Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Land-Use Classification
2.4. ESV Assignment
2.4.1. ESV Calculation
2.4.2. Sensitivity Analysis (CS)
3. Results
3.1. Land Use Dynamics
3.1.1. Land Use and Land Cover Change
3.1.2. Land-Use Conversion
3.2. Variability and Distributions of ESV through Time
3.2.1. Ecosystem Service Value Changes
3.2.2. Change in Ecosystem Function
3.2.3. Ecosystem Services Sensitivity Analysis
4. Discussion
4.1. Factors Driving LULCC
4.1.1. Population and Economic Growth
4.1.2. The Influence of Policy
4.2. Effect of LULCC on ESV
4.3. Possible Limitations and Future Suggestions
4.3.1. Data Selection
4.3.2. ESV Calculation
4.3.3. Implications for Land Use Management in Future
5. Conclusions
- (1)
- The ESV decreased from approximately $10,845.3 × 106 U.S. in 1986 to $10,127.3 × 106 U.S. in 2015. This decline in ESV is attributed to a corresponding decrease in the total area of wetland, grasslands, and water bodies.
- (2)
- The water supply, waste treatment, biodiversity protection, and recreation and cultural services were the top four ecosystem services in terms of service value, with a combined contribution of 77.05% to the total service value. The ecosystem functions based on contributions to the total ecosystem service value were as follows, in decreasing order: water supply, waste treatment, biodiversity protection, recreation and cultural services, soil formation, climate regulation, gas regulation food production, and raw material.
- (3)
- The sensitivity analysis showed a value below one and often close to zero, indicating that the estimated ESV of the study area was considerably inelastic with respect to the value coefficients. The estimated result was robust despite uncertainties in the value coefficients.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chuai, X.W.; Huang, X.J.; Wu, C.Y. Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Li, R.Q.; Dong, M.; Cui, J.Y. Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian County, China. Environ. Monit. Assess. 2007, 128, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Mamat, S.; Mamattursun, E.; Taxpolat, T. The effects of land-use change on ecosystem service value of desert oasis: A case study in Ugan-Kuqa River Delta Oasis, China. Can. J. Soil Sci. 2012, 93, 99–108. [Google Scholar]
- Costanza, R.; Arge, R.; Groot, R. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Terefe, T.; Feyera, S.; Moges, K. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar]
- Wang, S.X.; Wu, B.; Yang, P.N. Assessing the changes in land use and ecosystem services in an oasis agricultural region of Yanqi Basin, northwest China. Environ. Monit. Assess. 2014, 186, 8343–8357. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.B.; Liu, W.J.; Min, C. Impact of land use and land cover changes on ecosystem services in Menglun, Xishuangbanna, Southwest China. Environ. Monit. Assess. 2008, 146, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Li, T.H.; Li, W.K.; Qian, Z.H. Variations in ecosystem service value in response to land use changes in Shenzhen. Ecol. Econ. 2010, 69, 1427–1435. [Google Scholar]
