Unregulated and Regulated PFASs in Bottled and Tap Water: Occurrence, Co-Occurrence Patterns, and Implications for Human Health and Regulatory Frameworks
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Sample Extraction
2.4. LC-MS/MS Analysis
2.5. QA and QC
2.6. Health Risk Assessment
- Cw represents the concentration of PFASs measured in surface water.
- Dw is the daily volume of drinking water consumed (mL/day).
- Bw is the body weight.
3. Results
3.1. Concentration of Regulated PFASs in Bottled and Tap Water
Sum of 16 PFASs
3.2. Non-Regulated PFASs
3.3. Co-Occurrence of PFASs
3.4. Comparison of PFAS Values Determined in Tap and Bottled Water Around the World
3.5. Human Exposure to PFAS via Drinking Water
4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Itumoh, E.J.; Data, S.; Chen, J.L.-Y.; Kah, M.; Padhye, L.P.; Leitao, E.M. Addressing the persistence of per- and poly-fluoroalkyl substances (PFAS): Current challenges and potential solutions. RSC Sustain. 2024, 2, 3183–3201. [Google Scholar] [CrossRef]
- Chiriac, F.L.; Pirvu, F.; Paun, I.; Petre, V.A. Perfluoroalkyl substances in Romanian wastewater treatment plants: Transfer to surface waters, environmental and human risk assessment. Sci. Total Environ. 2023, 892, 164576. [Google Scholar] [CrossRef] [PubMed]
- Leung, S.C.E.; Wanninayake, D.; Chen, D.; Nguyen, N.-T.; Li, Q. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS)—Challenges and opportunities in sensing and remediation. Sci. Total Environ. 2023, 905, 166764. [Google Scholar] [CrossRef] [PubMed]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, 512. [Google Scholar] [CrossRef]
- Ankley, G.T.; Cureton, P.; Hoke, R.A.; Houde, M.; Kumar, A.; Kurias, J.; Lanno, R.; McCarthy, C.; Newsted, J.; Salice, C.J.; et al. Assessing the ecological risks of per-and polyfluoroalkyl substances: Current state-of-the science and a proposed path forward. Environ. Toxicol. Chem. 2021, 40, 564–605. [Google Scholar] [CrossRef]
- Byns, C.; Teunen, L.; Groffen, T.; Lasters, R.; Bervoets, L. Bioaccumulation and trophic transfer of perfluorinated alkyl substances (PFAS) in marine biota from the Belgian North Sea: Distribution and human health risk implications. Environ. Pollut. 2022, 311, 119907. [Google Scholar] [CrossRef]
- Blasco, J.; Chapman, P.M.; Campana, O.; Hampel, M. Marine Ecotoxicology: Current Knowledge and Future Issues; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Petre, V.A.; Chiriac, F.L.; Lucaciu, I.E.; Paun, I.; Pirvu, F.; Iancu, V.I.; Novac, L.; Gheorghe, S. Tissue bioconcentration pattern and biotransformation of per-fluorooctanoic acid (PFOA) in Cyprinus carpio (European carp)—An extensive in vivo study. Foods 2023, 12, 1423. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, F.L.; Stoica, C.; Iftode, C.; Pirvu, F.; Petre, V.A.; Paun, I.; Pascu, L.F.; Vasile, G.G.; Nita-Lazar, M. Bacterial biodegradation of perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS) using pure Pseudomonas strains. Sustainability 2023, 15, 14000. [Google Scholar] [CrossRef]
- Teymoorian, T.; Munoz, G.; Sauvé, S. PFAS contamination in tap water: Target and suspect screening of zwitterionic, cationic, and anionic species across Canada and beyond. Environ. Int. 2025, 195, 109250. [Google Scholar] [CrossRef]
- Ingold, V.; Kämpfe, A.; Ruhl, A.S. Screening for 26 per- and polyfluoroalkyl substances (PFAS) in German drinking waters with support of residents. Eco-Env. Health 2023, 2, 235–242. [Google Scholar] [CrossRef]
- Grung, M.; Hjermann, D.Ø.; Rundberget, J.T.; Bæk, K.; Thomsen, C.; Knutsen, H.; Haug, L.S. Low Levels of Per-and Polyfluoroalkyl Substances (PFAS) in Drinking Water in Norway, But Elevated Concentrations Found Near Known Sources. 2024. Available online: https://ssrn.com/abstract=4772508 (accessed on 12 November 2024).
