] [CrossRef]
- Tellez-Plaza, M.; Navas-Acien, A.; Crainiceanu, C.M.; Guallar, E. Cadmium Exposure and Hypertension in the 1999-2004 National Health and Nutrition Examination Survey (NHANES). Environ. Health Perspect. 2008, 116, 51–56. [Google Scholar] [CrossRef]
- Lampe, B.J.; Park, S.K.; Robins, T.; Mukherjee, B.; Litonjua, A.A.; Amarasiriwardena, C.; Weisskopf, M.; Sparrow, D.; Hu, H. Association between 24-Hour Urinary Cadmium and Pulmonary Function among Community-Exposed Men: The VA Normative Aging Study. Environ. Health Perspect. 2008, 116, 1226–1230. [Google Scholar] [CrossRef]
- Erie, J.C.; Good, J.A.; Butz, J.A.; Hodge, D.O.; Pulido, J.S. Urinary Cadmium and Age-Related Macular Degeneration. Am. J. Ophthalmol. 2007, 144, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Kriegel, A.M.; Soliman, A.S.; Zhang, Q.; El-Ghawalby, N.; Ezzat, F.; Soultan, A.; Abdel-Wahab, M.; Fathy, O.; Ebidi, G.; Bassiouni, N.; et al. Serum Cadmium Levels in Pancreatic Cancer Patients from the East Nile Delta Region of Egypt. Environ. Health Perspect. 2006, 114, 113–119. [Google Scholar] [CrossRef] [PubMed]
- McElroy, J.A.; Shafer, M.M.; Trentham-Dietz, A.; Hampton, J.M.; Newcomb, P.A. Cadmium Exposure and Breast Cancer Risk. J. Natl. Cancer Inst. 2006, 98, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Akesson, A.; Julin, B.; Wolk, A. Long-Term Dietary Cadmium Intake and Postmenopausal Endometrial Cancer Incidence: A Population-Based Prospective Cohort Study. Cancer Res. 2008, 68, 6435–6441. [Google Scholar] [CrossRef]
- Kellen, E.; Zeegers, M.P.; Hond, E.D.; Buntinx, F. Blood Cadmium May Be Associated with Bladder Carcinogenesis: The Belgian Case-Control Study on Bladder Cancer. Cancer Detect. Prev. 2007, 31, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Jin, T.; Jiang, X.; Kong, Q.; Ye, T.; Nordberg, G.F. Effects on the Prostate of Environmental Cadmium Exposure—A Cross-Sectional Population Study in China. Biometals 2004, 17, 559–565. [Google Scholar] [CrossRef]
- Abd El-Fattah, A.A.; Fahim, A.T.; Sadik, N.A.H.; Ali, B.M. Resveratrol and Curcumin Ameliorate Di-(2-Ethylhexyl) Phthalate Induced Testicular Injury in Rats. Gen. Comp. Endocrinol. 2016, 225, 45–54. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, X.H.; Peng, Q.; Zhou, X.L.; Liu, S.S.; Sun, C.C.; Cao, Q.Y.; Zhu, S.P.; Sun, S.Y. Green Tea Polyphenols Alleviate Di-(2-Ethylhexyl) Phthalate-Induced Liver Injury in Mice. World J. Gastroenterol. 2023, 29, 5054–5074. [Google Scholar] [CrossRef]
- Tain, Y.L.; Hou, C.Y.; Chang-Chien, G.P.; Lin, S.; Hsu, C.N. Resveratrol Butyrate Ester Supplementation Blunts the Development of Offspring Hypertension in a Maternal Di-2-Ethylhexyl Phthalate Exposure Rat Model. Nutrients 2023, 15, 697. [Google Scholar] [CrossRef]
- Long, C.; Li, Z.; Liang, S.; Yao, S.; Zhu, S.; Lu, L.; Cao, R.; Chen, Y.; Huang, Y.; Ma, Y.; et al. Resveratrol Reliefs DEHP-Induced Defects during Human Decidualization. Ecotoxicol. Environ. Saf. 2023, 258, 114931. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Zhou, X.; Li, Q.; Chen, J.; Wei, Y.; Shen, L.; Long, C.; Wu, S.; Wei, G. Epigallocatechin Gallate Alleviates Mono-2-Ethylhexyl Phthalate-Induced Male Germ Cell Pyroptosis by Inhibiting the ROS/MTOR/NLRP3 Pathway. Toxicol. In Vitro 2023, 91, 105626. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Qian, H.; Cui, J.; Ge, Z.; Shi, J.; Huo, Y.; Zhang, Y.; Ye, L. Endocrine Toxicity of Atrazine and Its Underlying Mechanisms. Toxicology 2024, 505, 153846. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Chen, J.; Yang, L.; Wu, D.; Xiong, L.; Guo, X.; Cao, H.; Zhang, C.; Hu, G.; Zhuang, Y. Curcumin Alleviates Atrazine-Induced Cardiotoxicity by Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis in Mice through ATF6/Chop/Bcl-2 Signaling Pathway. Biomed. Pharmacother. 2024, 171, 116205. [Google Scholar] [CrossRef] [PubMed]
- Abarikwu, S.O.; Ezim, O.E.; Ikeji, C.N.; Farombi, E.O. Atrazine: Cytotoxicity, Oxidative Stress, Apoptosis, Testicular Effects and Chemopreventive Interventions. Front. Toxicol. 2023, 5, 1246708. [Google Scholar] [CrossRef] [PubMed]
- Żwierełło, W.; Maruszewska, A.; Skórka-Majewicz, M.; Goschorska, M.; Baranowska-Bosiacka, I.; Dec, K.; Styburski, D.; Nowakowska, A.; Gutowska, I. The Influence of Polyphenols on Metabolic Disorders Caused by Compounds Released from Plastics—Review. Chemosphere 2020, 240, 124901. [Google Scholar] [CrossRef]
- Bock, K.W. From Dioxin Toxicity to Putative Physiologic Functions of the Human Ah Receptor in Homeostasis of Stem/Progenitor Cells. Biochem. Pharmacol. 2017, 123, 1–7. [Google Scholar] [CrossRef]
- Ten Tusscher, G.W.; Leijs, M.M.; de Boer, L.C.C.; Legler, J.; Olie, K.; Spekreijse, H.; van Dijk, B.W.; Vulsma, T.; Briët, J.; Ilsen, A.; et al. Neurodevelopmental Retardation, as Assessed Clinically and with Magnetoencephalography and Electroencephalography, Associated with Perinatal Dioxin Exposure. Sci. Total Environ. 2014, 491–492, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Van Luong, H.; Tai, P.T.; Nishijo, M.; Trung, D.M.; Thao, P.N.; Van Son, P.; Van Long, N.; Linh, N.T.; Nishijo, H. Association of Dioxin Exposure and Reproductive Hormone Levels in Men Living near the Bien Hoa Airbase, Vietnam. Sci. Total Environ. 2018, 628–629, 484–489. [Google Scholar] [CrossRef]
- Costa, E.M.F.; Spritzer, P.M.; Hohl, A.; Bachega, T.A.S.S. Efeitos Dos Desreguladores Endócrinos No Desenvolvimento Do Trato Reprodutivo Feminino. Arq. Bras. Endocrinol. Metabol. 2014, 58, 153–161. [Google Scholar] [CrossRef]
- Kim, Y.A.; Park, J.B.; Woo, M.S.; Lee, S.Y.; Kim, H.Y.; Yoo, Y.H. Persistent Organic Pollutant-Mediated Insulin Resistance. Int. J. Environ. Res. Public Health 2019, 16, 448. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ye, Y.; Huang, F.; Chen, H.; Wu, H.; Huang, J.; Hu, J.; Xia, D.; Wu, Y. Corrigendum: Association between Dioxin and Cancer Incidence and Mortality: A Meta-Analysis. Sci. Rep. 2017, 7, 41665. [Google Scholar] [CrossRef] [PubMed]
- Haverinen, E.; Fernandez, M.F.; Mustieles, V.; Tolonen, H. Metabolic Syndrome and Endocrine Disrupting Chemicals: An Overview of Exposure and Health Effects. Int. J. Environ. Res. Public Health 2021, 18, 13047. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental Arsenic Exposure and Its Contribution to Human Diseases, Toxicity Mechanism and Management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef] [PubMed]