- Stephen, P.; Erik, N.; Derric, P. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D. Change in ecosystem service values in the San Antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Nahuelhual, L.; Carmona, A.; Aguayo, M. Land use change and ecosystem services provision: A case study of recreation and ecotourism opportunities in southern Chile. Landsc. Ecol. 2014, 29, 329–344. [Google Scholar] [CrossRef]
- Chen, X.Z. A study on the value change of land ecosystem services in Huangguoshu scenic area. Asian Agric. Res. 2016, 64, 57–60. [Google Scholar]
- Zang, Z.; Zou, X.Q.; Zuo, P. Impact of landscape patterns on ecological vulnerability and ecosystem service values: An empirical analysis of Yancheng Nature Reserve in China. Ecol. Indic. 2017, 72, 142–152. [Google Scholar] [CrossRef]
- Adam, J.; Sharolyn, A.; Michael, J.B.D.; Paul, C.S. Revisiting ecosystem services: Assessment and valuation as starting points for environmental politics. Sustainability 2017, 9, 1755. [Google Scholar]
- Frederik, L.; Hubert, G.; Liesbet, V. valuing ecosystem services to explore scenarios for adaptive spatial planning. Ecol. Indic. 2017, 81, 30–40. [Google Scholar]
- Uta, S.; Marina, K.; Georg, L.; Veronika, F.; Erich, T.; Ulrike, T. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Mamattursun, E.; Hamid, Y.; Zulpiya, T. Variations in ecosystem service value in response to Oasis land-use change in Keriya Oasis, Tarim Basin, China. Nat. Areas J. 2014, 34, 353–364. [Google Scholar]
- Zulpiya, M.; Ümüt, H.; Maierdang, K.; Ayjamal, K.; Kalbinur, N. Variation of the floodplain forest ecosystem service value in the lower reaches of Tarim River, China. Land Degrad. Dev. 2017, 1–29. [Google Scholar] [CrossRef]
- Perring, M.P.; De Frenne, P.; Baeten, L.; Maes, S.L.; Depauw, L.; Blondeel, H.; Carón, M.M.; Verheyen, K. Global environmental change effects on ecosystems: The importance of land-use legacies. Glob. Chang. Biol. 2016, 22, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, H.P.; Wang, B.J. Effects of land-use intensity on ecosystem services and human well-being: A case study in Huailai County, China. Environ. Earth Sci. 2016, 75, 416–428. [Google Scholar] [CrossRef]
- Fu, B.L.; Li, Y.; Wang, Y.Q. Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indic. 2016, 69, 873–881. [Google Scholar] [CrossRef]
- Ian, J.B.; Georgina, M.M.; Carlo, F. Economic analysis for ecosystem Service assessments in an oasis agricultural region of Yanqi Basin, northwest China. Environ. Monit. Assess. 2011, 186, 8343–8357. [Google Scholar]
- Tarras, D.; Raver, F.; Reed, M.S. Land degradation assessment through an ecosystem services lens: Integrating knowledge and methods in pastoral semi-arid systems. J. Arid Environ. 2016, 124, 205–213. [Google Scholar] [CrossRef]
- He, Y.B.; Chen, Y.Q.; Tang, H.J. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model. Environ. Monit. Assess. 2011, 175, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Jerome, D.; Lluis, P.; Jorge, B. Using ecosystem services valuation to measure the economic impacts of land-use changes on the Spanish Mediterranean coast (El Maresme, 1850–2010). Reg. Environ. Chang. 2016, 16, 1075–1088. [Google Scholar]
- Jiang, S.; Zhu, Q.Z.; Zhang, Z.H. Landscape changes and its driving force in Kashgar. Agric. Res. Arid Area 2011, 29, 210–219. (In Chinese) [Google Scholar]
