Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection
Abstract
:1. Introduction
2. Desirable Morphological and Ecophysiological Attributes of a Temperate-Adapted, Perennial Grain Legume
2.1. Agronomic Potential
2.1.1. Crop Establishment
2.1.2. Field Management
2.1.3. Harvestability
2.1.4. Yield Potential
2.1.5. Adaptability
2.2. Seed Quality
2.2.1. Nutritional Profile
2.2.2. Anti-Nutritional Factors
2.2.3. High Value Products
2.3. Ecosystem Services
2.3.1. Resource Acquisition and Retention
2.3.2. Pollinator Resources
2.3.3. Dual-Purpose Legumes
2.3.4. Minimizing Ecosystem Dis-Services
2.4. Ease of Breeding
2.4.1. Reproductive Biology
2.4.2. Genome Structure
2.4.3. Available Genetic Resources
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lewis, G.; Schrire, B.; Lock, M. Legumes of the World; Royal Botanic Garden, Kew Publishing: Richmond, UK, 2005; ISBN 1900347806. [Google Scholar]
- The Legume Phylogeny Working Group. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. Taxon 2013, 62, 217–248. [Google Scholar] [CrossRef]
- Roskov, Y.; Bisby, F.A.; Zarucchi, J.L.; Schrire, B.D.; White, R.J. ILDIS World Database of Legumes, 10th ed.; ILDIS: Reading, UK, 2005; ISBN 0704912481. [Google Scholar]
- Roskov, Y.; Zarucchi, J.L.; Novoselova, M.; Bisby, F.A. ILDIS World Database of Legumes, 12th ed.; The Catalogue of Life: Naturalis, Leiden, The Netherlands, 2017; ISBN 2405-8858. [Google Scholar]
- The Legume Phylogeny Working Group. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 2017, 66, 44–77. [Google Scholar] [CrossRef]
- Crews, T.E. Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystem. Biogeochemistry 1993, 21, 141–166. [Google Scholar] [CrossRef]
- Howieson, J.G.; Yates, R.J.; Foster, K.J.; Real, D.; Besier, R.B. Prospects for the future use of legumes. In Nitrogen-Fixing Leguminous Symbioses; Springer: Dordrecht, The Netherlands, 2008; pp. 363–394. ISBN 978-1-4020-3545-6. [Google Scholar]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Cassman, K.; Cleveland, C.; Crews, T.; Field, C.B.; Grimm, N.B.; Howarth, R.W.; Marino, R.; Martinelli, L.; Rastetter, E.B.; et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 2002, 57–58, 1–45. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Sprent, J.I.; Odee, D.W.; Dakora, F.D. African legumes: A vital but under-utilized resource. J. Exp. Bot. 2010, 61, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Sang, T. Toward the domestication of lignocellulosic energy crops: Learning from food crop domestication. J. Integr. Plant Biol. 2011, 53, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased food and ecosystem security via perennial grains. Science 2010, 328, 1638–1640. [Google Scholar] [CrossRef] [PubMed]
- Culman, S.W.; Snapp, S.S.; Ollenburger, M.; Basso, B.; Dehaan, L.R. Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass. Agron. J. 2013, 105, 735–744. [Google Scholar] [CrossRef]
- Kantar, M.B.; Tyl, C.E.; Dorn, K.M.; Zhang, X.; Jungers, J.M.; Kaser, J.M.; Schendel, R.R.; Eckberg, J.O.; Runck, B.C.; Bunzel, M.; et al. Perennial grain and oilseed crops. Annu. Rev. Plant Biol. 2016, 67, 703–729. [Google Scholar] [CrossRef] [PubMed]
- Crews, T.E. Perennial crops and endogenous nutrient supplies. Renew. Agric. Food Syst. 2005, 20, 25–37. [Google Scholar] [CrossRef]
- Zahran, H. Enhancement of rhizobia-legumes symbioses and nitrogen fixation for cropland productivity improvement. In Microbial Strategies for Crop Improvement; Springer: Berlin/Heidelberg, Germany, 2009; pp. 227–254. [Google Scholar]
- Hardy, R.; Burns, R.; Hebert, R.; Holsten, R.; Jackson, E. Biological nitrogen fixation: A key to world protein. Plant Soil 1971, 35, 561–590. [Google Scholar] [CrossRef]
- Crews, T.E.; Rumsey, B.E. What agriculture can learn from native ecosystems in building soil organic matter: A review. Sustainability 2017, 9, 578. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.R.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Crews, T.E.; Peoples, M.B. Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr. Cycl. Agroecosyst. 2005, 72, 101–120. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, J.; Yang, C.; Liu, H.; Yang, F.; Zhou, J.; Samson, B.K.; Boualaphanh, C.; Huang, L.; Huang, G.; et al. Genotype by environment interactions for grain yield of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in southern China and Laos. Field Crop. Res. 2017, 207, 62–70. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Van Tassel, D.L.; Cox, T.S. Perennial grain crops: A synthesis of ecology and plant breeding. Renew. Agric. Food Syst. 2005, 20, 5–14. [Google Scholar] [CrossRef]
- Nabukalu, P.; Cox, T.S. Response to selection in the initial stages of a perennial sorghum breeding program. Euphytica 2016, 209, 103–111. [Google Scholar] [CrossRef]
- Van Tassel, D.L.; Albrecht, K.A.; Bever, J.D.; Boe, A.A.; Brandvain, Y.; Crews, T.E.; Gansberger, M.; Gerstberger, P.; González-Paleo, L.; Hulke, B.S.; et al. Accelerating Silphium domestication: An opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Sci. 2017, 57, 1274–1284. [Google Scholar] [CrossRef]
- Waldman, K.B.; Ortega, D.L.; Richardson, R.B.; Snapp, S.S. Estimating demand for perennial pigeon pea in Malawi using choice experiments. Ecol. Econ. 2017, 131, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Kulakow, P.A. Variation in Illinois bundleflower (Desmanthus illinoensis (Michaux) MacMillan): A potential perennial grain legume. Euphytica 1999, 110, 7–20. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Ehlke, N.J.; Sheaffer, C.C.; DeHaan, R.L.; Wyse, D.L. Evaluation of diversity among and within accessions of Illinois bundleflower. Crop Sci. 2003, 43, 1528–1537. [Google Scholar] [CrossRef]