- Li, Y.; Fletcher, T.; Mucs, D.; Scott, K.; Lindh, C.H.; Tallving, P.; Jakobsson, K. Half-lives of PFOS, PFHxS, and PFOA after end of exposure to contaminated drinking water. Occup. Environ. Med. 2018, 75, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Cserbik, D.; Casas, M.; Flores, C.; Paraian, A.; Haug, L.S.; Rivas, I.; Bustamante, M.; Dadvand, P.; Sunyer, J.; Vrijheid, M.; et al. Concentrations of per- and polyfluoroalkyl substances (PFAS) in paired tap water and blood samples during pregnancy. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 90–96. [Google Scholar] [CrossRef]
- Dvorakova, D.; Jurikova, M.; Svobodova, V.; Parizek, O.; Kozisek, F.; Kotal, F.; Jeligova, H.; Mayerova, L.; Pulkrabova, J. Complex monitoring of perfluoroalkyl substances (PFAS) from tap drinking water in the Czech Republic. Water Res. 2023, 247, 120764. [Google Scholar] [CrossRef]
- Gao, C.; Drage, D.S.; Abdallah, M.A.-E.; Quan, F.; Zhang, K.; Hu, S.; Zhao, X.; Zheng, Y.; Harrad, S.; Qiu, W. Factors influencing concentrations of PFAS in drinking water: Implications for human exposure. ACS EST Water 2024, 4, 4881–4892. [Google Scholar] [CrossRef]
- Pelch, K.E.; McKnight, T.; Reade, A. 70 analyte PFAS test method highlights need for expanded testing of PFAS in drinking water. Sci. Total Environ. 2023, 876, 162978. [Google Scholar] [CrossRef] [PubMed]
- Smalling, K.L.; Romanok, K.M.; Bradley, P.M.; Morriss, M.C.; Gray, J.L.; Kanagy, L.K.; Gordon, S.E.; Williams, B.M.; Breitmeyer, S.E.; Jones, D.K.; et al. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environ. Int. 2023, 178, 108033. [Google Scholar] [CrossRef]
- Andrews, D.Q.; Naidenko, O.V. Population-wide exposure to per- and polyfluoroalkyl substances from drinking water in the United States. Environ. Sci. Technol. Lett. 2020, 7, 931–936. [Google Scholar] [CrossRef]
- Sassano, M.; Seyyedsalehi, M.S.; Kappil, E.M.; Zhang, S.; Zheng, T.; Boffetta, P. Exposure to per- and poly-fluoroalkyl substances and lung, head and neck, and thyroid cancer: A systematic review and meta-analysis. Environ. Res. 2025, 266, 120606. [Google Scholar] [CrossRef]
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Off. J. Eur. Union 2020, 435, 1–62. Available online: http://data.europa.eu/eli/dir/2020/2184/oj (accessed on 12 November 2024).
- European Commission. Commission Notice (C/2024/4910), 2024. Technical guidelines regarding methods of analysis for monitoring of per- and polyfluoroalkyl substances (PFAS) in water intended for human consumption. Off. J. Eur. Union. 2024. Available online: http://data.europa.eu/eli/C/2024/4910/oj (accessed on 12 November 2024).
- EFSA Panel on Contaminants in the Food Chain; Dieter, S.; Schrenk, M.; Bignami, L.; Bodin, J.K.; Chipman, J.; del Mazo, B.; Grasl-Kraupp, C.; Hogstrand, L.; Hoogenboom, J.-C.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar]
- EPA United States Environmental Protection Agency. Per- and Polyfluoroalkyl Substances (PFAS) Final PFAS National Primary Drinking Water Regulation. 2024. Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas (accessed on 21 September 2024).
- Ackerman Grunfeld, D.; Gilbert, D.; Hou, J.; Jones, A.M.; Lee, M.J.; Kibbey, T.C.; O’Carroll, D.M. Underestimated burden of per-and polyfluoroalkyl substances in global surface waters and groundwaters. Nat. Geosci. 2024, 17, 340–346. [Google Scholar] [CrossRef]
- Ordinance No. 7 Regarding the Quality of Water Intended for Human Consumption. 2023. Available online: https://faolex.fao.org/docs/pdf/rom216717.pdf (accessed on 12 November 2024).