- Abhyankar, L.N.; Jones, M.R.; Guallar, E.; Navas-Acien, A. Arsenic Exposure and Hypertension: A Systematic Review. Environ. Health Perspect. 2012, 120, 494–500. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, M.; Tian, X.; Xie, J.; Liu, P.; Ying, X.; Wang, M.; Yuan, J.; Gao, Y.; Tian, F.; et al. Effects of arsenic exposure on lipid metabolism: A systematic review and meta-analysis. Toxicol. Mech. Methods 2021, 31, 188–196. [Google Scholar] [CrossRef]
- Farzan, S.F.; Gossai, A.; Chen, Y.; Chasan-Taber, L.; Baker, E.; Karagas, M. Maternal Arsenic Exposure and Gestational Diabetes and Glucose Intolerance in the New Hampshire Birth Cohort Study. Environ. Health 2016, 15, 106. [Google Scholar] [CrossRef]
- Salmeri, N.; Villanacci, R.; Ottolina, J.; Bartiromo, L.; Cavoretto, P.; Dolci, C.; Lembo, R.; Schimberni, M.; Valsecchi, L.; Viganò, P.; et al. Maternal Arsenic Exposure and Gestational Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3094. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Huang, Y.K.; Shiue, H.S.; Chen, L.S.; Choy, C.S.; Huang, S.R.; Han, B.C.; Hsueh, Y.M. Arsenic Methylation Capacity and Obesity Are Associated with Insulin Resistance in Obese Children and Adolescents. Food Chem. Toxicol. 2014, 74, 60–67. [Google Scholar] [CrossRef]
- Kinkade, C.W.; Rivera-Núñez, Z.; Gorcyzca, L.; Aleksunes, L.M.; Barrett, E.S. Impact of Fusarium-Derived Mycoestrogens on Female Reproduction: A Systematic Review. Toxins 2021, 13, 373. [Google Scholar] [CrossRef]
- Silva, I.P.; Brito, D.C.C.; Silva, T.E.S.; Silva, R.F.; Guedes, M.I.F.; Silva, J.Y.G.; Rodrigues, A.P.R.; Santos, R.R.; Figueiredo, J.R. In Vitro Exposure of Sheep Ovarian Tissue to the Xenoestrogens Zearalenone and Enterolactone: Effects on Preantral Follicles. Theriogenology 2021, 174, 124–130. [Google Scholar] [CrossRef]
- Li, R.; Andersen, C.L.; Hu, L.; Wang, Z.; Li, Y.; Nagy, T.; Ye, X. Dietary Exposure to Mycotoxin Zearalenone (ZEA) during Post-Implantation Adversely Affects Placental Development in Mice. Reprod. Toxicol. 2019, 85, 42–50. [Google Scholar] [CrossRef]
- Kinkade, C.W.; Aleksunes, L.M.; Brinker, A.; Buckley, B.; Brunner, J.; Wang, C.; Miller, R.K.; O’Connor, T.G.; Rivera-Núñez, Z.; Barrett, E.S. Associations between Mycoestrogen Exposure and Sex Steroid Hormone Concentrations in Maternal Serum and Cord Blood in the UPSIDE Pregnancy Cohort. Int. J. Hyg. Environ. Health 2024, 260, 114405. [Google Scholar] [CrossRef]
- Carrano, R.; Grande, M.; Leti Maggio, E.; Zucca, C.; Bei, R.; Palumbo, C.; Focaccetti, C.; Nardozi, D.; Lucarini, V.; Angiolini, V.; et al. Dietary Polyphenols Effects on Focal Adhesion Plaques and Metalloproteinases in Cancer Invasiveness. Biomedicines 2024, 12, 482. [Google Scholar] [CrossRef]
- Benvenuto, M.; Albonici, L.; Focaccetti, C.; Ciuffa, S.; Fazi, S.; Cifaldi, L.; Miele, M.T.; De Maio, F.; Tresoldi, I.; Manzari, V.; et al. Polyphenol-Mediated Autophagy in Cancer: Evidence of in Vitro and in Vivo Studies. Int. J. Mol. Sci. 2020, 21, 6635. [Google Scholar] [CrossRef]
- Benvenuto, M.; Mattera, R.; Taffera, G.; Giganti, M.G.; Lido, P.; Masuelli, L.; Modesti, A.; Bei, R. The Potential Protective Effects of Polyphenols in Asbestos-Mediated Inflammation and Carcinogenesis of Mesothelium. Nutrients 2016, 8, 275. [Google Scholar] [CrossRef]
- Di Carlo, G.; Mascolo, N.; Izzo, A.A.; Capasso, F. Flavonoids: Old and New Aspects of a Class of Natural Therapeutic Drugs. Life Sci. 1999, 65, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In Vitro and In Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef]
- Masuelli, L.; Granato, M.; Benvenuto, M.; Mattera, R.; Bernardini, R.; Mattei, M.; d’Amati, G.; D’Orazi, G.; Faggioni, A.; Bei, R.; et al. Chloroquine Supplementation Increases the Cytotoxic Effect of Curcumin against Her2/Neu Overexpressing Breast Cancer Cells in Vitro and in Vivo in Nude Mice While Counteracts It in Immune Competent Mice. Oncoimmunology 2017, 6, e1356151. [Google Scholar] [CrossRef]
- Focaccetti, C.; Palumbo, C.; Benvenuto, M.; Carrano, R.; Melaiu, O.; Nardozi, D.; Angiolini, V.; Lucarini, V.; Kërpi, B.; Masuelli, L.; et al. The Combination of Bioavailable Concentrations of Curcumin and Resveratrol Shapes Immune Responses While Retaining the Ability to Reduce Cancer Cell Survival. Int. J. Mol. Sci. 2024, 25, 232. [Google Scholar] [CrossRef] [PubMed]
- Arena, A.; Romeo, M.A.; Benedetti, R.; Masuelli, L.; Bei, R.; Gilardini Montani, M.S.; Cirone, M. New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects. Pharmaceuticals 2021, 14, 1068. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic Potential of Flavonoids in Cancer: ROS-Mediated Mechanisms. Biomed. Pharmacother. 2022, 146, 112442. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, X.; Jiang, Y.; Su, Q.; Li, Q.; Li, Z. Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer. Biomolecules 2021, 11, 135. [Google Scholar] [CrossRef]
- Focaccetti, C.; Izzi, V.; Benvenuto, M.; Fazi, S.; Ciuffa, S.; Giganti, M.G.; Potenza, V.; Manzari, V.; Modesti, A.; Bei, R. Polyphenols as Immunomodulatory Compounds in the Tumor Microenvironment: Friends or Foes? Int. J. Mol. Sci. 2019, 20, 1714. [Google Scholar] [CrossRef] [PubMed]
- Madore, M.P.; Sakaki, J.R.; Chun, O.K. Protective Effects of Polyphenols against Endocrine Disrupting Chemicals. Food Sci. Biotechnol. 2022, 31, 905–934. [Google Scholar] [CrossRef] [PubMed]
- Benvenuto, M.; Focaccetti, C.; Cifaldi, L.; Bei, R. Endocrine-Disrupting Chemicals: Do Polyphenols Advantage or Counteract Their Activity? Front. Biosci. (Landmark Ed.) 2024, 29, 344. [Google Scholar] [CrossRef]
- Cipolletti, M.; Solar Fernandez, V.; Montalesi, E.; Marino, M.; Fiocchetti, M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: The Modulation of Estrogen Receptors (ERs) Signaling. Int. J. Mol. Sci. 2018, 19, 2624. [Google Scholar] [CrossRef]
- Lephart, E.D. Phytoestrogens (Resveratrol and Equol) for Estrogen-Deficient Skin-Controversies/Misinformation versus Anti-Aging In Vitro and Clinical Evidence via Nutraceutical-Cosmetics. Int. J. Mol. Sci. 2021, 22, 11218. [Google Scholar] [CrossRef]
- Lephart, E.D.; Naftolin, F. Factors Influencing Skin Aging and the Important Role of Estrogens and Selective Estrogen Receptor Modulators (SERMs). Clin. Cosmet. Investig. Dermatol. 2022, 15, 1695–1709. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed]
