Previous Issue
Volume 14, September
 
 

J. Xenobiot., Volume 14, Issue 4 (December 2024) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 2672 KiB  
Review
Acute Quetiapine Intoxication: Relationship Between Ingested Dose, Serum Concentration and Clinical Presentation—Structured Literature Review and Analysis
by Matej Dobravc Verbič, Iztok Grabnar, Florian Eyer and Miran Brvar
J. Xenobiot. 2024, 14(4), 1570-1594; https://doi.org/10.3390/jox14040085 - 18 Oct 2024
Viewed by 199
Abstract
Over the past decade, quetiapine has become one of the most commonly used psychotropic drugs in acute intoxication events worldwide. A structured literature review and analysis were conducted to assess the relationship between the kinetic and dynamic profiles in acute quetiapine intoxication. The [...] Read more.
Over the past decade, quetiapine has become one of the most commonly used psychotropic drugs in acute intoxication events worldwide. A structured literature review and analysis were conducted to assess the relationship between the kinetic and dynamic profiles in acute quetiapine intoxication. The correlation between dose and peak serum concentration (cmax) was determined using Pearson’s correlation coefficient. Binary logistic regression was used to evaluate dose and cmax as predictors of the most common clinical events, signs and symptoms. One hundred and thirty-four cases of acute quetiapine ingestion were included in the analysis, with a median ingested dose of 10 g and a median cmax of 4 mg/L. The typical half-life was estimated to be 16.5 h, significantly longer than at therapeutic doses. For the immediate-release formulation, a biphasic disposition could not be excluded. Dose and cmax demonstrated a weak but significant correlation (r = 0.256; N = 63; p = 0.043). Central nervous system depression and tachycardia were the most common clinical signs. Higher doses and concentrations increased the risk of severe intoxication and were good predictors of intubation, tachycardia, hypotension, QTc prolongation and seizures, but not QRS prolongation, arrhythmia, heart block, hypokalaemia or acidosis. The thresholds for dose and cmax that increased the risk for individual signs and symptoms varied widely. However, doses > 3 g or cmax > 2 mg/L can be considered as alert levels that represent a high risk for severe clinical course of acute quetiapine intoxication. Full article
Show Figures

Figure 1

29 pages, 7135 KiB  
Review
Oxidative Processes and Xenobiotic Metabolism in Plants: Mechanisms of Defense and Potential Therapeutic Implications
by Caterina Vicidomini, Rosanna Palumbo, Maria Moccia and Giovanni N. Roviello
J. Xenobiot. 2024, 14(4), 1541-1569; https://doi.org/10.3390/jox14040084 - 18 Oct 2024
Viewed by 532
Abstract
Plants are continuously exposed to environmental challenges, including pollutants, pesticides, and heavy metals, collectively termed xenobiotics. These substances induce oxidative stress by generating reactive oxygen species (ROS), which can damage cellular components such as lipids, proteins, and nucleic acids. To counteract this, plants [...] Read more.
Plants are continuously exposed to environmental challenges, including pollutants, pesticides, and heavy metals, collectively termed xenobiotics. These substances induce oxidative stress by generating reactive oxygen species (ROS), which can damage cellular components such as lipids, proteins, and nucleic acids. To counteract this, plants have evolved complex metabolic pathways to detoxify and process these harmful compounds. Oxidative stress in plants primarily arises from the overproduction of hydrogen peroxide (H2O2), superoxide anions (O2•−), singlet oxygen (1O2), and hydroxyl radicals (OH), by-products of metabolic activities such as photosynthesis and respiration. The presence of xenobiotics leads to a notable increase in ROS, which can result in cellular damage and metabolic disruption. To combat this, plants have developed a strong antioxidant defense mechanism that includes enzymatic antioxidants that work together to eliminate ROS, thereby reducing their harmful effects. In addition to enzymatic defenses, plants also synthesize various non-enzymatic antioxidants, including flavonoids, phenolic acids, and vitamins. These compounds effectively neutralize ROS and help regenerate other antioxidants, offering extensive protection against oxidative stress. The metabolism of xenobiotic substances in plants occurs in three stages: the first involves modification, which refers to the chemical alteration of xenobiotics to make them less harmful. The second involves conjugation, where the modified xenobiotics are combined with other substances to increase their solubility, facilitating their elimination from the plant. The third stage involves compartmentalization, which is the storage or isolation of conjugated xenobiotics in specific parts of the plant, helping to prevent damage to vital cellular functions. Secondary metabolites found in plants, such as alkaloids, terpenoids, and flavonoids, play a vital role in detoxification and the defense against oxidative stress. Gaining a deeper understanding of the oxidative mechanisms and the pathways of xenobiotic metabolism in plants is essential, as this knowledge can lead to the formulation of plant-derived strategies aimed at alleviating the effects of environmental pollution and enhancing human health by improving detoxification and antioxidant capabilities, as discussed in this review. Full article
Show Figures