- Dong, M. Analysis of Land Use Change and Its Driving Forces in Kashgar Area of Xinjiang. Master’s Thesis, Northeast Forestry University, Harbin, China, 2016. (In Chinese). [Google Scholar]
- Li, Q. The Relationship between Land Use Change and Eco-Environment Based on RS & GIS in Kashgar Region. Master’s Thesis, Chang’an University, Xi’an, China, 2014. (In Chinese). [Google Scholar]
- Wang, W.J.; Zhang, Y.F. Analysis on the changes and driving forces of cultivated land in Kashgar area based on GIS. Hubei Agric. Sci. 2016, 55, 4561–4566. (In Chinese) [Google Scholar]
- Liu, G.Y.; Gao, M.H.; Yan, L. Study on the change of Kashgar administrative offices oasis over 30 year period based on RS/GIS. J. Shaanxi Univ. Sci. Technol. 2008, 3, 120–125. (In Chinese) [Google Scholar]
- Amee, K.T.; Venkappayya, R.D.; Ajay, P. Post-classification corrections in improving the classification of Land Use/Land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 79–89. [Google Scholar]
- Li, Q.; Kong, J.L. Kashgar region’s economic development zone land use spatial change analysis Based on GIS. J. Shanxi Inst. Social. 2014, 1, 53–59. (In Chinese) [Google Scholar]
- Liu, S.; Costanza, R. Ecosystem services valuation in China. Ecol. Econ. 2010, 69, 1387–1398. [Google Scholar] [CrossRef]
- Mengistie, K.; Thomas, S.; Demel, T.; Thomas, K. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar]
- Anna, F.C.; Kate, A.B.; Rebecca, C.K.; Andreas, H.; Guy, Z.; Ralf, S. Priorities to advance monitoring of ecosystem services using earth observation. Trends Ecol. Evolut. 2017, 32, 416–429. [Google Scholar]
- Zhang, Z.M.; Gao, J.F.; Fan, X.Y. Assessing the variable ecosystem services relationships in polders time: A case study in the eastern Chaohu Lake Basin, China. Environ. Earth Sci. 2016, 75, 856–867. [Google Scholar] [CrossRef]
- Zhou, C.P. Assessment on the eco-environment and the Land Use Based on the Ecosystem Service Value—A Case of Guangdong Province, China. Asian Agric. Res. 2010, 40, 34–36. [Google Scholar]
- Ning, J.; Liu, J.Y.; Zhao, G.S. Spatio-temporal characteristics of disturbance of land use change on major ecosystem function zones in China. Chin. Geogr. Sci. 2015, 5, 523–536. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, J.; Gao, Y. The influences of land use changes on the value of ecosystem services in Chaohu Lake Basin, China. Environ. Earth Sci. 2015, 74, 1–11. [Google Scholar] [CrossRef]
- Zhao, B.; Kreuter, U.P.; Li, B. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Peng, W.F.; Wang, G.J.; Zhou, J.M. Effects of the land use change on ecosystem service value based on RS and GIS. J. Landsc. Res. 2015, 7, 21–26. [Google Scholar]
- Peng, W.F.; Zhou, J.M.; Fan, S.Y. Effects of the land use change on ecosystem service value in Chengdu, western China from 1978 to 2010. J. Indian Soc. Remote Sens. 2016, 44, 197–206. [Google Scholar] [CrossRef]
- Si, J.; Nasiri, F.Z.; Han, P. Variation in ecosystem service values in response to land use changes in Zhifanggou watershed of Loess plateau: a comparative study. Environ. Syst. Res. 2014, 3, 2–10. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Wei, L.Y. Land use change and its impact on values of ecosystem services in the west of Jilin province. Wuhan Univ. J. Nat. Sci. 2006, 11, 1028–1034. [Google Scholar]