- Patisaul, H.B. Endocrine Disruption by Dietary Phyto-Oestrogens: Impact on Dimorphic Sexual Systems and Behaviours. Proc. Nutr. Soc. 2017, 76, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Rispo, F.; De Negri Atanasio, G.; Demori, I.; Costa, G.; Marchese, E.; Perera-Del-Rosario, S.; Serrano-Candelas, E.; Palomino-Schätzlein, M.; Perata, E.; Robino, F.; et al. An Extensive Review on Phenolic Compounds and Their Potential Estrogenic Properties on Skin Physiology. Front. Cell Dev. Biol. 2023, 11, 1305835. [Google Scholar] [CrossRef]
- Abady, M.M.; Saadeldin, I.M.; Han, A.; Bang, S.; Kang, H.; Seok, D.W.; Kwon, H.J.; Cho, J.; Jeong, J.S. Melatonin and Resveratrol Alleviate Molecular and Metabolic Toxicity Induced by Bisphenol A in Endometrial Organoids. Reprod. Toxicol. 2024, 128, 108628. [Google Scholar] [CrossRef]
- Fouad, H.; Faruk, E.M.; Alasmari, W.A.; Nadwa, E.H.; Ebrahim, U.F.A. Structural and Chemical Role of Mesenchymal Stem Cells and Resveratrol in Regulation of Apoptotic -Induced Genes in Bisphenol-A Induced Uterine Damage in Adult Female Albino Rats. Tissue Cell 2021, 70, 101502. [Google Scholar] [CrossRef]
- Piras, A.R.; Ariu, F.; Maltana, A.; Leoni, G.G.; Martino, N.A.; Mastrorocco, A.; Dell’Aquila, M.E.; Bogliolo, L. Protective Effect of Resveratrol against Cadmium-Induced Toxicity on Ovine Oocyte In Vitro Maturation and Fertilization. J. Anim. Sci. Biotechnol. 2022, 13, 83. [Google Scholar] [CrossRef]
- Wang, W.; Liu, G.; Jiang, X.; Wu, G. Resveratrol Ameliorates Toxic Effects of Cadmium on Placental Development in Mouse Placenta and Human Trophoblast Cells. Birth Defects Res. 2021, 113, 1470–1483. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, X.; Wang, X.-J.; Wang, Y.-S.; Yang, S.-J.; Ding, Z.-M.; Zhang, S.-X.; Zhang, L.-D.; Duan, Z.-Q.; Liang, A.-X.; et al. Curcumin Alleviates Bisphenol AF-Induced Oxidative Stress and Apoptosis in Caprine Endometrial Epithelial Cells via the Nrf2 Signaling Pathway. Environ. Toxicol. 2023, 38, 2904–2914. [Google Scholar] [CrossRef]
- Wang, J.; Jenkins, S.; Lamartiniere, C.A. Cell Proliferation and Apoptosis in Rat Mammary Glands Following Combinational Exposure to Bisphenol A and Genistein. BMC Cancer 2014, 14, 379. [Google Scholar] [CrossRef]
- Jiao, J.-H.; Gao, L.; Yong, W.-L.; Kou, Z.-Y.; Ren, Z.-Q.; Cai, R.; Chu, G.-Y.; Pang, W.-J. Resveratrol Improves Estrus Disorder Induced by Bisphenol A through Attenuating Oxidative Stress, Autophagy, and Apoptosis. J. Biochem. Mol. Toxicol. 2022, 36, e23120. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Gao, X.; Fan, W.; Liu, S.; Li, M.; Miao, Y.; Ding, C.; Tang, Z.; Yan, L.; Liu, G.; et al. Bisphenol A and Genistein Have Opposite Effects on Adult Chicken Ovary by Acting on ERα/Nrf2-Keap1-Signaling Pathway. Chem. Biol. Interact. 2021, 347, 109616. [Google Scholar] [CrossRef] [PubMed]
- Saadeldin, I.M.; Hussein, M.A.; Suleiman, A.H.; Abohassan, M.G.; Ahmed, M.M.; Moustafa, A.A.; Moumen, A.F.; Abdel-Aziz Swelum, A. Ameliorative Effect of Ginseng Extract on Phthalate and Bisphenol A Reprotoxicity during Pregnancy in Rats. Environ. Sci. Pollut. Res. 2018, 25, 21205–21215. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.-H.; Hwang, K.-A.; Kim, T.-H.; Hyun, S.-H.; Jeung, E.-B.; Choi, K.-C. Induced Growth of BG-1 Ovarian Cancer Cells by 17β-Estradiol or Various Endocrine Disrupting Chemicals Was Reversed by Resveratrol via Downregulation of Cell Cycle Progression. Mol. Med. Rep. 2012, 6, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.-H.; Hwang, K.-A.; Lee, H.-R.; Choi, D.-W.; Choi, K.-C. Resveratrol Regulates the Cell Viability Promoted by 17β-Estradiol or Bisphenol A via down-Regulation of the Cross-Talk between Estrogen Receptor α and Insulin Growth Factor-1 Receptor in BG-1 Ovarian Cancer Cells. Food Chem. Toxicol. 2013, 59, 373–379. [Google Scholar] [CrossRef]
- Bulzomi, P.; Bolli, A.; Galluzzo, P.; Acconcia, F.; Ascenzi, P.; Marino, M. The Naringenin-Induced Proapoptotic Effect in Breast Cancer Cell Lines Holds out against a High Bisphenol a Background. IUBMB Life 2012, 64, 690–696. [Google Scholar] [CrossRef]
- Mitra, S.; Patra, T.; Saha, D.; Ghosh, P.; Mustafi, S.M.; Varghese, A.C.; Murmu, N. Sub-Chronic Cadmium and Lead Compound Exposure Induces Reproductive Toxicity and Development of Testicular Germ Cell Neoplasia In Situ in Murine Model: Attenuative Effects of Resveratrol. J. Biochem. Mol. Toxicol. 2022, 36, e23058. [Google Scholar] [CrossRef]
- Bordbar, H.; Yahyavi, S.S.; Noorafshan, A.; Aliabadi, E.; Naseh, M. Resveratrol Ameliorates Bisphenol A-Induced Testicular Toxicity in Adult Male Rats: A Stereological and Functional Study. Basic Clin. Androl. 2023, 33, 1. [Google Scholar] [CrossRef]
- Jahan, S.; Ain, Q.U.; Ullah, H. Therapeutic Effects of Quercetin against Bisphenol A Induced Testicular Damage in Male Sprague Dawley Rats. Syst. Biol. Reprod. Med. 2016, 62, 114–124. [Google Scholar] [CrossRef]
- Ndufeiya-Kumasi, L.C.; Abarikwu, S.O.; Ohanador, R.; Omoregie, E.S. Curcumin Improves the Protective Effects of Quercetin against Atrazine-Induced Testicular Injury in Adult Wistar Rats. Andrologia 2022, 54, e14445. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, N.; Micali, A.; Marini, H.R.; Freni, J.; Santoro, G.; Puzzolo, D.; Squadrito, F.; Pallio, G.; Navarra, M.; Cirmi, S.; et al. A Flavonoid-Rich Extract from Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, Shows Protective Effects in a Murine Model of Cadmium-Induced Testicular Injury. Pharmaceuticals 2021, 14, 386. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Mehrzadi, S.; Siahpoosh, A.; Basir, Z.; Bahrami, N.; Goudarzi, M. Gallic Acid Ameliorates Di-(2-Ethylhexyl) Phthalate-Induced Testicular Injury in Adult Mice. Hum. Exp. Toxicol. 2022, 41, 9603271221078867. [Google Scholar] [CrossRef]
- Sahin, E.; Ilgaz, C.; Erdoǧan, D.; Take, G.; Göktas, G. Protective Effects of Resveratrol against Di-n Buthyl Phthalate Induced Toxicity in Ductus Epididymis and Ductus Deferens in Rats. Indian J. Pharmacol. 2014, 46, 51–56. [Google Scholar] [CrossRef]
- Berköz, M.; Yalın, S.; Türkmen, Ö. Protective Roles of Some Natural and Synthetic Aromatase Inhibitors in Testicular Insufficiency Caused by Bisphenol A Exposure. Int. J. Environ. Health Res. 2024, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Facina, C.H.; Campos, S.G.P.; Ruiz, T.F.R.; Góes, R.M.; Vilamaior, P.S.L.; Taboga, S.R. Protective Effect of the Association of Curcumin with Piperine on Prostatic Lesions: New Perspectives on BPA-Induced Carcinogenesis. Food Chem. Toxicol. 2021, 158, 112700. [Google Scholar] [CrossRef]