- Bell, L.W.; Bennett, R.G.; Ryan, M.H.; Clarke, H. The potential of herbaceous native Australian legumes as grain crops: A review. Renew. Agric. Food Syst. 2011, 26, 72–91. [Google Scholar] [CrossRef]
- Bell, L.W.; Ryan, M.H.; Bennett, R.G.; Collins, M.T.; Clarke, H.J. Growth, yield and seed composition of native Australian legumes with potential as grain crops. J. Sci. Food Agric. 2012, 92, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Van Tassel, D.L.; Dehaan, L.R.; Cox, T.S. Missing domesticated plant forms: Can artificial selection fill the gap? Evol. Appl. 2010, 3, 434–452. [Google Scholar] [CrossRef] [PubMed]
- Dehaan, L.R.; Van Tassel, D.L. Useful insights from evolutionary biology for developing perennial grain crops. Am. J. Bot. 2014, 101, 1801–1819. [Google Scholar] [CrossRef] [PubMed]
- DeHaan, L.R.; Van Tassel, D.L.; Anderson, J.A.; Asselin, S.R.; Barnes, R.; Baute, G.J.; Cattani, D.J.; Culman, S.W.; Dorn, K.M.; Hulke, B.S.; et al. A pipeline strategy for grain crop domestication. Crop Sci. 2016, 56, 917–930. [Google Scholar] [CrossRef]
- Ladizinsky, G. Pulse domestication before cultivation. Econ. Bot. 1987, 41, 60–65. [Google Scholar] [CrossRef]
- Werker, E.; Marbach, I.; Mayer, A.M. Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Ann. Bot. 1979, 43, 765–771. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Ehlke, N.J.; Sheaffer, C.C. Recurrent selection for seedling vigor in kura clover. Crop Sci. 2001, 41, 1034–1041. [Google Scholar] [CrossRef]
- Abbo, S.; Saranga, Y.; Peleg, Z.; Kerem, Z.; Lev-Yadun, S.; Gopher, A. Reconsidering domestication of legumes versus cereals in the ancient near east. Q. Rev. Biol. 2009, 84, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Watanabe, S.; Uchiyama, T.; Kong, F.; Kanazawa, A.; Xia, Z.; Nagamatsu, A.; Arai, M.; Yamada, T.; Kitamura, K.; et al. The soybean stem growth habit gene Dt1 ss an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 2010, 153, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wang, X.; Lee, R.; Li, Y.; Specht, J.E.; Nelson, R.L.; McClean, P.E.; Qiu, L.; Ma, J. Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. USA 2010, 107, 8563–8568. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fujita, T.; Yan, Z.H.; Sakamoto, S.; Xu, D.; Abe, J. QTL mapping of domestication-related traits in soybean (Glycine max). Ann. Bot. 2007, 100, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- McCallum, C.M.; Comai, L.; Greene, E.A.; Henikoff, S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 2000, 123, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Stubbendieck, J.; Conard, E.C. Common Legumes of the Great Plains, 1st ed.; University of Nebraska Press: Lincoln, Nebraska, 1989; ISBN 9780803242043. [Google Scholar]
- Kumar, S.; Sane, P.V. Legumes of South Asia: A Checklist; Royal Botanic Garden, Kew Publishing: London, UK, 2003; ISBN 1842460587. [Google Scholar]
- Wynia, R. Plant Fact Sheet for American Licorice (Glycyrrhiza lepidota); USDA NRCS Manhattan Plant Materials Center: Manhattan, KS, USA, 2017.
- Wu, Z.Y.; Raven, P.H.; Hong, D.Y. (Eds.) Flora of China. Vol. 10 (Fabaceae); Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2010. [Google Scholar]
- Cronquist, A.; Holmgren, N.H.; Reveal, J.L.; Holmgren, P.K. Intermountain Flora: Vascular Plants of the Intermountain West USA. Volume 3, Part B, Fabales; New York Botanical Garden Press: New York, NY, USA, 1989; ISBN 9780893273743. [Google Scholar]
- Favorite, J. Plant Guide for Nootka Lupine (Lupinus nootkatensis); USDA NRCS National Plant Data Center: Baton Rouge, LA, USA, 2003.
- Anderson, M.K. Plant Guide for Sundial Lupine (Lupinus perennis); USDA NRCS National Plant Data Center: Davis, CA, USA, 2003.
- Beuthin, M. Plant Guide for Bigleaf Lupine (Lupinus polyphyllus); USDA NRCS Plant Materials Center: Corvallis, OR, USA, 2012.
- Darris, D.; Young-Mathews, A. Plant Fact Sheet for Riverbank Lupine (Lupinus rivularis); USDA NRCS Plant Materials Center: Corvallis, OR, USA, 2012.
- St. John, L.; Tilley, D. Plant Guide for Silky Lupine (Lupinus sericeus); USDA NRCS Plant Materials Center: Aberdeen, ID, USA, 2012.
- Akopian, J.A. On some wild relatives of cultivated sainfoin (Onobrychis L.) from the flora of Armenia. Crop Wild Relat. 2009, 4, 17–18. [Google Scholar]
- Fernald, M.L. The seventh century of additions to the flora of Virginia (continued). Rhodora 1942, 44, 416–452. [Google Scholar]
- Chen, C.J.; Mendenhall, M.G.; Turner, B.L. Taxonomy of Thermopsis (Fabaceae) in North America. Ann. Mo. Bot. Gard. 1994, 81, 714–742. [Google Scholar] [CrossRef]
- Tilley, D. Plant Guide for Mountain Golden Banner (Thermopsis montana); USDA NRCS Plant Materials Center: Aberdeen, ID, USA, 2012.
- Preston, R.E.; Isley, D. Vicia gigantea. In Jepson Flora Project. Available online: http://ucjeps.berkeley.edu/eflora/eflora_display.php?tid=48092 (accessed on 30 January 2018).
- Yatskievych, G. Steyermark’s Flora of Missouri, Revised ed.; Missouri Botanical Garden Press: St. Louis, MO, USA, 2013; Volume 3, ISBN 9780915279135. [Google Scholar]
- Lopez-Poveda, L. Vicia pisiformis. The IUCN Red List of Threatened Species 2012: ET19892044A20162507. Available online: http://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T19892044A20162507.en (accessed on 30 January 2018).