- Vera, C.V.; Arturo, R.L.; Andrea, G. Effects of land use changes on the ecosystem service values of coastal wetlands. Environ. Manag. 2014, 54, 852–864. [Google Scholar]
- Fan, Q.D.; Ding, S.Y. Response of ecosystem services to land use change in county scale of Fengqiu, Henan Province, China. Arab. J. Geosci. 2015, 8, 9015–9022. [Google Scholar]
- Wang, M.; Sun, X.F. Potential impact of land use change on ecosystem services in China. Environ. Monit. Assess. 2016, 188, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.N.; Ding, J.L. Land-use conversion and its attribution in the Kaidu-Kongqi River Basin, China. Quat. Int. 2015, 380, 216–223. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhang, B.; Zhang, S.Q. Changes of land use and of ecosystem service values in Sanjiang Plain, Northeast China. Environ. Monit. Assess. 2006, 112, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberg, E.; Ding, C.R. Assessing farm land protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, R.S.; Huang, J.L. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Chin. Sci. Bull. 2012, 17, 2120–2131. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, Z.M.; Bai, Z. Impact of land use/land cover changes on ecosystem services in the Nenjiang River Basin, Northeast China. Ecol. Processes 2015, 4, 11–23. [Google Scholar] [CrossRef]
- Cao, S.J.; Li, C.; Cao, S.H. Change in ecosystem service value arising from land consolidation planning in Anhui province. Asian Agric. Res. 2013, 5, 13–16. [Google Scholar]
- Hu, X.S.; Wu, C.Z.; Hong, W. Impact of land-use change on ecosystem service values and their effects under different intervention scenarios in Fuzhou City, China. Geosci. J. 2013, 17, 497–504. [Google Scholar] [CrossRef]
Path/Row | Acquisition Data | |||
---|---|---|---|---|
1986 | 1996 | 2005 | 2015 | |
147/032 | 24 September 1986 | 15 September 1996 | 15 September 2005 | 20 August 2015 |
147/033 | 24 September 1986 | 14 September 1996 | 15 September 2005 | 20 August 2015 |
147/034 | 13 September 1986 | 8 October 1996 | 14 September 2005 | 12 September 2015 |
147/035 | 2 October 1986 | 7 October 1996 | 29 August 2005 | 11 August 2015 |
148/032 | 22 September 1986 | 30 September 1996 | 29 August 2005 | 26 July 2015 |
148/033 | 19 September 1986 | 9 September 1996 | 29 August 2005 | 28 September 2015 |
148/034 | 18 September 1986 | 5 September 1996 | 11 July 2005 | 19 September 2015 |
148/035 | 10 September 1986 | 17 September 1996 | 23 August 2005 | 19 September 2015 |
149/032 | 30 August 1986 | 24 August 1996 | 12 August 2005 | 19 September 2015 |
149/033 | 9 September 1986 | 29 August 1996 | 26 July 2005 | 10 September 2015 |
149/034 | 25 September 1986 | 26 August 1996 | 26 July 2005 | 26 September 2015 |
149/035 | 30 August 1986 | 26 August 1996 | 18 July 2005 | 26 September 2015 |
1986 Class Types | Actual Types | ||||||||
(C) | (F) | (G) | (W) | (C) | (S) | (W) | (S) | (U) | |
Cultivated land (C) | 88 | 9 | 7 | 2 | 2 | 1 | 0 | 0 | 0 |
Forestland (F) | 2 | 84 | 4 | 1 | 0 | 3 | 2 | 0 | 0 |
Grassland (G) | 2 | 2 | 83 | 2 | 1 | 5 | 3 | 0 | 0 |