Graphical abstract

22 pages, 19388 KiB  
Article
Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers
by Oscar Salvador Barrera-Vázquez, Juan Luis Escobar-Ramírez and Gil Alfonso Magos-Guerrero
J. Xenobiot. 2024, 14(4), 1519-1540; https://doi.org/10.3390/jox14040083 - 15 Oct 2024
Viewed by 434
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research [...] Read more.
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial. Full article
Show Figures

Figure 1

54 pages, 10959 KiB  
Review
Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments
by Ana Gabriela Estrada-Almeida, María Luisa Castrejón-Godínez, Patricia Mussali-Galante, Efraín Tovar-Sánchez and Alexis Rodríguez
J. Xenobiot. 2024, 14(4), 1465-1518; https://doi.org/10.3390/jox14040082 - 15 Oct 2024
Viewed by 431
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due [...] Read more.
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances. Full article
Show Figures

Figure 1

15 pages, 2550 KiB  
Communication
Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D
by Enoch Luis, Vanessa Conde-Maldonado, Edelmira García-Nieto, Libertad Juárez-Santacruz, Mayvi Alvarado and Arely Anaya-Hernández
J. Xenobiot. 2024, 14(4), 1450-1464; https://doi.org/10.3390/jox14040081 - 9 Oct 2024
Viewed by 422
Abstract
Exposure to pesticides such as paraquat and 2,4-dichlorophenoxyacetic acid (2,4-D) has been linked to harmful health effects, including alterations in male reproduction. Both herbicides are widely used in developing countries and have been associated with reproductive alterations, such as disruption of spermatogenesis and [...] Read more.
Exposure to pesticides such as paraquat and 2,4-dichlorophenoxyacetic acid (2,4-D) has been linked to harmful health effects, including alterations in male reproduction. Both herbicides are widely used in developing countries and have been associated with reproductive alterations, such as disruption of spermatogenesis and steroidogenesis. The thyroid axis and Ca2+-permeable ion channels play a key role in these processes, and their disruption can lead to reproductive issues and even infertility. This study evaluated the short-term effects of exposure to commercial herbicides based on paraquat and 2,4-D on gene expression in rat testes. At the molecular level, exposure to paraquat increased the expression of the thyroid hormone transporters monocarboxylate transporter 8 (Mct8) and organic anion-transporting polypeptide 1C1 (Oatp1c1) and the thyroid receptor alpha (TRα), suggesting a possible endocrine disruption. However, it did not alter the expression of the sperm-associated cation channels (CatSper1-2) or vanilloid receptor-related osmotically activated channel (Trpv4) related to sperm motility. In contrast, exposure to 2,4-D reduced the expression of the Mct10 transporter, Dio2 deiodinase, and CatSper1, which could affect both the availability of T3 in testicular cells and sperm quality, consistent with previous studies. However, 2,4-D did not affect the expression of CatSper2 or Trpv4. Deregulation of gene expression could explain the alterations in male reproductive processes reported by exposure to paraquat and 2,4-D. These thyroid hormone-related genes can serve as molecular biomarkers to assess endocrine disruption due to exposure to these herbicides, aiding in evaluating the health risks of pesticides. Full article
Show Figures