- Abbo, S.; Pinhasi van-Oss, R.; Gopher, A.; Saranga, Y.; Ofner, I.; Peleg, Z. Plant domestication versus crop evolution: A conceptual framework for cereals and grain legumes. Trends Plant Sci. 2014, 19, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Purugganan, M.D.; Fuller, D.Q. The nature of selection during plant domestication. Nature 2009, 457, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.N.; Phan, H.T.T.; Ellwood, S.R.; Moolhuijzen, P.M.; Hane, J.; Williams, A.; O’Lone, C.E.; Fosu-Nyarko, J.; Scobie, M.; Cakir, M.; et al. The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula. Theor. Appl. Genet. 2006, 113, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Moyer, J.R.; Acharya, S.N.; Fraser, J.; Richards, K.W.; Foroud, N. Desiccation of alfalfa for seed production with diquat and glufosinate. Can. J. Plant Sci. 1996, 76, 435–439. [Google Scholar] [CrossRef]
- May, W.E.; Loeppky, H.A.; Murrell, D.C.; Myhre, C.D.; Soroka, J.J. Preharvest glyphosate in alfalfa for seed production: Effect on alfalfa seed yield and quality. Can. J. Plant Sci. 2003, 83, 189–197. [Google Scholar] [CrossRef]
- McGregor, R.L.; Barkley, T.M.; Brooks, R.E.; Schofield, E.K. Flora of the Great Plains; University Press of Kansas: Lawrence, KS, USA, 1986; ISBN 0-7006-0295-X. [Google Scholar]
- Royal Botanic Gardens Kew. Seed Information Database (SID). Version 7.1. Available online: http://data.kew.org/sid/ (accessed on 15 January 2018).
- Acharya, S.; Kastelic, J.; Beauchemin, K.; Messenger, D. A review of research progress on cicer milkvetch (Astragalus cicer L.). Can. J. Plant Sci. Sci. 2006, 86, 49–62. [Google Scholar] [CrossRef]
- Isley, D. Native and Naturalised Leguminosae (Fabaceae) of the United States; Monte L. Bean Life Science Museum, Brigham Young University: Provo, UT, USA, 1998. [Google Scholar]
- Brightmore, D.; White, P. Lathyrus japonicus Willd. J. Ecol. 1963, 51, 795–801. [Google Scholar] [CrossRef]
- Kurlovich, B.S.; Stankevich, A.K. Classification of lupins. In Lupins (Geography, Classification, Genetic Resources, and Breeding); Kurlovich, B.S., Ed.; OY International North Express: St. Petersburg, Russia; Pellosniemi, Finland, 2002; pp. 147–164. [Google Scholar]
- Earle, F.R.; Jones, Q. Analyses of seed samples from 113 plant families. Econ. Bot. 1962, 16, 221–250. [Google Scholar] [CrossRef]
- Massoud, R.; Karamian, R.; Hadadi, A. Cytosystematics of three Onobrychis species (Fabaceae) in Iran. Caryologia 2010, 63, 237–249. [Google Scholar] [CrossRef]
- Mazer, S. Ecological, taxonomic, and life history correlates of seed mass among Indiana dunes Angiosperms. Supplement: Species list, untransformed seed mass, seed mass class and ecological data associated with each species. Ecol. Monogr. 1989, 59, 153–175. [Google Scholar] [CrossRef]
- Perrino, P.; Yarwood, M.; Hanelt, P.; Polignano, G.B. Variation of seed characters in selected Vicia species. Die Kult. 1984, 32, 103–122. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Reynolds, M.P. Breeding challenge: Improving yield potential. In Crop Physiology: Applications for Genetic Improvement and Agronomy; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 397–421. [Google Scholar]
- Crews, T.E.; Blesh, J.; Culman, S.W.; Hayes, R.C.; Jensen, E.S.; Mack, M.C.; Peoples, M.B.; Schipanski, M.E. Going where no grains have gone before: From early to mid-succession. Agric. Ecosyst. Environ. 2016, 223, 223–238. [Google Scholar] [CrossRef]
- Beuselinck, P.; Bouton, J.H.; Lamp, W.O.; Matches, A.G.; McCaslin, M.H.; Nelson, C.J.; Rhodes, L.H.; Sheaffer, C.C.; Volenec, J.J. Improving legume persistence in forage crop systems. J. Prod. Agric. 1994, 7, 311–322. [Google Scholar] [CrossRef]
- Li, G.D.; Lodge, G.M.; Moore, G.A.; Craig, A.D.; Dear, B.S.; Boschma, S.P.; Albertsen, T.O.; Miller, S.M.; Harden, S.; Hayes, R.C.; et al. Evaluation of perennial pasture legumes and herbs to identify species with high herbage production and persistence in mixed farming zones in southern Australia. Aust. J. Exp. Agric. 2008, 48, 449–466. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Pinthus, M.J. Response of chickpea to nitrogen, and comparsion of the factors affecting chickpea seed yield with those affecting wheat grain yield. Exp. Agric. 1995, 31, 39–47. [Google Scholar] [CrossRef]
- Crews, T.E.; Dehaan, L.R. The strong perennial vision: A response. Agroecol. Sustain. Food Syst. 2015, 39, 500–515. [Google Scholar] [CrossRef]
- Jungers, J.M.; DeHaan, L.R.; Betts, K.J.; Sheaffer, C.C.; Wyse, D.L. Intermediate wheatgrass grain and forage yield responses to nitrogen fertilization. Agron. J. 2017, 109, 462–472. [Google Scholar] [CrossRef]
- Sakiroglu, M.; Brummer, E.C. Presence of phylogeographic structure among wild diploid alfalfa accessions (Medicago sativa L. subsp. microcarpa Urb.) with evidence of the center of origin. Genet. Resour. Crop Evol. 2013, 60, 23–31. [Google Scholar] [CrossRef]
- Suriyagoda, L.D.B.; Ryan, M.H.; Renton, M.; Lambers, H. Multiple adaptive responses of Australian native perennial legumes with pasture potential to grow in phosphorus- and moisture-limited environments. Ann. Bot. 2010, 105, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Platt, W.J.; Hill, G.R.; Clark, S. Seed production in a prairie legume (Astragalus canadensis L.). Oecologia 1974, 17, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.H.; Schroder, D. Effects of plant type, size of geographical range and taxonomic isolation on number of insect species associated with British plants. Nature 1977, 265, 137–140. [Google Scholar] [CrossRef]