- Samova, S.; Doctor, H.; Verma, R. In Vivo Analysis of Bisphenol A Induced Dose-Dependent Adverse Effects in Cauda Epididymis of Mice. Interdiscip. Toxicol. 2018, 11, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Grami, D.; Rtibi, K.; Selmi, S.; Jridi, M.; Sebai, H.; Marzouki, L.; Sabovic, I.; Foresta, C.; De Toni, L. Aqueous Extract of Eruca Sativa Protects Human Spermatozoa from Mitochondrial Failure Due to Bisphenol A Exposure. Reprod. Toxicol. 2018, 82, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Sangai, N.P.; Verma, R.J. Protective Effect of Quercetin on Bisphenol A-Caused Alterations in Succinate Dehydrogenase and Adenosine Triphosphatase Activities in Liver and Kidney of Mice. Acta Pol. Pharm. 2012, 69, 1189–1194. [Google Scholar] [PubMed]
- Liao, J.-X.; Chen, Y.-W.; Shih, M.-K.; Tain, Y.-L.; Yeh, Y.-T.; Chiu, M.-H.; Chang, S.K.C.; Hou, C.-Y. Resveratrol Butyrate Esters Inhibit BPA-Induced Liver Damage in Male Offspring Rats by Modulating Antioxidant Capacity and Gut Microbiota. Int. J. Mol. Sci. 2021, 22, 5273. [Google Scholar] [CrossRef] [PubMed]
- Zaulet, M.; Kevorkian, S.E.M.; Dinescu, S.; Cotoraci, C.; Suciu, M.; Herman, H.; Buburuzan, L.; Badulescu, L.; Ardelean, A.; Hermenean, A. Protective Effects of Silymarin against Bisphenol A-Induced Hepatotoxicity in Mouse Liver. Exp. Ther. Med. 2017, 13, 821–828. [Google Scholar] [CrossRef]
- Uzunhisarcikli, M.; Aslanturk, A. Hepatoprotective Effects of Curcumin and Taurine against Bisphenol A-Induced Liver Injury in Rats. Environ. Sci. Pollut. Res. Int. 2019, 26, 37242–37253. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, H.G.; Abdelrazek, H.M.A.; Zeidan, D.W.; Mohamed, R.M.; Abdelazim, A.M. Lycopene: Hepatoprotective and Antioxidant Effects toward Bisphenol A-Induced Toxicity in Female Wistar Rats. Oxid. Med. Cell Longev. 2018, 2018, 5167524. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Zou, J.; Yang, J.; Liu, H.; Cao, Z.; He, Y.; Feng, D. Curcumin Protects against Bisphenol A-Induced Hepatic Steatosis by Inhibiting Cholesterol Absorption and Synthesis in CD-1 Mice. Food Sci. Nutr. 2023, 11, 5091–5101. [Google Scholar] [CrossRef] [PubMed]
- Elswefy, S.E.-S.; Abdallah, F.R.; Wahba, A.S.; Hasan, R.A.; Atteia, H.H. Antifibrotic Effect of Curcumin, N-Acetyl Cysteine and Propolis Extract against Bisphenol A-Induced Hepatotoxicity in Rats: Prophylaxis versus Co-Treatment. Life Sci. 2020, 260, 118245. [Google Scholar] [CrossRef]
- Prabu, S.M.; Shagirtha, K.; Renugadevi, J. Naringenin in Combination with Vitamins C and E Potentially Protects Oxidative Stress-Mediated Hepatic Injury in Cadmium-Intoxicated Rats. J. Nutr. Sci. Vitaminol. 2011, 57, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Çetin, Y.S.; Altındağ, F.; Berköz, M. Protective Role of Resveratrol and Apigenin against Toxic Effects of Bisphenol a in Rat Salivary Gland. Drug Chem. Toxicol. 2023, 46, 88–96. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, R.; Wei, W.; Wang, M.; Wang, S. Resveratrol Reverses the Cadmium-Promoted Migration, Invasion, and Epithelial-Mesenchymal Transition Procession by Regulating the Expression of ZEB1. Hum. Exp. Toxicol. 2021, 40, S331–S338. [Google Scholar] [CrossRef]
- Ismail, O.I.; El-Meligy, M.M.S. Curcumin Ameliorated Low Dose-Bisphenol A Induced Gastric Toxicity in Adult Albino Rats. Sci. Rep. 2022, 12, 10201. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Ge, J.; Lv, M.-W.; Talukder, M.; Guo, K.; Li, Y.-H.; Li, J.-L. Ameliorative Effects of Resveratrol against Cadmium-Induced Nephrotoxicity via Modulating Nuclear Xenobiotic Receptor Response and PINK1/Parkin-Mediated Mitophagy. Food Funct. 2020, 11, 1856–1868. [Google Scholar] [CrossRef]
- Renugadevi, J.; Prabu, S.M. Quercetin Protects against Oxidative Stress-Related Renal Dysfunction by Cadmium in Rats. Exp. Toxicol. Pathol. 2010, 62, 471–481. [Google Scholar] [CrossRef]
- Alekhya Sita, G.J.; Gowthami, M.; Srikanth, G.; Krishna, M.M.; Rama Sireesha, K.; Sajjarao, M.; Nagarjuna, K.; Nagarjuna, M.; Chinnaboina, G.K.; Mishra, A.; et al. Protective Role of Luteolin against Bisphenol A-Induced Renal Toxicity through Suppressing Oxidative Stress, Inflammation, and Upregulating Nrf2/ARE/ HO-1 Pathway. IUBMB Life 2019, 71, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Lv, X.; Xu, T.; Sun, J.; Gao, M.; Lin, H. Effects of Atrazine and Curcumin Exposure on TCMK-1 Cells: Oxidative Damage, Pyroptosis and Cell Cycle Arrest. Food Chem. Toxicol. 2024, 185, 114483. [Google Scholar] [CrossRef]
- Unsal, C.; Kanter, M.; Aktas, C.; Erboga, M. Role of Quercetin in Cadmium-Induced Oxidative Stress, Neuronal Damage, and Apoptosis in Rats. Toxicol. Ind. Health 2015, 31, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; Agarwal, S.; Tripathi, A.; Chaturvedi, R.K. Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway. Mol. Neurobiol. 2016, 53, 3010–3029. [Google Scholar] [CrossRef] [PubMed]
- Tandon, A.; Singh, S.J.; Gupta, M.; Singh, N.; Shankar, J.; Arjaria, N.; Goyal, S.; Chaturvedi, R.K. Notch Pathway Up-Regulation via Curcumin Mitigates Bisphenol-A (BPA) Induced Alterations in Hippocampal Oligodendrogenesis. J. Hazard. Mater. 2020, 392, 122052. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ma, K.; Wu, H.-Y.; Wu, Y.-P.; Li, B.-X. Isoflavones Induce BEX2-Dependent Autophagy to Prevent ATR-Induced Neurotoxicity in SH-SY5Y Cells. Cell Physiol. Biochem. 2017, 43, 1866–1879. [Google Scholar] [CrossRef] [PubMed]
- Rameshrad, M.; Razavi, B.M.; Imenshahidi, M.; Hosseinzadeh, H. Vitis Vinifera (Grape) Seed Extract and Resveratrol Alleviate Bisphenol-A-Induced Metabolic Syndrome: Biochemical and Molecular Evidences. Phytother. Res. 2019, 33, 832–844. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Fatima, M.; Rehman, K.; Rehman, Q.; Chauhdary, Z.; Nadeem, A.; Mir, T.M. Resveratrol Mitigates Bisphenol A-Induced Metabolic Disruptions: Insights from Experimental Studies. Molecules 2023, 28, 5865. [Google Scholar] [CrossRef]
- Shih, M.-K.; Tain, Y.-L.; Chen, Y.-W.; Hsu, W.-H.; Yeh, Y.-T.; Chang, S.K.C.; Liao, J.-X.; Hou, C.-Y. Resveratrol Butyrate Esters Inhibit Obesity Caused by Perinatal Exposure to Bisphenol A in Female Offspring Rats. Molecules 2021, 26, 4010. [Google Scholar] [CrossRef]