- Chiriac, F.L.; Petre, A.V.; Cimpean, A.I.; Cojocaru, V.C.; Paun, I.; Pirvu, F.; Iancu, V.I. New LC-MS/MS method for the determination of unconventional organic pollutants: Perfluoroalkyl sulfonic acids in wastewater, surface water, and drinking water. Rom. J. Ecol. Environ. Chem. 2024, 6, 7–20. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 653, 1–131. [Google Scholar]
- Pérez, F.; Llorca, M.; Köck-Schulmeyer, M.; Škrbić, B.; Silva Oliveira, L.; Boit Martinello, K.; Al-Dhabi, N.A.; Antić, I.; Farré, M.; Barceló, D. Assessment of perfluoroalkyl substances in food items at a global scale. Environ. Res. 2014, 135, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.; Silva, M.R.; Klaper, R. Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: A review of recent literature. Sci. Total Environ. 2020, 733, 139186. [Google Scholar] [CrossRef]
- von Holst, H.; Nayak, P.; Dembek, Z.; Buehler, S.; Echeverria, D.; Fallacara, D.; John, L. Per-fluoroalkyl substances exposure and immunity, allergic response, infection, and asthma in children: Review of epidemiologic studies. Heliyon 2021, 7, e08160. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Gomis, M.I.; Vestergren, R.; Borg, D.; Cousins, I.T. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ. Int. 2018, 113, 1–9. [Google Scholar] [CrossRef]
- Pietropoli, E.; Bardhi, A.; Simonato, V.; Zanella, M.; Iori, S.; Barbarossa, A.; Giantin, M.; Dacasto, M.; De Liguoro, M.; Pauletto, M. Comparative toxicity assessment of alternative versus legacy PFAS: Implications for two primary trophic levels in freshwater ecosystems. J. Hazard. Mater. 2024, 477, 135269. [Google Scholar] [CrossRef]
- Goldenman, G.; Fernandes, M.; Holland, M.; Tugran, T.; Nordin, A.; Schoumacher, C.; McNeill, A. The Cost of Inaction: A Socioeconomic Analysis of Environmental and Health Impacts Linked to Exposure to PFAS; Nordic Council of Ministers, Nordisk Ministerråd: Copenhagen, Denmark, 2020. [Google Scholar]
- Ehrlich, V.; Bil, W.; Vandebriel, R.; Granum, B.; Luijten, M.; Lindeman, B.; Grandjean, P.; Kaiser, A.-M.; Hauzenberger, I.; Hartmann, C.; et al. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ. Health 2023, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Dauchy, X.; Boiteux, V.; Rosin, C.; Munoz, J.-F. Relationship between industrial discharges and contamination of raw water resources by perfluorinated compounds. Part I: Case study of a fluoropolymer manufacturing plant. Bull. Environ. Contam. Toxicol. 2012, 89, 525–530. [Google Scholar] [CrossRef]
- Llorca, M.; Farré, M.; Picó, Y.; Müller, J.; Knepper, T.P.; Barceló, D. Analysis of perfluoroalkyl substances in waters from Germany and Spain. Sci. Total Environ. 2012, 431, 139–150. [Google Scholar] [CrossRef]
- Jurikova, M.; Dvorakova, D.; Pulkrabova, J. The occurrence of perfluoroalkyl substances (PFAS) in drinking water in the Czech Republic: A pilot study. Environ. Sci. Pollut. Res. 2022, 29, 60341–60353. [Google Scholar] [CrossRef]
- Schwanz, T.G.; Llorca, M.; Farré, M.; Barceló, D. Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain. Sci. Total Environ. 2016, 539, 143–152. [Google Scholar] [CrossRef]
- Endirlik, B.Ü.; Bakır, E.; Bosgelmez, I.I.; Eken, A.; Narin, I.; Gürbay, A. Assessment of perfluoroalkyl substances levels in tap and bottled water samples from Turkey. Chemosphere 2019, 235, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, M.; Berger, U. Are perfluoroalkyl acids in wastewater treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation? Chemosphere 2015, 129, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qu, Y.; Huang, J.; Weber, R. Per- and Polyfluoroalkyl Substances (PFASs) in Chinese Drinking Water: Risk Assessment and Geographical Distribution. Environ. Sci. Eur. 2021, 33, 6. [Google Scholar] [CrossRef]
- Le Coadou, L.; Le Ménach, K.; Labadie, P.; Dévier, M.H.; Pardon, P.; Augagneur, S.; Budzinski, H. Quality Survey of Natural Mineral Water and Spring Water Sold in France: Monitoring of Hormones, Pharmaceuticals, Pesticides, Perfluoroalkyl Substances, Phthalates, and Alkylphenols at the Ultra-Trace Level. Sci. Total Environ. 2017, 603−604, 651–662. [Google Scholar] [CrossRef]
- Vestergren, R.; Herzke, D.; Wang, T.; Cousins, I.T. Are Imported Consumer Products an Important Diffuse Source of PFASs to the Norwegian Environment? Environ. Pollut. 2015, 198, 223–230. [Google Scholar] [CrossRef]
- Herzke, D.; Olsson, E.; Posner, S. Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Consumer Products in Norway—A Pilot Study. Chemosphere 2012, 88, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, L. England’s Second City: Birmingham. Britain Magazine. 2013. Available online: https://www.discoverbritain.com/ (accessed on 21 October 2024).