- Kolb, A.; Ehrlén, J.; Eriksson, O. Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect. Plant Ecol. Evol. Syst. 2007, 9, 79–100. [Google Scholar] [CrossRef]
- Chew, F.S.; Courtney, S.P. Plant apparency and evolutionary escape from insect herbivory. Am. Nat. 1991, 138, 729–750. [Google Scholar] [CrossRef]
- Haddock, R.C.; Chaplin, S.J. Pollination and seed production in two phenologically divergent prairie legumes (Baptisia leucophaea and B. leucantha). Am. Midl. Nat. 1982, 108, 175–186. [Google Scholar] [CrossRef]
- Hmielowski, T. Improving the nutritional value of pulse crops. CSA News 2016, 61, 4–7. [Google Scholar] [CrossRef]
- Asif, M.; Rooney, L.; Ali, R.; Riaz, M. Application and opportunities of pulses in food systems: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1168–1179. [Google Scholar] [CrossRef] [PubMed]
- Ofuya, Z.M.; Akhidue, V. The role of pulses in human nutrition: A review. J. Appl. Sci. Environ. Manag. 2005, 9, 99–104. [Google Scholar] [CrossRef]
- Foyer, C.H.; Hong-Ming, L.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.; Comer, T.D.; Cowling, W.A.; Bramley, H.; Mori, T.A.; Hodgson, J.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016. [Google Scholar] [CrossRef] [PubMed]
- Ekanayake, S.; Skog, K.; Asp, N.G. Canavanine content in sword beans (Canavalia gladiata): Analysis and effect of processing. Food Chem. Toxicol. 2007, 45, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Wink, M.; Meißner, C.; Witte, L. Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 1995, 38, 139–153. [Google Scholar] [CrossRef]
- Enneking, D.; Wink, M. Towards the elimination of anti-nutritional factors in grain legumes. In Linking Research and Marketing Opportunities for Pulses in the 21st Century. Proceedings of the Third International Food Legume Research Conference, Adelaide, Australia, 22–26 September 1997; Knight, R., Ed.; Kluwer Academic Publishers: Dordrect, The Netherlands; Boston, MA, USA; London, UK, 2000; pp. 671–683. [Google Scholar]
- Frick, K.M.; Kamphuis, L.G.; Siddique, K.H.M.; Singh, K.B.; Foley, R.C. Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front. Plant Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Emmert, E.A.B.; Milner, J.L.; Lee, J.C.; Pulvermacher, K.L.; Olivares, H.A.; Clardy, J.; Handelsman, J. Effect of canavanine from alfalfa seeds on the population biology of Bacillus cereus. Appl. Environ. Microbiol. 1998, 64, 4683–4688. [Google Scholar] [PubMed]
- Beck, V.; Unterrieder, E.; Krenn, L.; Kubelka, W.; Jungbauer, A. Comparision of hormonal activity (estrogen, androgen, and progestin) of standardized plant extracts for large scale use in hormone replacement therapy. J. Steroid Biochem. Mol. Biol. 2003, 84, 259–268. [Google Scholar] [CrossRef]
- Borchardt, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Fulcher, R.G.; Ehlke, N.J.; Biesboer, D.D.; Bey, R.F. Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. J. Med. Plants Res. 2008, 2, 98–110. [Google Scholar] [CrossRef]
- Borchardt, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Fulcher, R.G.; Ehlke, N.J.; Biesboer, D.D.; Bey, R.F. Antioxidant and antimicrobial activity of seed from plants of the Mississippi river basin. J. Med. Plants Res. 2008, 2, 81–93. [Google Scholar]
- Singh, J.; Basu, P.S. Non-nutritive bioactive compounds in pulses and their impact on human health: An overview. Food Nutr. Sci. 2012, 3, 1664. [Google Scholar] [CrossRef]
- Gaba, S.; Lescourret, F.; Boudsocq, S.; Enjalbert, J.; Hinsinger, P.; Journet, E.P.; Navas, M.L.; Wery, J.; Louarn, G.; Malézieux, E.; et al. Multiple cropping systems as drivers for providing multiple ecosystem services: From concepts to design. Agron. Sustain. Dev. 2015, 35, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Vance, C.P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 2001, 127, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Henrik, H.N.; Alves, B.J.R.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Crews, T.E.; Peoples, M.B. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Snapp, S.S. Nutrients in agroecosystems: Rethinking the management paradigm. Adv. Agron. 2007, 92, 163–186. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Day, J.W.; Gilliam, J.W.; Groffman, P.M.; Hey, D.L.; Randall, G.W.; Wang, N. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River basin: Strategies to counter a persistent ecological problem. Bioscience 2001, 51, 373–388. [Google Scholar] [CrossRef]
- Singh, J.; Kalberer, S.R.; Belamkar, V.; Assefa, T.; Nelson, M.N.; Farmer, A.D.; Blackmon, W.J.; Cannon, S.B. A transcriptome-SNP-derived linkage map of Apios americana (potato bean) provides insights about genome re-organization and synteny conservation in the phaseoloid legumes. Theor. Appl. Genet. 2017, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Larimer, A.L.; Clay, K.; Bever, J.D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 2014, 95, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Neumann, G.; Massonneau, A.; Langlade, N.; Dinkelaker, B.; Hengeler, C.; Römheld, V.; Martinoia, E. Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann. Bot. 2000, 85, 909–919. [Google Scholar] [CrossRef]