Figure 1

18 pages, 2078 KiB  
Article
The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells
by Oskari J. Uski, Gregory Rankin, Håkan Wingfors, Roger Magnusson, Christoffer Boman, Robert Lindgren, Ala Muala, Anders Blomberg, Jenny A. Bosson and Thomas Sandström
J. Xenobiot. 2024, 14(4), 1432-1449; https://doi.org/10.3390/jox14040080 - 9 Oct 2024
Viewed by 497
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate [...] Read more.
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity. Full article
Show Figures

Graphical abstract

17 pages, 2404 KiB  
Article
In Vitro and In Vivo Genotoxicity of Polystyrene Microplastics: Evaluation of a Possible Synergistic Action with Bisphenol A
by Alfredo Santovito, Mattia Lambertini and Alessandro Nota
J. Xenobiot. 2024, 14(4), 1415-1431; https://doi.org/10.3390/jox14040079 - 8 Oct 2024
Viewed by 892
Abstract
The ubiquitous presence of plastics represents a global threat for all ecosystems and human health. In this study, we evaluated, in vitro and in vivo, the genotoxic potential of different concentrations of polystyrene microplastics (PS-MPs) and their possible synergistic interactions with bisphenol-A (BPA). [...] Read more.
The ubiquitous presence of plastics represents a global threat for all ecosystems and human health. In this study, we evaluated, in vitro and in vivo, the genotoxic potential of different concentrations of polystyrene microplastics (PS-MPs) and their possible synergistic interactions with bisphenol-A (BPA). For the in vitro and the in vivo assays, we used human lymphocytes and hemocytes from Lymnaea stagnalis, respectively. The genomic damage was evaluated by the micronucleus assay, and differences in eggs laid and growth of L. stagnalis were also evaluated. In human lymphocytes, PS-MPs alone at the concentration of 200 μg/mL and in association with BPA 0.100 µg/mL significantly increased the frequencies of micronuclei and nuclear buds, indicating a possible in vitro genotoxic additive action of these two compounds. Vice versa, PS-MPs did not result in genotoxicity in hemocytes. Our results indicated that PS-MPs have genotoxic properties only in vitro and at a concentration of 200 µg/mL; moreover, this compound could intensify the genomic damage when tested with BPA, indicating possible cumulative effects. Finally, PS significantly reduced the growth and the number of laid eggs in L. stagnalis. Full article
Show Figures

Figure 1

9 pages, 1446 KiB  
Article
Transformation of Engineered Copper Oxide Nanoparticles in Surface Waters
by Patrice Turcotte and Christian Gagnon
J. Xenobiot. 2024, 14(4), 1406-1414; https://doi.org/10.3390/jox14040078 - 6 Oct 2024
Viewed by 395
Abstract
Copper oxide nanoparticles (CuO-NPs) are widely used for their catalytic properties, conductive capacity, and innovations in the fields of superconductors, alloys, and solar energy sensors. To better understand the impact of water chemistry on the stability of CuO nanoparticles, a series of measurements [...] Read more.
Copper oxide nanoparticles (CuO-NPs) are widely used for their catalytic properties, conductive capacity, and innovations in the fields of superconductors, alloys, and solar energy sensors. To better understand the impact of water chemistry on the stability of CuO nanoparticles, a series of measurements were carried out on nanoparticles suspended in pure water, natural water, and water enriched with natural organic matter fulvic acid (FA). ICP-MS characterization in single-particle mode (SP-ICP-MS) was performed to determine the stability or transformation of nanoparticles in contrasting water conditions. We first observed that particle sedimentation was very fast in pure Milli-Q water. The addition of FA favored the dissolution of CuO-NPs with an increase in the dissolved copper concentration, for both Milli-Q water and natural water. The presence of FA also reduced the size of CuO-NPs (i.e., less aggregation) measured in natural water. By comparing signals of single particles, FA decreased nanoparticle numbers as well, confirming the increase in dissolution of CuO-NPs over time. The transformation products of CuO-NPs are important in the ecological context since the uptake and toxicity of parent nanoparticles differ from those of the chemical species in solution. Further considerations are needed on the fate of released NPs to better assess their exposure pathways to aquatic organisms and potential environmental risks. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Figure 1