- Harrad, S.; Wemken, N.; Drage, D.S.; Abdallah, M.A.E.; Coggins, A.M. Perfluoroalkyl Substances in Drinking Water, Indoor Air and Dust from Ireland: Implications for Human Exposure. Environ. Sci. Technol. 2019, 53, 13449–13457. [Google Scholar] [CrossRef]
- Winkens, K.; Vestergren, R.; Berger, U.; Cousins, I.T. Early Life Exposure to Per- and Polyfluoroalkyl Substances (PFASs): A Critical Review. Emerg. Contam. 2017, 3, 55–68. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Minucci, J.M.; Mullikin, A.; Slover, R.; Cohen Hubal, E.A. Human Exposure Pathways to Poly- and Perfluoroalkyl Substances (PFAS) from Indoor Media: A Systematic Review. Environ. Int. 2022, 162, 107149. [Google Scholar] [CrossRef]
- Petkovski, K.; Piletić, N.; Marić, Ð.; Buha Djordjevic, A.; Antonijević, B.; Ðukić-Ćosić, D. Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights. Int. J. Mol. Sci. 2024, 25, 12333. [Google Scholar] [CrossRef]
- Metayer, C.; Morimoto, L.M.; Vieira, V.M.; Godri Pollitt, K.J.; Bartell, S.M.; Wong, L.; Young, T.M. Exposure to per- and polyfluoroalkyl substances in residential settled dust and risk of childhood acute lymphoblastic leukemia. Int. J. Cancer 2025, 157, 103–115. [Google Scholar] [CrossRef]
- Bil, W.; Govarts, E.; Zeilmaker, M.J.; Woutersen, M.; Bessems, J.; Ma, Y.; Thomsen, C.; Haug, L.S.; Lignell, S.; Gyllenhammar, I.; et al. Approaches to mixture risk assessment of PFASs in the European population based on human hazard and biomonitoring data. Int. J. Hyg. Environ. Health 2023, 247, 114071. [Google Scholar] [CrossRef]
- Borg, D.; Lund, B.-O.; Lindquist, N.-G.; Håkansson, H. Cumulative health risk assessment of 17 perfluoroalkylated and polyfluoroalkylated substances (PFASs) in the Swedish population. Environ. Int. 2013, 59, 112–123. [Google Scholar] [CrossRef]
- Bil, W.; Zeilmaker, M.; Fragki, S.; Lijzen, J.; Verbruggen, E.; Bokkers, B. Risk Assessment of Per- and Polyfluoroalkyl Substance Mixtures: A Relative Potency Factor Approach. Environ. Toxicol. Chem. 2021, 40, 859–870. [Google Scholar] [CrossRef]
- Sadia, M.; Nollen, I.; Helmus, R.; ter Laak, T.L.; Béen, F.; Praetorius, A.; van Wezel, A.P. Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water. Environ. Sci. Technol. 2023, 57, 3062–3074. [Google Scholar] [CrossRef]