- Peoples, M.B.; Baldock, J.A. Nitrogen dynamics of pastures: Nitrogen fixation inputs, the impact of legumes on soil nitrogen fertility, and the contribution of fixed nitrogen to Australian farming systems. Aust. J. Exp. Agric. 2001, 41, 327–346. [Google Scholar] [CrossRef]
- Weißhuhn, P.; Reckling, M.; Stachow, U.; Wiggering, H. Supporting agricultural ecosystem services through the integration of perennial polycultures into crop rotations. Sustainability 2017, 9, 2267. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [PubMed]
- Losey, J.E.; Vaughan, M. The Economic value of ecological services provided by insects. Biosci. J. 2006, 56, 311–323. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Regetz, J.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Bogdanski, A.; Gemmill-Herren, B.; Greenleaf, S.S.; Klein, A.M.; Mayfield, M.M.; et al. Landscape effects on crop pollination services: Are there general patterns? Ecol. Lett. 2008, 11, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy Rao, P.; Hall, A.J. Importance of crop residues in crop-livestock systems in India and farmers’ perceptions of fodder quality in coarse cereals. Field Crop. Res. 2003, 84, 189–198. [Google Scholar] [CrossRef]
- Sheaffer, C.C.; Wyse, D.L.; Ehlke, N.J. Palatability and nutritive value of native legumes. Nativ. Plants 2009, 10, 224–231. [Google Scholar] [CrossRef]
- Meehan, T.D.; Gratton, C.; Diehl, E.; Hunt, N.D.; Mooney, D.F.; Ventura, S.J.; Barham, B.L.; Jackson, R.D. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest. PLoS ONE 2013, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef]
- Hirsch, H.; Brunet, J.; Zalapa, J.; von Wehrden, H.; Hartmann, M.; Kleindienst, C.; Schlautman, B.; Kosman, E.; Wesche, K.; Renison, D.; et al. Intra- and interspecific hybridization in invasive Siberian elm. Biol. Invasions 2017, 19, 1889–1904. [Google Scholar] [CrossRef]
- Riday, H.; Krohn, A. Genetic map-based location of the red clover (Trifolium pratense L.) gametophytic self-incompatibility locus. Theor. Appl. Genet. 2010, 121, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Casey, N.M.; Milbourne, D.; Barth, S.; Febrer, M.; Jenkins, G.; Abberton, M.T.; Jones, C.; Thorogood, D. The genetic location of the self-incompatibility locus in white clover (Trifolium repens L.). Theor. Appl. Genet. 2010, 121, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.W.; Scheibly, K.L.; Reed, D.H. Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution 2008, 62, 2236–2249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Fan, J.; Yang, S.; Hu, L.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Le Thierry d’Ennequin, M.; Toupance, B.; Robert, T.; Godelle, B.; Gouyon, P.H. Plant domestication: A model for studying the evolution of linkage. J. Evol. Biol. 1999, 12, 1138–1147. [Google Scholar] [CrossRef]
- Cronk, Q.; Möller, M. Genetics of floral symmetry revealed. Trends Ecol. Evol. 1997, 12, 85–86. [Google Scholar] [CrossRef]
- Cronk, Q.C.B. Legume flowers bear fruit. Proc. Natl. Acad. Sci. USA 2006, 103, 4801–4802. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhao, Z.; Tian, Z.; Xu, S.; Luo, Y.; Cai, Z.; Wang, Y.; Yang, J.; Wang, Z.; Weng, L.; et al. Control of petal shape and floral zygomorphy in Lotus japonicus. Proc. Natl. Acad. Sci. USA 2006, 103, 4970–4975. [Google Scholar] [CrossRef] [PubMed]
- Galloni, M.; Podda, L.; Vivarelli, D.; Cristofolini, G. Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam. Fabaceae—Subfam. Faboideae). Plant Syst. Evol. 2007, 266, 147–164. [Google Scholar] [CrossRef]
- Matsoukas, I.G. Florigens and antiflorigens: A molecular genetic understanding. Essays Biochem. 2015, 58, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, Y.; Acharya, A.; Hansen, J.L.; Crawford, J.L.; Viands, D.R.; Michaud, R.; Claessens, A.; Brummer, E.C. Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 2015, 8. [Google Scholar] [CrossRef]
- Sims, D.; Sudbery, I.; Ilott, N.E.; Heger, A.; Ponting, C.P. Sequencing depth and coverage: Key considerations in genomic analyses. Nat. Rev. Genet. 2014, 15, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Michael, T.P.; VanBuren, R. Progress, challenges and the future of crop genomes. Curr. Opin. Plant Biol. 2015, 24, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ye, C.Y.; Cheng, Z.M.; Tschaplinski, T.J.; Wullschleger, S.D.; Yin, W.; Xia, X.; Tuskan, G.A. Genomic aspects of research involving polyploid plants. Plant Cell. Tissue Organ Cult. 2011, 104, 387–397. [Google Scholar] [CrossRef]
- Clevenger, J.; Chavarro, C.; Pearl, S.A.; Ozias-Akins, P.; Jackson, S.A. Single nucleotide polymorphism identification in polyploids: A review, example, and recommendations. Mol. Plant 2015, 8, 831–846. [Google Scholar] [CrossRef] [PubMed]
- Stift, M.; Berenos, C.; Kuperus, P.; Van Tienderen, P.H. Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: A general procedure applied to Rorippa (yellow cress) microsatellite data. Genetics 2008, 179, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- USDA-ARS Germplasm Resources Information Network (GRIN) Global Database. U.S. National Plant Germplasm System. Available online: https://npgsweb.ars-grin.gov/gringlobal/search.aspx? (accessed on 10 January 2018).