Water body (W) | 0 | 0 | 3 | 92 | 0 | 0 | 7 | 0 | 0 |
Construction land (C) | 4 | 0 | 1 | 0 | 95 | 1 | 0 | 0 | 0 |
Salinized land (S) | 3 | 4 | 1 | 0 | 0 | 89 | 1 | 3 | 1 |
Wetland (W) | 1 | 1 | 1 | 3 | 2 | 1 | 86 | 0 | 3 |
Sandy land (S) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 93 | 2 |
Unused land (U) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 94 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Total accuracy of classification = 89% Kappa = 0.881 | |||||||||
1996 Class Types | Actual Types | ||||||||
(C) | (F) | (G) | (W) | (C) | (S) | (W) | (S) | (U) | |
Cultivated land (C) | 89 | 4 | 2 | 0 | 6 | 3 | 2 | 1 | 0 |
Forestland (F) | 1 | 87 | 3 | 0 | 2 | 0 | 0 | 0 | 0 |
Grassland (G) | 2 | 3 | 88 | 2 | 1 | 1 | 0 | 1 | 0 |
Water body (W) | 1 | 2 | 1 | 88 | 1 | 0 | 2 | 0 | 0 |
Construction land (C) | 2 | 1 | 1 | 2 | 89 | 1 | 0 | 0 | 0 |
Salinized land (S) | 2 | 0 | 1 | 2 | 0 | 92 | 1 | 1 | 1 |
Wetland (W) | 1 | 1 | 2 | 6 | 0 | 1 | 93 | 0 | 3 |
Sandy land (S) | 1 | 1 | 0 | 1 | 0 | 1 | 2 | 96 | 2 |
Unused land (U) | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 1 | 95 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Total accuracy of classification = 92% Kappa = 0.908 | |||||||||
2005 Class Types | Actual Types | ||||||||
(C) | (F) | (G) | (W) | (C) | (S) | (W) | (S) | (U) | |
Cultivated land (C) | 92 | 1 | 4 | 2 | 2 | 2 | 1 | 0 | 1 |
Forestland (F) | 3 | 89 | 1 | 0 | 1 | 1 | 2 | 0 | 1 |
Grassland (G) | 2 | 2 | 91 | 1 | 2 | 0 | 1 | 0 | 0 |
Water body (W) | 0 | 0 | 1 | 87 | 1 | 2 | 1 | 0 | 0 |
Construction land (C) | 1 | 2 | 0 | 1 | 87 | 0 | 0 | 0 | 0 |
Salinized land (S) | 2 | 2 | 2 | 2 | 2 | 90 | 1 | 1 | 1 |
Wetland (W) | 0 | 1 | 1 | 4 | 2 | 1 | 94 | 0 | 4 |
Sandy land (S) | 0 | 1 | 0 | 2 | 2 | 2 | 0 | 97 | 3 |
Unused land (U) | 0 | 1 | 0 | 1 | 1 | 2 | 0 | 2 | 91 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Total accuracy of classification = 90.1% Kappa = 0.891 | |||||||||
2015 Class Types | Actual Types | ||||||||
(C) | (F) | (G) | (W) | (C) | (S) | (W) | (S) | (U) | |
Cultivated land (C) | 91 | 2 | 2 | 4 | 5 | 0 | 2 | 1 | 1 |
Forestland (F) | 2 | 88 | 3 | 2 | 2 | 1 | 2 | 1 | 1 |
Grassland (G) | 2 | 3 | 90 | 1 | 2 | 1 | 1 | 1 | 1 |
Water body (W) | 0 | 2 | 0 | 88 | 0 | 0 | 1 | 1 | 1 |
Construction land (C) | 2 | 1 | 0 | 0 | 86 | 0 | 0 | 0 | 0 |
Salinized land (S) | 2 | 1 | 1 | 1 | 2 | 92 | 1 | 0 | 1 |
Wetland (W) | 1 | 1 | 4 | 4 | 1 | 2 | 91 | 1 | 1 |
Sandy land (S) | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 93 | 4 |
Unused land (U) | 0 | 1 | 0 | 0 | 1 | 2 | 1 | 2 | 90 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Total accuracy of classification = 89% Kappa = 0.88 |
Land Use Category | Definition |
---|---|
Cultivated land | Areas cultivated with dense annual crops and vegetables, including dry land and irrigated land. |
Forestland | Areas of dense forest, open forest, orchards, and nurseries. |
Grassland | Land with natural grassland cover, including steppes and grazing lands. |
Water body | Rivers, lakes, and artificial water areas. |
Construction land | All land used to construct human structures, including residential, commercial, and industrial buildings as well as transportation facilities, highways, rail ways, and family houses. |
