A Needs-Driven, Multi-Objective Approach to Allocate Urban Ecosystem Services from 10,000 Trees
Abstract
:1. Introduction
1.1. Approach
1.2. Case Study: Durham, NC
1.3. Problem Formulation
2. Methods
2.1. Single-Objective Cases
2.2. Multiple-Objective Cases
2.3. Benefits Calculation
3. Results
4. Discussion
Limitations and Areas for Further Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Disclaimer
Appendix A Summary of Abbreviations
Abbreviation | Name | Description |
CBG | Census block group | Geographic unit of organization |
CCB | Coincident co-benefits | Product of all SB scores |
FBP | Fractional benefit provision | Ratio of actual benefits to potential benefits |
GB | Gross benefits | Sum of all SB scores |
ICB | Intentional co-benefits | Benefits from multiple metrics |
MOC | Multi-objective case | Prioritization schemes using ICB scores |
SB | Singular benefits | Benefits from a single metric |
SOC | Single-objective case | Prioritization schemes using SB scores |
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Viglizzo, E.F.; Paruelo, J.M.; Laterra, P.; Jobbagy, E.G. Ecosystem service evaluation to support land-use policy. Agric. Ecosyst. Environ. 2012, 154, 78–84. [Google Scholar] [CrossRef]
- Chichilnisky, G.; Heal, G. Economic returns from the biosphere. Nature 1998, 391, 629–630. [Google Scholar] [CrossRef]
- Honey-Rosés, J.; DSchneider, W.; Brozović, N. Changing Ecosystem Service Values Following Technological Change. Environ. Manag. 2014, 53, 1146–1157. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Crane, D.; Stevens, J.; Hoehn, R.; Walton, J.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar]
- Bengston, D.N.; Fletcher, J.O.; Nelson, K.C. Public policies for managing urban growth and protecting open space: Policy instruments and lessons learned in the United States. Landsc. Urban Plan. 2004, 69, 271–286. [Google Scholar] [CrossRef]
- McPherson, G.; Simpson, J.; Peper, P.; Maco, S.; Xiao, Q. Municipal forest benefits and costs in five US cities. J. For. 2005, 103, 411–416. [Google Scholar]
- Daniel, T.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.; Chan, K.; Costanza, R.; Elmqvist, T.; Flint, C.; Gobster, P.; et al. Contributions of Cultural Services to the Ecosystem Services Agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [Google Scholar] [CrossRef] [PubMed]
- US Census Bureau. State and County Quick Facts. 2012. Available online: http://quickfacts.census.gov/qfd/states/37/37063.html (accessed on 23 June 2014).
- Marmot, M.; Friel, S.; Bell, R.; Houweling, T.A.J.; Taylor, S.; on behalf of the Commission on Social Determinants of Health. Closing the gap in a generation: Health equity through action on the social determinants of health. Lancet 2008, 372, 1661–1669. [Google Scholar] [CrossRef]
- Landry, S.M.; Chakraborty, J. Street Trees and Equity: Evaluating the Spatial Distribution of an Urban Amenity. Environ. Plan. A Econ. Space 2009, 41, 2651–2670. [Google Scholar] [CrossRef]
- Durham County. Neuse River Basin Nutrient Sensitive Waters Management Strategy: Stormwater Plan. 2007. Available online: http://www.dconc.gov/home/showdocument?id=1190 (accessed on 2 October 2015).
- Durham County. Jordan Lake Stage 1 Adaptive Management Program. 2009. Available online: www.dconc.gov/home/showdocument?id=1186 (accessed on 2 October 2015).
- [ICLEI] Local Governments for Stability. City of Durham & Durham County Greenhouse Gas and Criteria Air Pollutant Emissions Inventory and Local Action Plan for Emission Reductions; ICLEI Energy Services: Toronto, ON, Canada, 2007. [Google Scholar]
- Durham City-County Environmental Affairs Board. Recommendations for Sustaining a Healthy Urban Forest in Durham, NC; Durham City-Council Environmental Affairs Board: Durham, NC, USA, 2015.
- Wise, J. Durham Tree Canopy at ‘Critical Juncture’; The News & Observer Publishing Company: Raleigh, NC, USA, 2015. [Google Scholar]
- Pickard, B.; Daniel, J.; Mehaffey, M.; Jackson, L.; Neale, A. EnviroAtlas: A new geospatial tool to foster ecosystem services science and resource management. Ecosyst. Serv. 2015, 14, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.P.; Beard, T.D.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
- Bassuk, N.; Curtis, D.F.; Marranca, B.Z.; Neal, B. Recommended Urban Trees: Site Assessment and Tree Selection for Stress Tolerance; Urban Horticulture Institute: Ithica, NY, USA, 2009. [Google Scholar]
- McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Gardner, S.L.; Vargas, K.E.; Maco, S.E.; Xiao, Q. Piedmont Community Tree Guide: Benefits, Costs, and Strategic Planting; Center for Urban Forest Research: Davis, CA, USA, 2006. [Google Scholar]
- U.S. Environmental Protection Agency. EnviroAtlas Tool. 2013. Available online: www.epa.gov/enviroatlas (accessed on 1 November 2018).