28 pages, 1395 KiB  
Review
Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects
by Eleonora Leti Maggio, Carlotta Zucca, Martina Grande, Raffaele Carrano, Antonio Infante, Riccardo Bei, Valeria Lucarini, Fernando De Maio, Chiara Focaccetti, Camilla Palumbo, Stefano Marini, Elisabetta Ferretti, Loredana Cifaldi, Laura Masuelli, Monica Benvenuto and Roberto Bei
J. Xenobiot. 2024, 14(4), 1378-1405; https://doi.org/10.3390/jox14040077 - 2 Oct 2024
Viewed by 510
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like [...] Read more.
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs. Full article
(This article belongs to the Special Issue The Role of Endocrine-Disrupting Chemicals in the Human Health)
Show Figures

Graphical abstract

35 pages, 8651 KiB  
Review
How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment
by Gabriel Pérez-Lucas and Simón Navarro
J. Xenobiot. 2024, 14(4), 1343-1377; https://doi.org/10.3390/jox14040076 - 1 Oct 2024
Viewed by 516
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found [...] Read more.
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil–plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Graphical abstract

11 pages, 925 KiB  
Article
Enhancing Differential Diagnosis Related to Oxidative Stress, Nitrous Oxide, and Nutrition by Rapid Plasma Homocysteine Measurement
by Guillaume Grzych, Farid Zerimech, Benjamin Touze, Clarence Descamps, Marie-Adélaïde Bout, Marie Joncquel, Claire Douillard, Isabelle Kim, Céline Tard and Thierry Brousseau
J. Xenobiot. 2024, 14(4), 1332-1342; https://doi.org/10.3390/jox14040075 - 27 Sep 2024
Viewed by 599
Abstract
Background: Historically used as a marker for inherited disorders, the current interest in plasma homocysteine measurement lies in its ability to provide valuable information about the metabolic and nutritional status of patients. Specifically, nitrous oxide (N2O) abuse can lead to functional [...] Read more.
Background: Historically used as a marker for inherited disorders, the current interest in plasma homocysteine measurement lies in its ability to provide valuable information about the metabolic and nutritional status of patients. Specifically, nitrous oxide (N2O) abuse can lead to functional vitamin B12 deficiency by oxidation and increase oxidative stress, resulting in elevated plasma homocysteine levels, which mimic neurological conditions such as Guillain–Barré syndrome. Rapid identification of hyperhomocysteinemia is crucial for timely intervention and avoiding costly, unnecessary treatments. Objective: This study evaluates the performance of a rapid immunoassay technique (Snibe) compared to mass spectrometry (LC-MS/MS) for measuring plasma homocysteine levels in patients with nitrous oxide abuse and non-inherited caused of elevated homocysteine, aiming to enhance differential diagnosis related to oxidative stress. Methods: 235 patients from Lille University Hospital were included. EDTA blood samples were collected and analyzed using both rapid immunoassay (Snibe) and LC-MS/MS. Neurological assessment was performed using the peripheral neuropathy disability (PND) score. Results: Firstly, significant elevations in plasma homocysteine levels were observed in patients abusing nitrous oxide measured by LC-MS/MS. Secondly, the immunoassay provided rapid results, essential for early clinical decision-making, but tended to underestimate high values compared to LC-MS/MS. A good correlation was found between the methods for low and moderate values. Conclusion: The immunoassay tended to underestimate high-value samples compared to LC-MS/MS, which is a common problem with the competitive methodology. The rapid immunoassay technique is effective for initial screening and early intervention, aiding in the differential diagnosis of conditions related to oxidative stress. Therefore, it is recommended to use the CLIA method for initial screening and confirm with mass spectrometry if there are abnormal samples. Integrating both techniques can enhance diagnostic accuracy and improve patient outcomes. Full article
(This article belongs to the Section Drug Therapeutics)
Show Figures

Figure 1

Previous Issue
Back to TopTop