- Tokranov, A.K.; LeBlanc, D.R.; Pickard, H.M.; Ruyle, B.J.; Barber, L.B.; Hull, R.B.; Sunderland, E.M.; Vecitis, C.D. Surface-water/groundwater boundaries affect seasonal PFAS concentrations and PFAA precursor transformations. Environ. Sci. Process. Impacts 2021, 23, 1893–1905. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Navarro, D.A.; Du, J.; Srivastava, P.; Cao, Z.; Ying, G.; Kookana, R.S. Effect of heavy metal co-contaminants on the sorption of thirteen anionic per- and poly-fluoroalkyl substances (PFAS) in soils. Sci. Total Environ. 2023, 905, 167188. [Google Scholar] [CrossRef] [PubMed]
- Sapozhnikova, Y.; Taylor, R.B.; Bedi, M.; Ng, C. Assessing per- and polyfluoroalkyl substances in globally sourced food packaging. Chemosphere 2023, 337, 139381. [Google Scholar] [CrossRef]
- Lee, J.C.; Smaoui, S.; Duffill, J.; Marandi, B.; Varzakas, T. Research Progress in Current and Emerging Issues of PFASs’ Global Impact: Long-Term Health Effects and Governance of Food Systems. Foods 2025, 14, 958. [Google Scholar] [CrossRef] [PubMed]
PFAS | Bottled Water | Tap Water | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Median | Freq | Min | Max | Mean | Median | Freq | |
PFBA | <LOQ | 0.34 | 0.15 | 0.09 | 33 | <LOQ | 1.96 | 0.43 | 0.21 | 75 |
PFBS | <LOQ | 0.70 | 0.70 | 0.70 | 5 | <LOQ | 1.62 | 0.69 | 0.80 | 46 |
PFHxA | <LOQ | 0.29 | 0.24 | 0.25 | 86 | <LOQ | 0.88 | 0.31 | 0.27 | 83 |
PFPeA | <LOQ | 0.42 | 0.22 | 0.21 | 86 | <LOQ | 1.08 | 0.29 | 0.26 | 79 |
PFHpA | <LOQ | 0.26 | 0.22 | 0.21 | 95 | <LOQ | 1.16 | 0.37 | 0.34 | 88 |
PFHxS | <LOQ | <LOQ | <LOQ | <LOQ | 0 | <LOQ | <LOQ | <LOQ | <LOQ | 17 |
PFHpS | <LOQ | 4.15 | 0.46 | 0.18 | 67 | <LOQ | 0.93 | 0.26 | 0.25 | 79 |
PFOA | <LOQ | 4.48 | 4.04 | 4.03 | 95 | 1.88 | 17.16 | 8.95 | 8.57 | 100 |
PFNA | <LOQ | 0.11 | 0.08 | 0.07 | 38 | <LOQ | 0.85 | 0.15 | 0.11 | 96 |
PFOS | <LOQ | 0.09 | 0.09 | 0.09 | 5 | <LOQ | 0.45 | 0.21 | 0.20 | 46 |
PFDA | <LOQ | 0.10 | 0.07 | 0.07 | 24 | <LOQ | 1.69 | 0.31 | 0.08 | 75 |
PFNS | <LOQ | 0.39 | 0.19 | 0.13 | 14 | <LOQ | 0.09 | 0.08 | 0.08 | 38 |
PFDoDA | <LOQ | 0.51 | 0.18 | 0.13 | 38 | <LOQ | 0.28 | 0.20 | 0.21 | 83 |
PFDS | <LOQ | 0.35 | 0.19 | 0.12 | 24 | <LOQ | 0.12 | 0.09 | 0.08 | 42 |
PFUnDA | <LOQ | 0.32 | 0.12 | 0.10 | 76 | <LOQ | 0.18 | 0.11 | 0.10 | 75 |
ΣPFAS | 4.48 | 6.53 | 5.34 | 5.17 | - | 2.57 | 19.2 | 10.8 | 10.4 | - |
Unregulated PFAS | Bottled Water | Tap Water | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Median | Freq | Min | Max | Mean | Median | Freq | |
PFMPA | 0.06 | 0.55 | 0.17 | 0.11 | 38 | <LOQ | 0.36 | 0.15 | 0.12 | 63 |
4:2 FTSA | 0.06 | 0.69 | 0.28 | 0.08 | 14 | <LOQ | 2.02 | 0.50 | 0.22 | 29 |