- Geng, S.; Wang, S.; Zhu, W.; Xie, C.; Li, X.; Wu, J.; Zhu, J.; Jiang, Y.; Yang, X.; Li, Y.; et al. Curcumin Attenuates BPA-Induced Insulin Resistance in HepG2 Cells through Suppression of JNK/P38 Pathways. Toxicol. Lett. 2017, 272, 75–83. [Google Scholar] [CrossRef]
- Geng, S.; Wang, S.; Zhu, W.; Xie, C.; Li, X.; Wu, J.; Zhu, J.; Jiang, Y.; Yang, X.; Li, Y.; et al. Curcumin Suppresses JNK Pathway to Attenuate BPA-Induced Insulin Resistance in LO2 Cells. Biomed. Pharmacother. 2018, 97, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Faheem, N.M.; El Askary, A.; Gharib, A.F. Lycopene Attenuates Bisphenol A-Induced Lung Injury in Adult Albino Rats: A Histological and Biochemical Study. Environ. Sci. Pollut. Res. Int. 2021, 28, 49139–49152. [Google Scholar] [CrossRef]
- Mei, W.; Song, D.; Wu, Z.; Yang, L.; Wang, P.; Zhang, R.; Zhu, X. Resveratrol Protects MC3T3-E1 Cells against Cadmium-Induced Suppression of Osteogenic Differentiation by Modulating the ERK1/2 and JNK Pathways. Ecotoxicol. Environ. Saf. 2021, 214, 112080. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-N.; Lin, Y.-J.; Tain, Y.-L. Maternal Exposure to Bisphenol A Combined with High-Fat Diet-Induced Programmed Hypertension in Adult Male Rat Offspring: Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 4382. [Google Scholar] [CrossRef] [PubMed]
- Apaydin, F.G.; Aslanturk, A.; Uzunhisarcikli, M.; Bas, H.; Kalender, S.; Kalender, Y. Histopathological and Biochemical Studies on the Effect of Curcumin and Taurine against Bisphenol A Toxicity in Male Rats. Environ. Sci. Pollut. Res. 2019, 26, 12302–12310. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Y.; Fan, J.; Ye, T.; Sun, X.; Dong, S. Apigenin Inhibits the Expression of IL-6, IL-8, and ICAM-1 in DEHP-Stimulated Human Umbilical Vein Endothelial Cells and In Vivo. Inflammation 2012, 35, 1466–1476. [Google Scholar] [CrossRef]
- Mohsenzadeh, M.S.; Razavi, B.M.; Imenshahidi, M.; Mohajeri, S.A.; Rameshrad, M.; Hosseinzadeh, H. Evaluation of Green Tea Extract and Epigallocatechin Gallate Effects on Bisphenol A-Induced Vascular Toxicity in Isolated Rat Aorta and Cytotoxicity in Human Umbilical Vein Endothelial Cells. Phytother. Res. 2021, 35, 996–1009. [Google Scholar] [CrossRef]
- Sirasanagandla, S.R.; Al-Huseini, I.; Al Mushaiqri, M.; Al-Abri, N.; Al-Ghafri, F. Maternal Resveratrol Supplementation Ameliorates Bisphenol A-Induced Atherosclerotic Lesions Formation in Adult Offspring ApoE(−/−) Mice. 3 Biotech 2022, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Han, B.; Hu, H.; Liu, J.; Liu, Y. Epigallocatechin-3-O-Gallate Protects Against Hepatic Damage and Testicular Toxicity in Male Mice Exposed to Di-(2-Ethylhexyl) Phthalate. J. Med. Food 2015, 18, 753–761. [Google Scholar] [CrossRef]
- Lecomte, S.; Demay, F.; Ferrière, F.; Pakdel, F. Phytochemicals Targeting Estrogen Receptors: Beneficial Rather than Adverse Effects? Int. J. Mol. Sci. 2017, 18, 1381. [Google Scholar] [CrossRef]
- Frye, C.A.; Bo, E.; Calamandrei, G.; Calzà, L.; Dessì-Fulgheri, F.; Fernández, M.; Fusani, L.; Kah, O.; Kajta, M.; Le Page, Y.; et al. Endocrine Disrupters: A Review of Some Sources, Effects, and Mechanisms of Actions on Behaviour and Neuroendocrine Systems. J. Neuroendocrinol. 2012, 24, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef] [PubMed]
- Bar-El, D.S.; Reifen, R. Soy as an Endocrine Disruptor: Cause for Caution? J. Pediatr. Endocrinol. Metab. 2010, 23, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Pupo, M.; Maggiolini, M.; Musti, A.M. GPER Mediates Non-Genomic Effects of Estrogen. Methods Mol. Biol. 2016, 1366, 471–488. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Yu, S.; Dong, D.; Lee, L.T.O. G Protein-Coupled Estrogen Receptor: A Potential Therapeutic Target in Cancer. Front. Endocrinol. 2019, 10, 725. [Google Scholar] [CrossRef]
- Maggiolini, M.; Vivacqua, A.; Fasanella, G.; Recchia, A.G.; Sisci, D.; Pezzi, V.; Montanaro, D.; Musti, A.M.; Picard, D.; Andò, S. The G Protein-Coupled Receptor GPR30 Mediates c-Fos up-Regulation by 17beta-Estradiol and Phytoestrogens in Breast Cancer Cells. J. Biol. Chem. 2004, 279, 27008–27016. [Google Scholar] [CrossRef]
- Stopper, H.; Schmitt, E.; Kobras, K. Genotoxicity of Phytoestrogens. Mutat. Res. 2005, 574, 139–155. [Google Scholar] [CrossRef]
- Thigpen, J.E.; Locklear, J.; Haseman, J.K.; Saunders, H.; Grant, M.F.; Forsythe, D.B. Effects of the Dietary Phytoestrogens Daidzein and Genistein on the Incidence of Vulvar Carcinomas in 129/J Mice. Cancer Detect. Prev. 2001, 25, 527–532. [Google Scholar]
- Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a Specific Inhibitor of Tyrosine-Specific Protein Kinases. J. Biol. Chem. 1987, 262, 5592–5595. [Google Scholar] [CrossRef]
- Dal Forno, G.O.; Oliveira, I.M.; Cavallin, M.D.; Santos, T.I.A.; Sleiman, H.K.; Falbo, M.K.; Romano, M.A.; Romano, R.M. Peripubertal Soy Isoflavone Consumption Leads to Subclinical Hypothyroidism in Male Wistar Rats. J. Dev. Orig. Health Dis. 2023, 14, 209–222. [Google Scholar] [CrossRef]
- Hu, C.; Wang, M.; Hu, M.; Ma, S.; Yang, B.; Xiao, W.; Zhou, Q.; Zhou, M.; Li, Z. Genistein Induces Endocrine Resistance in Human Breast Cancer by Suppressing H3K27 Trimethylation. Endocr. Relat. Cancer 2023, 30, e220191. [Google Scholar] [CrossRef] [PubMed]
- Balázs, A.; Faisal, Z.; Csepregi, R.; Kőszegi, T.; Kriszt, B.; Szabó, I.; Poór, M. In Vitro Evaluation of the Individual and Combined Cytotoxic and Estrogenic Effects of Zearalenone, Its Reduced Metabolites, Alternariol, and Genistein. Int. J. Mol. Sci. 2021, 22, 6281. [Google Scholar] [CrossRef] [PubMed]
- Hamilton-Reeves, J.M.; Rebello, S.A.; Thomas, W.; Slaton, J.W.; Kurzer, M.S. Isoflavone-Rich Soy Protein Isolate Suppresses Androgen Receptor Expression without Altering Estrogen Receptor-b Expression or Serum Hormonal Profiles in Men at High Risk of Prostate Cancer. J. Nutr. 2007, 137, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Terzioglu, S.; Yildiz, M.; Goncu, B.; Ozten Kandas, N. Achieving the Balance: Biphasic Effects of Genistein on PC-3 Cells. J. Food Biochem. 2019, 43, e12951. [Google Scholar] [CrossRef]
- Pihlajamaa, P.; Zhang, F.P.; Saarinen, L.; Mikkonen, L.; Hautaniemi, S.; Jänne, O.A. The Phytoestrogen Genistein Is a Tissue-Specific Androgen Receptor Modulator. Endocrinology 2011, 152, 4395–4405. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.R.; Clerici, C. Equol: Pharmacokinetics and Biological Actions. J. Nutr. 2010, 140, 1363S–1368S. [Google Scholar] [CrossRef]