- Jackson, L.E.; Daniel, J.; McCorkle, B.; Sears, A.; Bush, K.F. Linking ecosystem services and human health: The Eco-Health Relationship Browser. Int. J. Public Health 2013, 58, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.A. Urban vegetation impacts on the hydrology of Dayton, Ohio. Urban Ecol. 1986, 9, 361–376. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 2016, 45, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Tsihrintzis, V.; Hamid, R. Urban stormwater quantity/quality modeling using the SCS method and empirical equations. J. Am. Water Resour. Assoc. 1997, 33, 163–176. [Google Scholar] [CrossRef]
- Goonetille, A.; Thomas, E.; Ginn, S.; Gilbert, D. Understanding the Role of Land Use in Urban Stormwater Quality Management. J. Environ. Manag. 2005, 74, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barco, J.; Wong, K.M.; Stenstrom, M.K. Automatic calibration of the US EPA SWMM model for a large urban catchment. J. Hydraul. Eng. 2008, 134, 466–474. [Google Scholar] [CrossRef]
- Baldauf, R. Roadside vegetation design characteristics that can improve local, near-road air quality. Transp. Res. Part D 2017, 52, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Hosker, R.P., Jr.; Lindberg, S.E. Review: Atmospheric deposition and plant assimilation of gases and particles. Atmos. Environ. 1982, 16, 889–910. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Tang, W.; Freeman, M.J.; Heist, D.K.; Perry, S.G.; Vette, A.F. Model evalaution of roadside barrier impact on near-road air pollution. Atmos. Environ. 2011, 45, 2522–2530. [Google Scholar] [CrossRef]
- Lovasi, G.; Quinn, J.; Neckerman, K.; Perzanowski, M.; Rundle, A. Children Living in Areas with More Street Trees Have Lower Prevalence of Asthma. J. Epidemiol. Community Health 2008, 62, 647–649. [Google Scholar] [CrossRef] [PubMed]
- ESRI. ArcGIS Desktop: Release 10.2; Environmental Systems Research Institute: Redlands, CA, USA, 2014. [Google Scholar]
- NAVTEQ. NAVTEQ’s NAVSTREETS Street Data Reference Manual v4.4; NOKIA: Chicago, IL, USA, 2012; Available online: http://data-content.ptvgroup.com/en/products/geodata/navstreetstm-from-here/ (accessed on 15 April 2015).
- Watkins, N.; Baldauf, R. Near-Road NO2 Monitoring Technical Assistance Document; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2012. [Google Scholar]
- (EPA) U.S. Environmental Protection Agency. User’s Guide to MOBILE6.1 and MOBILE6.2: Mobile Source Emission Factor Model; U.S. EPA National Vehicle and Fuel Emissions Laboratory: Ann Arbor, MI, USA, 2002.
- (EPA) U.S. Environmental Protection Agency. Using MOVES to Prepare Emissions Inventories in State Implementation Plans and Transportation Conformity: Technical Guidance for MOVES 2010; EPA-420-B-12-028; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- (DOT) U.S. Department of Transportion, Federal Highway Administration. Multi-Pollutant Emissions Benefits of Transportation Strategies-FHWA. 2007. Available online: http://www.fhwa.dot.gov/environment/air_quality/conformity/research/mpe_benefits/ (accessed on 9 October 2015).
- Victoria Transport Policy Institute. Transportation Cost and Benefit Analysis II—Air Pollution Costs. 2011. Available online: http://healthpolicy.ucla.edu/Documents/Newsroom%20PDF/tca0510.pdf (accessed on 26 November 2018).
- Morello-Frosch, R.; Shenassa, E. The environmental riskscape” and social inequality: Implications for explaining maternal and child health disparities. Environ. Health Perspect. 2006, 114, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.S. The epidemic of obesity and diabetes: Trends and treatments. Tex. Heart Inst. J. 2011, 38, 142. [Google Scholar] [PubMed]
- U.S. Centers for Disease Control and Prevention. Summary Health Statistics for US Adults: National Health Interview Survey; National Center for Health Statistics: Hyattsville, MD, USA, 2012.