HFPO-DA | 0.07 | 0.21 | 0.13 | 0.13 | 33 | <LOQ | 0.50 | 0.12 | 0.09 | 54 |
NFDHA | 0.06 | 0.23 | 0.11 | 0.10 | 81 | <LOQ | 0.36 | 0.15 | 0.12 | 92 |
PFEESA | <LOQ | 0.14 | 0.14 | 0.14 | 5 | <LOQ | 0.58 | 0.26 | 0.10 | 13 |
PFMBA | <LOQ | 0.17 | 0.17 | 0.17 | 5 | <LOQ | 0.58 | 0.18 | 0.09 | 33 |
DONA | <LOQ | 0.15 | 0.15 | 0.15 | 5 | <LOQ | 0.67 | 0.14 | 0.09 | 58 |
6:2 FTSA | <LOQ | 4.64 | 0.47 | 0.16 | 71 | <LOQ | 2.12 | 0.36 | 0.21 | 79 |
9Cl-PF3ONS | <LOQ | 0.06 | 0.06 | 0.06 | 5 | <LOQ | 0.10 | 0.10 | 0.10 | 4 |
8:2 FTSA | <LOQ | 1.47 | 0.58 | 0.20 | 14 | <LOQ | 0.30 | 0.14 | 0.13 | 71 |
11Cl-PF3OUdS | <LOQ | 0.79 | 0.33 | 0.22 | 19 | <LOQ | 0.09 | 0.08 | 0.08 | 21 |
PFOSA | <LOQ | 1.13 | 0.42 | 0.16 | 46 | <LOQ | 0.08 | 0.07 | 0.06 | 21 |
Σ unregulated PFASs | 0.25 | 10.20 | 3.00 | 1.67 | - | <LOQ | 7.78 | 2.25 | 1.40 | - |
PFAS | RI Bottled Water | RI Tap Water | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kids (6–11 Years) | Teenagers (12–19 Years) | Adults (20–60 Years) | Seniors (>60 Years) | Kids (6–11 Years) | Teenagers (12–19 Years) | Adults (20–60 Years) | Seniors (>60 Years) | |||||||||
M | F | M | F | M | F | M | F | M | F | M | F | M | F | M | F | |
PFBA | 6.1 × 10−4 | 6.1 × 10−4 | 3.7 × 10−4 | 3.4 × 10−4 | 4.0 × 10−4 | 4.6 × 10−4 | 3.8 × 10−4 | 4.1 × 10−4 | 6.1 × 10−4 | 6.1 × 10−4 | 3.7 × 10−4 | 3.4 × 10−4 | 4.0 × 10−4 | 4.6 × 10−4 | 3.8 × 10−4 | 4.1 × 10−4 |
PFHxA | 7.9 × 10−5 | 7.9 × 10−5 | 4.9 × 10−5 | 4.4 × 10−5 | 5.2 × 10−5 | 6.0 × 10−5 | 5.0 × 10−5 | 5.3 × 10−5 | 7.9 × 10−5 | 7.9 × 10−5 | 4.9 × 10−5 | 4.4 × 10−5 | 5.2 × 10−5 | 6.0 × 10−5 | 5.0 × 10−5 | 5.3 × 10−5 |
PFHpA | 6.9 × 10−5 | 6.9 × 10−5 | 4.2 × 10−5 | 3.9 × 10−5 | 4.5 × 10−5 | 5.3 × 10−5 | 4.4 × 10−5 | 4.6 × 10−5 | 6.9 × 10−5 | 6.9 × 10−5 | 4.2 × 10−5 | 3.9 × 10−5 | 4.5 × 10−5 | 5.3 × 10−5 | 4.4 × 10−5 | 4.6 × 10−5 |
PFOA | 192 | 191 | 118 | 107 | 126 | 146 | 121 | 129 | 192 | 191 | 118 | 107 | 126 | 146 | 121 | 129 |
PFOS | 4.05 | 4.03 | 2.49 | 2.26 | 2.65 | 3.08 | 2.55 | 2.72 | 4.05 | 4.03 | 2.49 | 2.26 | 2.65 | 3.08 | 2.55 | 2.72 |
PFNA | 4.74 | 4.72 | 2.91 | 2.65 | 3.10 | 3.60 | 2.98 | 3.18 | 4.74 | 4.72 | 2.91 | 2.65 | 3.10 | 3.60 | 2.98 | 3.18 |
PFDA | 4.4 × 10−4 | 4.4 × 10−4 | 2.7 × 10−4 | 2.4 × 10−4 | 2.9 × 10−4 | 3.3 × 10−4 | 2.8 × 10−4 | 2.9 × 10−4 | 4.4 × 10−4 | 4.4 × 10−4 | 2.7 × 10−4 | 2.4 × 10−4 | 2.9 × 10−4 | 3.3 × 10−4 | 2.8 × 10−4 | 2.9 × 10−4 |