Salinized land | Land with salt on top soil. |
Wetland | Mainly marshes along river banks, characterized by poor drainage moisture, and surface-grown |
long-term hygrophytes. | |
Sandy land | Land covered with sand, with a vegetation cover of less than 5%. |
Unused land | Uncultivated areas with sparse plant cover, including barren, rocky, or abandoned sandy land in slopes, bare land. |
Ecosystem Services Value (USD/ha/year) | |||||||||
---|---|---|---|---|---|---|---|---|---|
ESVf | Cultivated | Forest | Grass | Water | Construction | Salinized | Wet | Sandy | Unused |
Gas regulation | 74.7 | 299.4 | 104. | 0.0 | 0.0 | 2.3 | 268.9 | 0.0 | 4.2 |
Climate regulation | 133.0 | 282.1 | 108. | 68.7 | 0.0 | 0.0 | 2554.7 | 0.0 | 9.0 |
Water supply | 89.6 | 283.5 | 105. | 3047.7 | 0.0 | 39.4 | 2315.6 | 4.1 | 4.8 |
Soil formation | 218.1 | 278.6 | 155. | 1.5 | 0.0 | 0.2 | 255.5 | 2.7 | 11.8 |
Waste treatment | 245.0 | 119.2 | 91.5 | 2719.0 | 0.0 | 55.6 | 2716.0 | 1.4 | 18.0 |
Biodiversity protection | 106.1 | 312.6 | 130 | 372.0 | 0.0 | 3.2 | 373.5 | 46.4 | 27.7 |
Food production | 149.4 | 22.9 | 29.8 | 14.9 | 0.0 | 12.1 | 44.8 | 1.4 | 1.4 |
Raw material | 14.9 | 206.5 | 25.0 | 1.5 | 0.0 | 1.1 | 10.5 | 0.0 | 2.8 |
Recreation and culture | 1.5 | 144.2 | 60.3 | 648.4 | 12.7 | 15.3 | 829.2 | 1.4 | 16.6 |
Total | 1032.3 | 1948.9 | 809 | 6873.8 | 12.7 | 129.2 | 9368.7 | 57.3 | 96.4 |
Land Use Type | 1986 | 1996 | 2005 | 2015 | ||||
---|---|---|---|---|---|---|---|---|
Area (103 ha) | % of Total | Area (103 ha) | % of Total | Area (103 ha) | % of Total | Area (103 ha) | % of Total | |
Cultivated | 883.6 | 7.8 | 963 | 8.5 | 1095.8 | 9.7 | 1454.5 | 12.8 |
Forest | 221.9 | 2.0 | 278.3 | 2.5 | 321.4 | 2.8 | 338.1 | 3.0 |
Grass | 3063.9 | 27.0 | 2824.1 | 24.9 | 2534.6 | 22.3 | 1901.9 | 16.8 |
Water | 875.7 | 7.7 | 782.2 | 6.9 | 772.9 | 6.8 | 803.1 | 7.1 |
Construction | 32.9 | 0.3 | 37.4 | 0.3 | 42.5 | 0.4 | 49.4 | 0.4 |
Salinized | 377.3 | 3.3 | 370.9 | 3.3 | 326.4 | 2.9 | 298.1 | 2.6 |
Wet | 52.6 | 0.5 | 109.3 | 1.0 | 70.1 | 0.6 | 40.3 | 0.4 |
Sandy | 2588 | 22.8 | 2880.2 | 25.4 | 3143.3 | 27.7 | 3335.6 | 29.4 |
Unused | 3254.3 | 28.7 | 3104.8 | 27.4 | 3043.2 | 26.8 | 3129.2 | 27.6 |
1986–2015 | (C) | (F) | (G) | (W) | (C) | (S) | (W) | (S) | (U) | Gain |
---|---|---|---|---|---|---|---|---|---|---|
Cultivated land (C) | 600.2 | 29.1 | 688.5 | 5.9 | 6.9 | 9.7 | 8.4 | 38.0 | 67.7 | 854.2 |
Forest land (F) | 14.7 | 122.1 | 54.0 | 0.2 | 0.0 | 94.2 | 3.1 | 23.1 | 16.7 | 206.0 |
Grass land (G) | 146.9 | 35.9 | 1607.3 | 87.0 | 0.4 | 7.6 | 4.1 | 33.4 | 109.9 | 425.2 |
Water body (W) | 12.6 | 2.0 | 69.3 | 535.5 | 5.0 | 0.1 | 2.6 | 2.8 | 278.2 | 367.6 |
Construction land (C) | 13.5 | 0.4 | 10.2 | 0.1 | 21.0 | 3.1 | 0.0 | 0.8 | 0.5 | 28.6 |
Salinized land (S) | 5.5 | 18.7 | 85.2 | 2.8 | 0.0 | 172.1 | 0.3 | 6.8 | 6.7 | 126.0 |
Wetland (W) | 8.8 | 1.1 | 2.6 | 2.0 | 0.7 | 3.1 | 21.2 | 2.3 | 3.5 | 24.1 |
Sandy land (S) | 0.8 | 11.9 | 82.5 | 0.5 | 0.0 | 23.2 | 3.1 | 2440.4 | 43.1 | 165.1 |
Unused land (U) | 70.0 | 0.7 | 464.3 | 121.7 | 3.9 | 64.2 | 0.0 | 40.4 | 2643.4 | 765.2 |
Loss | 272.8 | 99.8 | 1456.6 | 220.2 | 11.9 | 205.2 | 21.6 | 147.6 | 526.3 |