- Ozasa, K.; Nakao, M.; Watanabe, Y.; Hayashi, K.; Miki, T.; Mikami, K.; Mori, M.; Sakauchi, F.; Washio, M.; Ito, Y.; et al. Serum phytoestrogens and prostate cancer risk in a nested case-control study among Japanese men. Cancer Sci. 2004, 95, 65–71. [Google Scholar] [CrossRef]
- Akaza, H.; Miyanaga, N.; Takashima, N.; Naito, S.; Hirao, Y.; Tsukamoto, T.; Fujioka, T.; Mori, M.; Kim, W.J.; Song, J.M.; et al. Comparisons of percent equol producers between prostate cancer patients and controls: Case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn. J. Clin. Oncol. 2004, 34, 86–89. [Google Scholar] [CrossRef]
- Muthyala, R.S.; Ju, Y.H.; Sheng, S.; Williams, L.D.; Doerge, D.R.; Katzenellenbogen, B.S.; Helferich, W.G.; Katzenellenbogen, J.A. Equol, a Natural Estrogenic Metabolite from Soy Isoflavones: Convenient Preparation and Resolution of R- and S-Equols and Their Differing Binding and Biological Activity through Estrogen Receptors Alpha and Beta. Bioorgan. Med. Chem. 2004, 12, 1559–1567. [Google Scholar] [CrossRef]
- Magee, P.J.; Raschke, M.; Steiner, C.; Duffin, J.G.; Pool-Zobel, B.L.; Jokela, T.; Wahala, K.; Rowland, I.R. Equol: A Comparison of the Effects of the Racemic Compound with That of the Purified S-Enantiomer on the Growth, Invasion, and DNA Integrity of Breast and Prostate Cells In Vitro. Nutr. Cancer 2006, 54, 232–242. [Google Scholar] [CrossRef]
- Degen, G.H.; Janning, P.; Diel, P.; Michna, H.; Bolt, H.M. Transplacental Transfer of the Phytoestrogen Daidzein in DA/Han Rats. Arch. Toxicol. 2002, 76, 23–29. [Google Scholar] [CrossRef]
- Shahzad, H.; Giribabu, N.; Muniandy, S.; Salleh, N. Quercetin Induces Morphological and Proliferative Changes of Rat’s Uteri under Estrogen and Progesterone Influences. Int. J. Clin. Exp. Pathol. 2014, 7, 5484–5494. [Google Scholar]
- Salleh, N.; Helmy, M.M.; Fadila, K.N.; Yeong, S.O. Isoflavone Genistein Induces Fluid Secretion and Morphological Changes in the Uteri of Post-Pubertal Rats. Int. J. Med. Sci. 2013, 10, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Newbold, R.R.; Banks, E.P.; Bullock, B.; Jefferson, W.N. Uterine Adenocarcinoma in Mice Treated Neonatally with Genistein. Cancer Res. 2001, 61, 4325–4328. [Google Scholar] [PubMed]
- Jarrell, J.; Foster, W.G.; Kinniburgh, D.W. Phytoestrogens in Human Pregnancy. Obstet. Gynecol. Int. 2012, 2012, 850313. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Fabova, Z.; Aldahmash, W.; Alshamrani, A.; Harrath, A.H. Rooibos (Aspalathus linearis) and Its Constituent Quercetin Can Suppress Ovarian Cell Functions and Their Response to FSH. Physiol. Res. 2023, 72, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Bechi, N.; Sorda, G.; Spagnoletti, A.; Bhattacharjee, J.; Vieira Ferro, E.A.; de Freitas Barbosa, B.; Frosini, M.; Valoti, M.; Sgaragli, G.; Paulesu, L.; et al. Toxicity Assessment on Trophoblast Cells for Some Environment Polluting Chemicals and 17β-Estradiol. Toxicol. In Vitro 2013, 27, 995–1000. [Google Scholar] [CrossRef]
- Botelho, G.G.K.; Bufalo, A.C.; Boareto, A.C.; Muller, J.C.; Morais, R.N.; Martino-Andrade, A.J.; Lemos, K.R.; Dalsenter, P.R. Vitamin C and Resveratrol Supplementation to Rat Dams Treated with Di(2-Ethylhexyl)Phthalate: Impact on Reproductive and Oxidative Stress End Points in Male Offspring. Arch. Environ. Contam. Toxicol. 2009, 57, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, X.; Zhu, Q.; Chen, D.; Guo, J.; Yao, W.; Dong, Y.; Wei, J.; Lian, Q.; Ge, R.S.; et al. Disrupting Androgen Production of Leydig Cells by Resveratrol via Direct Inhibition of Human and Rat 3β-Hydroxysteroid Dehydrogenase. Toxicol. Lett. 2014, 226, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Gehm, B.D.; Mcandrews, J.M.; Chien, P.-Y.; Jameson, J.L. Resveratrol, a Polyphenolic Compound Found in Grapes and Wine, Is an Agonist for the Estrogen Receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 14138–14143. [Google Scholar] [CrossRef]
- Castillo-Pichardo, L.; Cubano, L.A.; Dharmawardhane, S. Dietary Grape Polyphenol Resveratrol Increases Mammary Tumor Growth and Metastasis in Immunocompromised Mice. BMC Complement. Altern. Med. 2013, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Baravalle, R.; Ciaramella, A.; Baj, F.; Di Nardo, G.; Gilardi, G. Identification of Endocrine Disrupting Chemicals Acting on Human Aromatase. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.M.; Jaskula-Sztul, R.; Ahmed, K.; Harrison, A.D.; Kunnimalaiyaan, M.; Chen, H. Resveratrol Induces Differentiation Markers Expression in Anaplastic Thyroid Carcinoma via Activation of Notch1 Signaling and Suppresses Cell Growth. Mol. Cancer Ther. 2013, 12, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Sebai, H.; Hovsépian, S.; Ristorcelli, E.; Aouani, E.; Lombardo, D.; Fayet, G. Resveratrol Increases Iodide Trapping in the Rat Thyroid Cell Line FRTL-5. Thyroid 2010, 20, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, C.; Bucci, I.; Di Santo, S.; Rossi, C.; Grassadonia, A.; Mariotti, M.; Piantelli, M.; Monaco, F.; Napolitano, G. Resveratrol Inhibits Sodium/Iodide Symporter Gene Expression and Function in Rat Thyroid Cells. PLoS ONE 2014, 9, e107936. [Google Scholar] [CrossRef]
- Giuliani, C.; Iezzi, M.; Ciolli, L.; Hysi, A.; Bucci, I.; Di Santo, S.; Rossi, C.; Zucchelli, M.; Napolitano, G. Resveratrol Has Anti-Thyroid Effects Both In Vitro and In Vivo. Food Chem. Toxicol. 2017, 107, 237–247. [Google Scholar] [CrossRef]
- Marino, M.; Del Bo’, C.; Martini, D.; Porrini, M.; Riso, P. A Review of Registered Clinical Trials on Dietary (Poly)Phenols: Past Efforts and Possible Future Directions. Foods 2020, 9, 1606. [Google Scholar] [CrossRef]
- El Oirdi, M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals 2024, 17, 692. [Google Scholar] [CrossRef]
- Zhang, Y.; Balasooriya, H.; Sirisena, S.; Ng, K. The Effectiveness of Dietary Polyphenols in Obesity Management: A Systematic Review and Meta-Analysis of Human Clinical Trials. Food Chem. 2023, 404, 134668. [Google Scholar] [CrossRef]
- Chavez, G.N.; Jaworsky, K.; Basu, A. The Effects of Plant-Derived Phytochemical Compounds and Phytochemical-Rich Diets on Females with Polycystic Ovarian Syndrome: A Scoping Review of Clinical Trials. Int. J. Environ. Res. Public Health 2023, 20, 6534. [Google Scholar] [CrossRef] [PubMed]
- ISRCTN Registry. Available online: https://www.isrctn.com (accessed on 10 September 2024).