PFNuDA | 1.7 × 10−3 | 1.7 × 10−3 | 1.1 × 10−3 | 9.6 × 10−4 | 1.1 × 10−3 | 1.3 × 10−3 | 1.1 × 10−3 | 1.2 × 10−3 | 1.7 × 10−3 | 1.7 × 10−3 | 1.1 × 10−3 | 9.6 × 10−4 | 1.1 × 10−3 | 1.3 × 10−3 | 1.1 × 10−3 | 1.2 × 10−3 |
PFBS | 3.8 × 10−3 | 3.8 × 10−3 | 2.3 × 10−3 | 2.1 × 10−3 | 2.5 × 10−3 | 2.9 × 10−3 | 2.4 × 10−3 | 2.6 × 10−3 | 3.8 × 10−3 | 3.8 × 10−3 | 2.3 × 10−3 | 2.1 × 10−3 | 2.5 × 10−3 | 2.9 × 10−3 | 2.4 × 10−3 | 2.6 × 10−3 |
PFOSA | 2.5 × 10−1 | 2.5 × 10−1 | 1.6 × 10−1 | 1.4 × 10−1 | 1.7 × 10−1 | 1.9 × 10−1 | 1.6 × 10−1 | 1.7 × 10−1 | 2.5 × 10−1 | 2.5 × 10−1 | 1.6 × 10−1 | 1.4 × 10−1 | 1.7 × 10−1 | 1.9 × 10−1 | 1.6 × 10−1 | 1.7 × 10−1 |
PFDS | 6.5 × 10−2 | 6.5 × 10−2 | 4.0 × 10−2 | 3.7 × 10−2 | 4.3 × 10−2 | 5.0 × 10−2 | 4.1 × 10−2 | 4.4 × 10−2 | 6.5 × 10−2 | 6.5 × 10−2 | 4.0 × 10−2 | 3.7 × 10−2 | 4.3 × 10−2 | 5.0 × 10−2 | 4.1 × 10−2 | 4.4 × 10−2 |
PFDoDA | 1.4 × 10−1 | 1.4 × 10−1 | 8.5 × 10−2 | 7.7 × 10−2 | 9.0 × 10−2 | 1.1 × 10−1 | 8.7 × 10−2 | 9.3 × 10−2 | 1.4 × 10−1 | 1.4 × 10−1 | 8.5 × 10−2 | 7.7 × 10−2 | 9.0 × 10−2 | 1.1 × 10−1 | 8.7 × 10−2 | 9.3 × 10−2 |
PFHxS | 6.4 × 10−1 | 6.4 × 10−1 | 3.9 × 10−1 | 3.6 × 10−1 | 4.2 × 10−1 | 4.9 × 10−1 | 4.0 × 10−1 | 4.3 × 10−1 | 6.4 × 10−1 | 6.4 × 10−1 | 3.9 × 10−1 | 3.6 × 10−1 | 4.2 × 10−1 | 4.9 × 10−1 | 4.0 × 10−1 | 4.3 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimpean, I.-A.; Paun, I.; Pirvu, F.; Iancu, V.I.; Chiriac, F.L. Unregulated and Regulated PFASs in Bottled and Tap Water: Occurrence, Co-Occurrence Patterns, and Implications for Human Health and Regulatory Frameworks. J. Xenobiot. 2025, 15, 81. https://doi.org/10.3390/jox15030081
Cimpean I-A, Paun I, Pirvu F, Iancu VI, Chiriac FL. Unregulated and Regulated PFASs in Bottled and Tap Water: Occurrence, Co-Occurrence Patterns, and Implications for Human Health and Regulatory Frameworks. Journal of Xenobiotics. 2025; 15(3):81. https://doi.org/10.3390/jox15030081
Chicago/Turabian StyleCimpean, Ioana-Antonia, Iuliana Paun, Florinela Pirvu, Vasile Ion Iancu, and Florentina Laura Chiriac. 2025. "Unregulated and Regulated PFASs in Bottled and Tap Water: Occurrence, Co-Occurrence Patterns, and Implications for Human Health and Regulatory Frameworks" Journal of Xenobiotics 15, no. 3: 81. https://doi.org/10.3390/jox15030081
APA StyleCimpean, I.-A., Paun, I., Pirvu, F., Iancu, V. I., & Chiriac, F. L. (2025). Unregulated and Regulated PFASs in Bottled and Tap Water: Occurrence, Co-Occurrence Patterns, and Implications for Human Health and Regulatory Frameworks. Journal of Xenobiotics, 15(3), 81. https://doi.org/10.3390/jox15030081