Land Use Types | 1986 | 1996 | 2005 | 2015 | 1986–1996 (%) | 1996–2005 (%) | 2005–2015 (%) | 1986–2015 (%) |
---|---|---|---|---|---|---|---|---|
Cultivated Land | 912.14 | 994.1 | 1131.2 | 1501.5 | 8.99 | 13.79 | 32.7 | 64.6 |
Forest Land | 432.48 | 542.4 | 626.4 | 659 | 25.42 | 15.49 | 5.2 | 52.4 |
Grass Land | 2477.5 | 2218.9 | 2049 | 1537 | –10.44 | –7.66 | –25.0 | –38.0 |
Water Body | 6019.3 | 5926.5 | 5312.7 | 5520.3 | –1.54 | –10.36 | 3.9 | –8.3 |
ConstructionLand | 0.42 | 0.5 | 0.54 | 0.63 | 13.68 | 8 | 16.2 | 50 |
Salinized Land | 48.75 | 47.9 | 42.2 | 38.5 | –1.7 | –11.9 | –8.7 | –21.0 |
Wet Land | 492.79 | 1024 | 656.77 | 377.6 | 107.79 | –35.86 | –42.5 | –23.4 |
Sandy Land | 148.55 | 165.3 | 180.4 | 191.5 | 11.29 | 9.13 | 6.1 | 28.9 |
Unused Land | 313.39 | 299 | 293.1 | 301.3 | –4.59 | –1.97 | 2.8 | –3.9 |
Total | 10,845.3 | 11218.6 | 10,291.7 | 10,127.3 | 3.44 | –8.26 | –1.6 | –6.6 |
ESVf | 1986 | 1996 | 2005 | 2015 | % | Rank | Trend |
---|---|---|---|---|---|---|---|
Gas regulation | 479.77 | 483.93 | 474.1 | 432.3 | 4.40 | 7 | ↓ |
Climate regulation | 734.84 | 869.36 | 769.7 | 680.5 | 7.19 | 6 | ↓ |
Water supply | 3295.56 | 3375.46 | 3013.7 | 3007.2 | 29.88 | 1 | ↓ |
Soil formation | 789.66 | 786.61 | 784.9 | 763.7 | 7.36 | 5 | ↓ |
Waste treatment | 3130.35 | 3241.91 | 2907.9 | 2941.3 | 28.77 | 2 | ↓ |
Biodiversity protection | 1118.26 | 1128.3 | 1090.1 | 1062.7 | 10.36 | 3 | ↓ |
Food production | 256.54 | 262.63 | 273.9 | 308.2 | 2.59 | 8 | ↑ |
Raw material | 146.98 | 151.96 | 156.8 | 149.8 | 1.43 | 9 | ↓ |
Recreation and culture | 893.33 | 918.45 | 820.6 | 781.6 | 8.04 | 4 | ↓ |
Total | 10,845.3 | 11,218.61 | 10,291.7 | 10,127.3 | ↓ |
Change in Value Coefficient | 1986 | 1996 | 2005 | 2015 | ||||
---|---|---|---|---|---|---|---|---|
% | CS | % | CS | % | CS | % | CS | |
Cultivated land VC ± 50% | 7.41 | 0.15 | 7.90 | 0.16 | 5.49 | 0.11 | 7.41 | 0.15 |
Forest land VC ± 50% | 3.48 | 0.07 | 4.34 | 0.09 | 3.04 | 0.06 | 3.25 | 0.07 |
Grass land VC ± 50% | 14.45 | 0.30 | 16.50 | 0.33 | 9.94 | 0.20 | 7.59 | 0.15 |
Water body VC ± 50% | 27.89 | 0.56 | 29.11 | 0.58 | 25.77 | 0.52 | 27.23 | 0.54 |
Construction land VC ± 50% | 0.12 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Salinized land VC ± 50% | 0.09 | 0.00 | 0.10 | 0.00 | 0.20 | 0.00 | 0.19 | 0.00 |
Wetland VC ± 50% | 4.32 | 0.09 | 8.91 | 0.18 | 3.18 | 0.06 | 1.86 | 0.04 |
Sandy land VC ± 50% | 0.77 | 0.02 | 0.90 | 0.02 | 0.87 | 0.02 | 0.94 | 0.02 |
Unused land VC ± 50% | 2.21 | 0.04 | 2.61 | 0.05 | 1.57 | 0.03 | 1.51 | 0.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamat, A.; Halik, Ü.; Rouzi, A. Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China. Sustainability 2018, 10, 200. https://doi.org/10.3390/su10010200
Mamat A, Halik Ü, Rouzi A. Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China. Sustainability. 2018; 10(1):200. https://doi.org/10.3390/su10010200
Chicago/Turabian StyleMamat, Aynur, Ümüt Halik, and Aihemaitijiang Rouzi. 2018. "Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China" Sustainability 10, no. 1: 200. https://doi.org/10.3390/su10010200
APA StyleMamat, A., Halik, Ü., & Rouzi, A. (2018). Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China. Sustainability, 10(1), 200. https://doi.org/10.3390/su10010200