- Bruneau, A.; Anderson, G.J. Reproductive biology of diploid and triploid Apios americana (Leguminosae). Am. J. Bot. 1988, 75, 1876–1883. [Google Scholar] [CrossRef]
- Löve, Á. IOPB chromosome number reports LXXV. Taxon 1982, 31, 342–368. [Google Scholar]
- Latterell, R.L.; Townsend, C.E. Meiotic Analysis of Astragalus cicer L. II. Oolyhaploids. Int. J. Plant Sci. 1993, 155, 450–457. [Google Scholar] [CrossRef]
- Turner, B.L. Chromosome numbers in the Leguminosae. I. Am. J. Bot. 1956, 43, 577–581. [Google Scholar] [CrossRef]
- Verma, S.; Nadkarni, R.S. Chromosome number and karyotypic studies in Glycyrrhiza. Curr. Sci. 1985, 54, 44–47. [Google Scholar]
- Goldblatt, P.; Johnson, D.E. (Eds.) Index to Plant Chromosome Numbers; Missouri Botanical Garden: St. Louis, MO, USA, 1979. [Google Scholar]
- Naganowska, B.; Wolko, B.; Śliwińska, E.; Kaczmarek, Z.; Schifino-Wittmann, M.T. 2C DNA variation and relationships among New World species of the genus Lupinus (Fabaceae). Plant Syst. Evol. 2005, 256, 147–157. [Google Scholar] [CrossRef]
- Maude, P.F. Chromosome Numbers in Some British Plants. New Phytol. 1940, 39, 17–32. [Google Scholar] [CrossRef]
- Löve, Á. IOPB Chromosome number reports LI. Taxon 1976, 25, 155–164. [Google Scholar]
- Cooper, D.C. Chromosome Numbers in the Leguminosae. Am. J. Bot. 1936, 23, 231–233. [Google Scholar] [CrossRef]
- Wolko, B.; Clements, J.C.; Naganowska, B.; Nelson, M.; Yang, H. Lupinus. In Wild Crop Relatives: Genomic and Breeding Resources, Legume Crops, and Forages; Spinger-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 153–206. [Google Scholar]
- Eastwood, R.J.; Drummond, C.S.; Schifino-Wittmann, M.T.; Hughes, C.E. Diversity and evolutionary history of Lupins—Insights from new phylogenies. In Proceedings of the 12th International Lupin Conference Lupins for Health and Wealth, Fremantle, Australia, 14–18 September 2008; International Lupin Association: Canterbury, New Zealand, 2008; pp. 346–354. [Google Scholar]
- Agarwal, K.; Gupta, P.K. Cytological studies in the genus Medicago Linn. Cytologia 1983, 48, 781–793. [Google Scholar] [CrossRef]
- Mercado-Ruaro, P.; Delgado-Salinas, A. Karyotypic studies on species of Phaseolus (Fabaceae: Phaseolinae). Am. J. Bot. 1998, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Irwin, H.S.; Turner, B.L. Chromosomal relationships and taxonomic considerations in the genus Cassia. Am. J. Bot. 1960, 47, 309–318. [Google Scholar] [CrossRef]
- Veerasethakul, S.; Lassetter, J.S. Karyotype relationships of native new world Vicia species (Leguminosae). Rhodora 1981, 83, 595–606. [Google Scholar]
- Bennet, M.D.; Leitch, I.J. Plant DNA C-Values Database (Release 6.0). Available online: http://www.kew.org/cvalues/ (accessed on 30 January 2018).
- Hufford, M.B.; Xu, X.; Van Heerwaarden, J.; Pyhäjärvi, T.; Chia, J.M.; Cartwright, R.A.; Elshire, R.J.; Glaubitz, J.C.; Guill, K.E.; Kaeppler, S.M.; et al. Comparative population genomics of maize domestication and improvement. Nat. Genet. 2012, 44, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Prosperi, J.; Jenczewski, E.; Muller, M.; Fourtier, S.; Sampoux, J.; Ronfort, J. Alfalfa domestication history, genetic diversity and genetic resources. Legum. Perspect. 2016, 4, 13–14. [Google Scholar]
- Cardi, T. Cisgenesis and genome editing: Combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed 2016, 135, 139–147. [Google Scholar] [CrossRef]
Basic Concept | Related Components |
---|---|
Agronomic Potential | Crop Establishment, Field Management, Harvestability, Yield Potential, Adaptability |
Seed Quality | Nutritional Profile, Anti-nutritional Factors, High Value Products |
Ecosystem Services | Resource Acquisition and Retention, Pollinator Resources, Dual Use, Minimizing Ecosystem Dis-services |
Ease of Breeding | Reproductive Biology, Genome Structure, Available Genetic Resources |
Species | Growth Habit | Inflorescences | References |
---|---|---|---|
Apios americana | Twinning, rhizomes | Axillary racemes | [43] |
Astragalus canadensis | Erect, rhizomes | Axillary racemes | [43] |
Astragalus cicer | Decumbent to erect, rhizomes | Axillary racemes | [43] |
Astragalus crassicarpus | Decumbent to erect | Axillary racemes | [43] |
Baptisia australis | Decumbent to erect, rhizomes | Terminal raceme | [43] |
Dalea purpurea | Erect | Terminal spikes | [43] |
Desmanthus illinoensis | Decumbent to erect | Axillary heads | [43] |
Desmodium canadense | Erect | Panicle of racemes | [43] |
Desmodium glutinosum | Erect | Terminal or panicle of racemes | [43] |
Desmodium illinoense | Erect | Terminal elongated raceme or panicle of raceme | [43] |
Desmodium sessilifolium | Erect | Panicle of racemes | [43] |
Glycyrrhiza glabra | Erect, rhizomes | Axillary racemes | [44] |
Glycyrrhiza lepidota | Erect, rhizomes | Axillary racemes | [43,45] |
Lathyrus japonica | Creeping, stoloniferous | Axillary racemes | [46] |
Lathyrus tuberosus | Erect, rhizomes with small tubers | Axillary racemes | [46] |