- ClinicalTrials Registry. Available online: https://clinicaltrials.gov (accessed on 10 September 2024).
- Messina, M.; Mejia, S.B.; Cassidy, A.; Duncan, A.; Kurzer, M.; Nagato, C.; Ronis, M.; Rowland, I.; Sievenpiper, J.; Barnes, S. Neither Soyfoods nor Isoflavones Warrant Classification as Endocrine Disruptors: A Technical Review of the Observational and Clinical Data. Crit. Rev. Food Sci. Nutr. 2022, 62, 5824–5885. [Google Scholar] [CrossRef] [PubMed]
Polyphenol | In Vivo Model | In Vitro Model | Effects | Reference |
---|---|---|---|---|
Resveratrol | Endometrial organoids from porcine uteri (10 µM) | Mitigation of BPA toxic effects via the modulation of Wnt/β-catenin | [95] | |
Female adult albino Wistar rats (20 mg/kg BW/day, oral gavage) | Protection against BPA-induced uterine damage: restoration of normal gonadal hormone synthesis, reduction of oxidative stress, apoptosis and fibrosis | [96] | ||
Ovarian adenocarcinoma cell line (BG-1) (50–100 μM) | Reduction of cell growth induced by BPA, OP, MXC via upregulation of p21 expression and downregulation of CDK2 expression. Suppression of BPA-induced cell growth via disruption of ERα and IGF-1R pathways interaction | [104,105] | ||
Male albino Wistar rats (25, 50 mg/kg/day, i.p.) | Protection against BPA-induced metabolic abnormalities: improvement of insulin signaling and antioxidant capabilities | [137] | ||
Male albino Wistar rats (100 mg/kg, oral gavage) | Protection against BPA-induced damage | [138] | ||
Male Sprague-Dawley rats (100 mg/kg/day, oral gavage) | Reduction of the effects of BPA on testicular structure and sperm quality leading to higher levels of gonadotropin hormone and testosterone | [108] | ||
Male and female ApoE−/− mice (20 mg/kg/day, oral) | Reduction of BPA-induced atherosclerotic alterations | [148] | ||
Virgin Sprague-Dawley (SD) rats (50 mg/L in drinking water throughout pregnancy and lactation) | Prevention of HF + BPA-induced hypertension: Restoration of NO availability, decrease of oxidative stress and AHR signaling | [144] | ||
Human CRC cell lines (HCT116, SW480) (100, 200 μM) | Prevention of Cd-induced migration and invasion through the control of the m6A alteration of ZEB1 and of EMT-related markers expression | [127] | ||
Cumulus oocytes complexes (COCs) from juvenile Sarda ewes (1 μM) | Mitigation of Cd-induced alterations, reduction of ROS accumulation, maintenance of the correct meiotic spindle and cortical F-actin assembly | [97] | ||
Male Hy-Line Variety White chickens (400 mg/kg, via diet) | Inhibition of Cd-induced kidney structural destruction and nephrotoxicity. Increased activity of antioxidant enzymes and reduction of Cd-induced oxidative stress. Reversal of Cd-induced mitochondrial ultrastructural alterations | [129] | ||
Osteoblastic Subclone14 cell line (MC3T3-E1) (5, 10 μM) | Improvement of osteoblast viability and early differentiation; osteoblasts protection from Cd damage | [143] | ||
Swiss Albino mice (20 mg/kg, oral) | Suppression of metal-induced perturbation of spermatogenesis, testicular morphology and the up-regulation of AKT cascade proteins and GCNIS markers | [107] | ||
Pregnant CD-1 mice (20 μM, via diet) | Decrease of Cd-induced placental toxicity by regulating DNMT3 expression and PI3K/Akt pathway activation | [98] | ||
Resveratrol and Apigenin | Male Albino Wistar rats (60 days old, weight 200–350 g) (RES 100 mg/kg; apigenin 100 mg/kg, oral gavage) | Decrease of tissue oxidative stress and increase of tissue antioxidant levels. Protection against BPA-induced cytopathological alterations and apoptosis in salivary gland cells | [126] | |
Resveratrol, Curcumin, Bergamot juice (BJe) | Male C57 BL/6J mice (CUR 50,100 mg/kg; RES 20 mg/kg; BJe 40 mg/kg, oral) | Decrease of Cd-induced testicular damage via anti-inflammatory and anti-apoptotic mechanisms | [111] | |
Resveratrol Butyrate Ester (RBE) | 15 weeks old pregnant female Sprague-Dawley rats (30 mg/kg/day, oral) | Decrease of BPA-induced oxidative damage in the liver; decrease of ALT and AST activities; increase of antioxidant enzymes expression and activity | [119] | |
15 weeks old pregnant female Sprague-Dawley rats (30 mg/kg/day, gavage) | Decrease of BPA-induced weight gain and body fat accumulation. Increased blood concentration of lipid-related markers. | [139] | ||
Curcumin | Transformed C3H Mouse Kidney-1 cells (TCMK-1) (10 μM) | Decrease of ATR-induced cell pyroptosis and cell cycle arrest via the reduction of oxidative stress | [132] | |
Hepatic cell line (HepG2) (1, 2.5, 5 μM) | Decrease of BPA-induced insulin resistance | [140] | ||
Human normal cells (LO2) (10 μM) | Decrease of BPA-induced insulin resistance through the reduction of inflammation and block of JNK pathway | [141] | ||
Adult male albino rats (100 mg/kg/day, gavage) | Decrease of BPA-induced cardiac damage | [145] | ||
Adult female Wistar rats (20 mg/kg/day, i.p.) | Increase of adult hippocampal neurogenesis and correction of learning and memory deficits induced by BPA in AD models via the activation of the Wnt/B-catenin pathway | [134] | ||
Adult male Wistar rats (20 mg/kg, oral gavage) | Protection against BPA-induced neurotoxicity | [135] | ||
Adult male gerbils (Meriones unguiculatus) (100 mg/kg/day, oral) | Decrease of BPA harmful effects in the prostatic lobes | [115] | ||
Male C57BL/6 mice (200 mg/kg, oral gavage) | Decrease of ATR-induced endoplasmic reticulum stress and cardiac apoptosis | [54] | ||
Male Wistar rats (100 mg/kg/day, oral gavage) | Decrease of BPA-induced lipid peroxidation, inflammatory cells’ infiltration and necrosis in liver tissue | [121] | ||
Male CD-1 mice (0.5 mg/kg BPA and 0.1% w/w curcumin, via diet) | Prevention of BPA-induced hepatic steatosis through the limitation of intestinal absorption and hepatic cholesterol synthesis, reduction of liver cholesterol accumulation and improvement of liver lipid biosynthesis and fat accumulation | [123] | ||
Female Albino rats (200 mg/kg) | Reduction of the toxic effects of BPA on the glandular portions of the stomach, via anti-fibrotic and anti-apoptotic mechanisms | [128] | ||
Curcumin and Quercetin | Adult Wistar rats (50 mg/kg curcumin, 50 mg/kg quercetin, oral gavage) | Curcumin enhances quercetin’s protective effects against ATR-induced testicular injury, increasing reproductive hormone levels, restoring testicular biochemical parameters | [110] | |
Quercetin | Male Sprague Dawley rats (50 mg/kg, oral gavage) | Restoration of spermatogenesis, reversal of histological damage induced by BPA, increase in plasma testosterone, estrogen decrease | [109] | |