- Brownson, R.; Baker, E.; Housemann, R.; Brennan, L.; Bacak, S. Environmental and policy determinants of physical activity in the United States. Am. J. Public Health 2001, 91, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Wells, N.; Evans, G.; Yang, Y. Environments and health: Planning decisions as public-health decisions. J. Arch. Plan. Res. 2010, 27, 124–143. [Google Scholar]
- Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Naderi, J. Landscape design in clear zone: Effect of landscape variables on pedestrian health and driver safety. Transp. Res. Rec. J. Transp. Res. Board 2003, 1851, 119–130. [Google Scholar] [CrossRef]
- Adams, M.A.; Sallis, J.F.; Kerr, J.; Conway, T.L.; Saelens, B.E.; Frank, L.D.; Norman, G.J.; Cain, K.L. Neighborhood environment profiles related to physical activity and weight status: A latent profile analysis. Prev. Med. 2011, 52, 326–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humpel, N.; Marshall, A.L.; Leslie, E.; Bauman, A.; Owen, N. Changes in Neighborhood Walking Are Related to Changes in Perceptions of Environmental Attributes. Ann. Behav. Med. 2004, 27, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Kuo, F.E.; Sullivan, W.C.; Coley, R.L.; Brunson, L. Fertile ground for community: Inner-city neighborhood common spaces. Am. J. Community Psychol. 1998, 26, 823–851. [Google Scholar] [CrossRef]
- Bell, J.F.; Wilson, J.S.; Liu, G.C. Neighborhood greenness and 2-year changes in body mass index of children and youth. Am. J. Prev. Med. 2008, 35, 547–553. [Google Scholar] [CrossRef] [PubMed]
- (DOT) U.S. Department of Transportion, Federal Highway Administration. A Resident’s Guide for Creating Safe and Walkable Communities. 2008. Available online: http://safety.fhwa.dot.gov/ped_bike/ped_cmnity/ped_walkguide/residents_guide2014_final.pdf (accessed on 9 October 2015).
- [EPA] U.S. Environmental Protection Agency. EnviroAtlas—Durham, NC—Estimated Percent Tree Cover along Walkable Roads. 2015. Available online: https://edg.epa.gov/metadata/rest/document?id=%7BF341A26B-4972-4C6B-B675-9B5E02F4F25F%7D (accessed on 3 August 2018).
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- (EPA) U.S. Environmental Protection Agency. BenMap Tool. 2017. Available online: https://www.epa.gov/benmap (accessed on 26 November 2018).
- (USDA) U.S. Department of Agriculture, Forest Service. iTree Suite of Tools for Assessing and Managing Urban Forests. 2014. Available online: www.itreetools.org (accessed on 15 April 2015).
- Langemeyer, J.; Gómez-Baggethun, E.; Haase, D.; Scheuer, S.; Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 2016, 62, 45–56. [Google Scholar] [CrossRef]
- Fontana, V.; Radtke, A.; Fedrigotti, V.B.; Tappeiner, U.; Tasser, E.; Zerbe, S.; Buchholz, T. Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis. Ecol. Econ. 2013, 93, 128–136. [Google Scholar] [CrossRef]
- Bekele, E.G.; Nicklow, J.W. Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martín-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Turkelboom, F.; Thoonen, M.; Jacobs, S.; Berry, P. Ecosystem service trade-offs and synergies. Ecol. Soc. 2015, 21. [Google Scholar] [CrossRef]
- Burkhart, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R. Mapping and modeling ecosystem services for science, policy and practice. Ecosyst. Serv. 2013, 4, 1–3. [Google Scholar] [CrossRef]
- Albert, C.; Galler, C.; Hermes, J.; Neuendorf, F.; von Haaren, C.; Lovett, A. Applying ecosystem services indicators in landscape planning and management: The ES-in-Planning framework. Ecol. Indic. 2016, 61, 100–113. [Google Scholar] [CrossRef]
- Cochran, F.; Daniel, J.; Jackson, J.; Neale, A. Earth observation-based ecosystem services indicators for national and subnational reporting of the Sustainable Development Goals. Remote Sens. Environ. 2019. in review. [Google Scholar]
Road Classification | Speed Category | Truck Route |
---|---|---|
1 | 2 (31–44 mph) | No |
2 | 2 (31–44 mph) | Yes |
3 | 1 or 3 (0–30 or 45+ mph) | No |
4 | 1 or 3 (0–30 or 45+ mph) | Yes |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeter, A.; Tashie, A.; Procter, A.; McAlexander, T.; Browning, D.; Rudder, C.; Jackson, L.; Araujo, R. A Needs-Driven, Multi-Objective Approach to Allocate Urban Ecosystem Services from 10,000 Trees. Sustainability 2018, 10, 4488. https://doi.org/10.3390/su10124488
Almeter A, Tashie A, Procter A, McAlexander T, Browning D, Rudder C, Jackson L, Araujo R. A Needs-Driven, Multi-Objective Approach to Allocate Urban Ecosystem Services from 10,000 Trees. Sustainability. 2018; 10(12):4488. https://doi.org/10.3390/su10124488
Chicago/Turabian StyleAlmeter, Andrew, Arik Tashie, Andrew Procter, Tara McAlexander, Douglas Browning, Charles Rudder, Laura Jackson, and Rochelle Araujo. 2018. "A Needs-Driven, Multi-Objective Approach to Allocate Urban Ecosystem Services from 10,000 Trees" Sustainability 10, no. 12: 4488. https://doi.org/10.3390/su10124488
APA StyleAlmeter, A., Tashie, A., Procter, A., McAlexander, T., Browning, D., Rudder, C., Jackson, L., & Araujo, R. (2018). A Needs-Driven, Multi-Objective Approach to Allocate Urban Ecosystem Services from 10,000 Trees. Sustainability, 10(12), 4488. https://doi.org/10.3390/su10124488