Lupinus argenteus | Erect | Terminal racemes | [43] |
Lupinus leucophyllus | Erect | Terminal racemes | [47] |
Lupinus nootkatensis | Erect, bush | Terminal raceme | [48] |
Lupinus perennis | Erect | Terminal racemes | [49] |
Lupinus polyphyllus | Erect, rhizomes | Terminal raceme | [50] |
Lupinus rivularis | Erect | Terminal raceme | [51] |
Lupinus sericeus | Erect | Terminal raceme | [52] |
Medicago sativa | Decumbent to erect | Axillary racemes | [43] |
Onobrychis transcaucasica | Erect | Terminal raceme | [53] |
Onobrychis viciifolia | Erect | Spike raceme | [43] |
Oxytropis lambertii | Erect | Terminal raceme | [43] |
Pediomelum esculentum | Erect | Terminal raceme | [43] |
Pediomelum tenuiflorum | Erect | Axillary racemes | [43] |
Phaseolus polystachios | Vining | Axillary racemes | [54] |
Senna marilandica | Erect, rhizomes | Terminal and upper axillary racemes | [43] |
Thermopsis villosa | Erect | Terminal raceme | [55] |
Thermopsis montana | Erect | Terminal raceme | [56] |
Trifolium pratense | Decumbent to erect | Terminal heads | [43] |
Vicia americana | Sprawling to climbing | Axillary racemes | [43] |
Vicia cracca | Trailing to climbing | Axillary racemes | [46] |
Vicia nigricans | Sprawling to climbing | Axillary racemes | [57,58] |
Vicia pisiformis | Climbing | Axillary racemes | [59] |
Species | Fruit Length (mm) | Seed Length (mm) | 1000 Seed Weight (g) | Seeds per Pod | References |
---|---|---|---|---|---|
Apios americana | 40–100 | 4.0–5.0 | 4–6 | [43,58] | |
Astragalus canadensis | 10–20 | 1.5–2.5 | 2.0 | [43,47,58,65,66] | |
Astragalus cicer | 10–15 | 2.4–2.6 | 3.4 | [43,66,67] | |
Astragalus crassicarpus | 15–40 | 2.0–4.0 | 6.6 | [43,66] | |
Baptisia australis | 20–60 | 3.5–5.0 | 16.1 | 1–2 | [43,58,66] |
Dalea purpurea | 2–2.5 | 1.5–2.0 | 3.2 | 1 | [43,65,66] |
Desmanthus illinoensis | 10–25 | 3.0–5.0 | 6.0 | 6 | [43,65,66] |
Desmodium canadense | 5–7 | 3.5–5.0 | 5.1 | 1–5 | [43,58,66] |
Desmodium glutinosum | 24–36 | 6.0–7.0 | 17.3 | 1–3 | [43,65,66] |
Desmodium illinoense | 32–56 | 3.0–3.5 | 6.6 | 3–7 | [43,65,66] |
Desmodium sessilifolium | 12–20 | 2.5–3.5 | 3.7 | 1–3 | [43,58,65,66] |
Glycyrrhiza glabra | 10–30 | 6.1 | 2–8 | [46,66,68] | |
Glycyrrhiza lepidota | 10–20 | 2.5–4.0 | 7.0 | 3–5 | [43,65,66] |
Lathyrus japonicus | 40–60 | 4.0–4.5 | 27.9 | 5–8 | [46,66,69] |
Lathyrus tuberosus | 20–40 | 30.9 | [46,66] | ||
Lupinus argenteus | 10–30 | 3.7–4.5 | 27.1 | 4–6 | [43,65,66] |
Lupinus leucophyllus | 15–30 | 4.2–5.6 | 9.9 | 3–6 | [47,66,70] |
Lupinus nootkatensis | 50–60 | 3.5–4.2 | 10.6 | 10–11 | [66,68,70] |
Lupinus perennis | 30–50 | 22.1 | 5–6 | [49,66,70] | |
Lupinus polyphyllus | 25–40 | 6.0 | 21.0 | 3–9 | [50,66,68] |
Lupinus rivularis | 50 | 36.0 | 6–10 | [51,71] | |
Lupinus sericeus | 20–30 | 4.0 | 22.3 | 2–5 | [52,65,66] |
Medicago sativa | 4–8 (coil diameter) | 2.0–3.0 | 2.0 | 2–12 | [43,66,68] |
Onobrychis transcaucasica | 6 | 3.0–3.2 | 10.2 | 1 | [66,72] |
Onobrychis viciifolia | 5–8 | 4.0–7.0 | 18.3 | 1 | [43,66] |
Oxytropis lambertii | 5–6 | 2.0 | 1.6 | [43,66] | |
Pediomelum esculentum | 20 | 4.0–6.0 | 20.7 | 1–2 | [43,66] |
Pediomelum tenuiflorum | 5–9 | 4.0–5.5 | 35.6 | [43,66] | |
Phaseolus polystachios | 30–60 | 6.0–10.0 | 60.9 | 4–6 | [58,66,68,73] |
Senna marilandica | 65–100 | 4.5–5.5 | 19.6 | 10–25 | [43,66] |
Thermopsis villosa | 40–55 | 3.0–3.5 | 7–12 | [55,66] | |
Thermopsis montana | 45–65 | 3.5–5.0 | 18.1 | 6–16 | [56] |
Trifolium pratense | 3 | 1.5–2.0 | 1.3 | 1 | [43] |
Vicia americana | 25–40 | 4.0–5.0 | 16.8 | 2–12 | [43] |
Vicia cracca | 20–25 | 2.5–2.9 | 13.8 | 3–6 | [46,66,74] |
Vicia nigricans | 20–45 | 34.6–89.9 | [57,66] | ||
Vicia pisiformis | 4.5–4.7 | 41.6 | [46,66,74] |
Species | Native or Naturalized Range | Native Soil/Habitat | References |
---|---|---|---|
Apios americana | Great Plains | moist prairie ravines, pond and stream banks, thickets | [43] |
Astragalus canadensis | Great Plains | moist prairies, woodlands, roadsides, thickets, stream banks | [43] |
Astragalus cicer | Europe; cultivated | slightly acidic to moderately alkaline | [43] |
Astragalus crassicarpus | Great Plains | rocky/sandy prairie hillsides/uplands | [43] |
Baptisia australis | Great Plains | rocky/sandy prairie, rocky open woods, limestone glades, stream valleys | [43] |
Dalea purpurea | Great Plains | dry prairie | [43] |
Desmanthus illinoensis | Great Plains | dry to moist prairie, wooded slopes, wasteland | [43] |
Desmodium canadense | Great Plains | sandy soil | [43] |
Desmodium glutinosum | Eastern Great Plains | woodlands | [43] |
Desmodium illinoense | Central Great Plains | rich prairie soils | [43] |
Desmodium sessilifolium | Southeast Great Plains | dry or sterile woodlands, hillsides, ravines, valleys | [43] |
Glycyrrhiza glabra | Eurasia; cultivated and naturalized in US | cultivation, ruderal sites | [68] |
Glycyrrhiza lepidota | Great Plains | moist, fertile prairie, shores, meadows, wasteland | [43] |