Adult male albino rats of Wistar strain (50 mg/kg, oral gavage) | Attenuation of Cd-induced biochemical alterations in serum, urine and renal tissue | [130] | ||
EGCG | Male Swiss Webster mice (40 mg/kg, i.p.) | Suppression of DEHP-induced liver injury and AST activity; attenuation of DEHP-induced testis lesions, sperm deformity and spermatogenic cell apoptosis; reduction in CYP3A4 expression | [149] | |
EGCG and Green tea extract | Male albino Wistar rats (50 mg/kg green tea extract; 20 mg/kg EGCG) | HUVEC cell line (1, 2, 5, 10, 25, 50 μM) | Reduction of BPA-induced vascular dysfunction and atherosclerosis progression | [147] |
Eruca Sativa | Human sperm cells (15.6 μg/mL) | Reversal of membrane potential and sperm motility changes induced BPA | [117] | |
Naringenin | Human breast cancer cell lines (MCF-7, T47D, MDA-MB-231) (1 nM–0.1 mM) | Inhibition of BPA-induced cell proliferation via the reduction of ERα(+) cells number and the prevention of BPA-induced AKT activation | [106] | |
Silymarin | Male CD-1 mice (200 mg/kg) | Protective effect against structural and ultrastructural injuries induced by BPA; reduction of pro-inflammatory cytokines levels | [120] | |
Lycopene | Male albino Wistar rats (10 mg/kg/day, oral gavage) | Improvement of BPA-induced alveolar collapse, lymphocytic infiltration, RBCs extravasation and fibrosis | [142] | |
Female Wistar rats (10 mg/kg, oral gavage) | Reduction of BPA cytotoxic effects on hepatic tissues; improvement of liver function biomarkers and oxidant-antioxidant state, and reduction of DNA damage | [122] | ||
Luteolin | Adult Wistar male rats (100–200 mg/kg, oral gavage) | Antioxidant effect, protection of the kidney from BPA-induced oxidative injury | [131] | |
Ginseng Extract | Adult female Albino rats (200 mg/kg, oral) | Decrease of phthalates and BPA reprotoxicity via the restoration of normal steroid hormone levels and the modulation of steroidogenic enzymes mRNAs | [103] | |
Isoflavones | Human neuroblastoma cell line (SH-SY5Y) (5 μM) | Increase of BEX2 expression, activation of BEX2-dependent autophagy and prevention of ATR-induced neuronal cell death | [136] |
Polyphenol | In Vivo Model | In Vitro Model | Effects | Reference |
---|---|---|---|---|
Human anaplastic thyroid carcinoma cell lines (HTh7, 8505C) (25, 50 μM) | Increased expression of thyroid-specific genes (Sodium/Iodide symporter (NIS) gene) | [183] | ||
Fisher Rat Thyroid cells (FRTL-5) (40, 50, 100 μM) | Increase of iodide influx | [184] | ||
F1 subclone of FRTL-5 rat thyroid cells (5, 10 μM) | Decreased expression of the sodium/iodide symporter and reduction of cellular iodide uptake | [185] | ||
Resveratrol | Sprague-Dawley rats (25 mg/kg, i.p.) | F1 subclone of FRTL-5 rat thyroid cells (10 μM) | In vitro: decreased levels of Thyroid-specific genes (Thyroglobulin, Thyroid peroxidase, TSH receptor, Nkx2-1, Fox1, Pax8). In vivo: decrease of Thyroid proliferative activity | [186] |
Immunocompromised SCID mice with low metastatic ERα(−), ERβ(+) MDA-MB-231 and highly metastatic ER(−) MDA-MB-435 mammary tumors (5 mg/kg, oral gavage) | Promotion of breast tumor growth and metastasis. Increase of tumoral Rac activity | [181] | ||
Sprague-Dawley rats (100 mg/kg, oral gavage) | Leydig cells from 35-day-old Sprague-Dawley rats (100 μM) | Inhibition of LH-stimulated androgen synthesis in Leydig cells. Decrease of 3β-HSD activity in a competitive way | [179] | |
Breast cancer cell lines (MCF-7, MDA-MB-231, T47D) (10 μM) | Inhibition of the binding of labeled estradiol to the ER and activation of the transcription of estrogen-responsive genes | [180] | ||
Trophoblast-derived Choriocarcinoma cell line (BeWo); Human first trimester placenta (HTR-O/SVneo) (from 0.1 μM to 1 mM) | Decrease of cell viability, BhCG secretion | [177] | ||
Genistein | Outbred female CD-1 mice (50 mg/kg/day) | Increased risk of developing uterine adenocarcinoma | [174] | |
Human prostate cancer cells (PC-3) (10, 50 μM) | Increased proliferation (<10 μM); cytotoxic effect (>10 μM) resulting in lower cells’ viability and migration | [164] | ||
Human cervical cancer cell line (HeLa) (10 μM) | Decrease of ZEN metabolites and potentiation of ZEN-induced toxicity | [162] | ||
Sprague-Dawley rats (100 mg/kg/day, uterine perfusion) | Increased uterine fluid secretion and accumulation, hyperplasia | [173] | ||
Genistein and Quercetin | Breast cancer cell lines (MCF-7, SKBR3) (1 μM) | Increased c-fos expression | [156] | |
Quercetin | Granulosa cells isolated from ovaries of non-cycling pubertal gilts 180 days old (10 μg/mL) | Influence on basic ovarian activity (proliferation, apoptosis, steroidogenesis, FSH responsiveness) | [176] | |
Bilaterally ovariectomized Sprague-Dawley rats (10 and 100 mg/kg/day, s.c.) | Affects uterine morphology and predisposes the uterus to tumor development | [172] | ||
Daidzein | Pregnant DA/Han rats (10 mg/kg, i.v.) | Rapid transplacental transfer from mother to fetus | [171] | |
Isoflavone rich soy protein | Men at high risk for developing advanced prostate cancer (40 g/day, via diet) | Increased risk of developing advanced prostate cancer via the reduction of AR levels | [163] | |
Equol | Breast cancer cell line (MCF-7) (1 μM) | Increased cell proliferation | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leti Maggio, E.; Zucca, C.; Grande, M.; Carrano, R.; Infante, A.; Bei, R.; Lucarini, V.; De Maio, F.; Focaccetti, C.; Palumbo, C.; et al. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J. Xenobiot. 2024, 14, 1378-1405. https://doi.org/10.3390/jox14040077
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, et al. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. Journal of Xenobiotics. 2024; 14(4):1378-1405. https://doi.org/10.3390/jox14040077
Chicago/Turabian StyleLeti Maggio, Eleonora, Carlotta Zucca, Martina Grande, Raffaele Carrano, Antonio Infante, Riccardo Bei, Valeria Lucarini, Fernando De Maio, Chiara Focaccetti, Camilla Palumbo, and et al. 2024. "Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects" Journal of Xenobiotics 14, no. 4: 1378-1405. https://doi.org/10.3390/jox14040077
APA StyleLeti Maggio, E., Zucca, C., Grande, M., Carrano, R., Infante, A., Bei, R., Lucarini, V., De Maio, F., Focaccetti, C., Palumbo, C., Marini, S., Ferretti, E., Cifaldi, L., Masuelli, L., Benvenuto, M., & Bei, R. (2024). Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. Journal of Xenobiotics, 14(4), 1378-1405. https://doi.org/10.3390/jox14040077