Lathyrus japonicus | Circumpolar, North America, South America, Eurasia | coastal shores, beaches | [46,69] |
Lathyrus tuberosus | Temperate Eurasia; introduced in Northeast North America | moist meadows, riparian | [46] |
Lupinus argenteus | Northwestern Great Plains | prairies, roadsides, open woodlands | [43] |
Lupinus leucophyllus | Western North America | open forests, grasslands, sagebrush, roadsides | [68] |
Lupinus nootkatensis | Western Canada, Alaska (introduced mainland US, Iceland) | gravel bars, meadows, tidal marshes, open slopes, cultivated, escaped | [47,68] |
Lupinus perennis | Eastern US | [49] | |
Lupinus polyphyllus | Western North America | moist soils | [50] |
Lupinus rivularis | Western North America | well-drained, sandy soils | [51] |
Lupinus sericeus | Western North America | grasslands, forests | [52] |
Medicago sativa | Europe & Western Asia; cultivated and naturalized world wide | all soils, neutral pH | [43] |
Onobrychis transcaucasica | Caucasus; cultivated | dry slopes | [53] |
Onobrychis viciifolia | Europe & Western Asia; cultivated | dry, calcareous soils | [43] |
Oxytropis lambertii | Great Plains | dry, upland prairie | [43] |
Pediomelum esculentum | Great Plains | dry soils | [43] |
Pediomelum tenuiflorum | Great Plains | dry prairie | [43] |
Phaseolus polystachios | Eastern and Southcentral US | moist woodlands, near streams, roadsides, upland woodlands, clearings | [68] |
Senna marilandica | Southeast Great Plains | sandy, moist soils | [43] |
Thermopsis villosa | East TN, West NC | woodlands | [55] |
Thermopsis montana | Western US | moist meadows | [56] |
Trifolium pratense | Southern Europe; cultivated and naturalized in US | heavy, fertile, well-drained soils | [43] |
Vicia americana | Great Plains | uplands, badlands, bluffs, wasteland | [43] |
Vicia cracca | Eurasia; introduced widely in North America | forest edge, scrubland, lowland, grassland, slopes, moist sites | [46] |
Vicia nigricans | Western North America | coastal forest and shrubland, chaparral | [57] |
Vicia pisiformis | Central and East Europe; introduced elsewhere | forested steppes | [59] |
Species | Ploidy | Accessions in the USDA NPGS | References |
---|---|---|---|
Apios americana | 2n = 2x = 22 & 2n = 3x = 33 | 0 | [139] |
Astragalus canadensis | 2n = 2x = 16 | 14 | [43,140] |
Astragalus cicer | 2n = 2x = 32 & 2n = 4x = 64 | 116 | [141] |
Astragalus crassicarpus | 2n = 2x = 22 | 3 | [43,140] |
Baptisia australis | 2n = 2x = 18 | 5 | [43] |
Dalea purpurea | 2n = 2x = 14 | 10 | [43,140] |
Desmanthus illinoensis | 2n = 2x = 28 | 50 | [43] |
Desmodium canadense | 2n = 2x = 22 | 4 | [43,140] |
Desmodium glutinosum | 2n = 22 | 0 | [43] |
Desmodium illinoense | 2n = 22 | 0 | [43] |
Desmodium sessilifolium | 2n = 22 | 1 | [43,142] |
Glycyrrhiza glabra | 2n = 2x = 16 | 3 | [143] |
Glycyrrhiza lepidota | 2n = 2x = 16 | 7 | [43,140] |
Lathyrus japonicus | 2n = 2x = 14 | 7 | [144] |
Lathyrus tuberosus | 2n = 2x = 14 | 10 | [144] |
Lupinus argenteus | 2n = 2x = 48 | 25 | [43,140,145] |
Lupinus leucophyllus | 2n = 2x = 48 & 2n = 4x = 96 | 39 | [145] |
Lupinus nootkatensis | 2n = 2x = 48 | 0 | [146] |
Lupinus perennis | 2n = 2x = 48 | 1 | [147] |
Lupinus polyphyllus | 2n = 2x = 48 | 20 | [148,149] |
Lupinus rivularis | 2n = 2x = 48 | 5 | [150] |
Lupinus sericeus | 2n = 2x = 48 | 19 | [149] |
Medicago sativa | 2n = 4x = 32 | 3529 | [43,151] |
Onobrychis transcaucasica | 2n = 2x = 14 | 134 | [72] |
Onobrychis viciifolia | 2n = 4x = 28 | 161 | [72] |
Oxytropis lambertii | 2n = 48 | 8 | [43] |
Pediomelum esculentum | 2n = 2x = 22 | 0 | [43,140] |
Pediomelum tenuiflorum | 2n = 22 | 0 | [43] |
Phaseolous polystachios | 2n = 2x = 22 | 2 | [152] |
Senna marilandica | 2n = 28 | 2 | [43,153] |
Thermopsis villosa | 2n = 2x = 18 | 0 | [55] |
Thermopsis montana | 2n = 2x = 18 | 5 | [55] |
Trifolium pratense | 2n = 2x = 14 & 2n = 4x = 28 | 1066 | [43] |
Vicia americana | 2n = 2x = 14 | 1 | [43,154] |
Vicia cracca | 2n = 2x = 14 & 2n = 4x = 28 | 4 | [155] |
Vicia nigricans | 2n = 2x = 14 | 0 | [144] |
Vicia pisiformis | 2n = 2x = 12 | 1 | [155] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlautman, B.; Barriball, S.; Ciotir, C.; Herron, S.; Miller, A.J. Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection. Sustainability 2018, 10, 730. https://doi.org/10.3390/su10030730
Schlautman B, Barriball S, Ciotir C, Herron S, Miller AJ. Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection. Sustainability. 2018; 10(3):730. https://doi.org/10.3390/su10030730
Chicago/Turabian StyleSchlautman, Brandon, Spencer Barriball, Claudia Ciotir, Sterling Herron, and Allison J. Miller. 2018. "Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection" Sustainability 10, no. 3: 730. https://doi.org/10.3390/su10030730
APA StyleSchlautman, B., Barriball, S., Ciotir, C., Herron, S., & Miller, A. J. (2018). Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection. Sustainability, 10(3), 730. https://doi.org/10.3390/su10030730