Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Agricultural Contexts
2.2. Data Collection
2.3. Identification of Livelihood Strategies
2.4. Computing Agricultural Diversification
2.5. Modelling Agricultural Diversification and Their Determinants
3. Results
3.1. Agricultural Area Distribution across Livelihood Strategies
3.2. Agricultural Income Distribution among Livelihood Strategies
3.3. Crop-Livestock Area and Income Relation among Livelihood Strategies
3.4. Agricultural Diversity Indices
3.5. Determinants of Degree of Diversification
4. Discussion
4.1. Small-Scale Agriculture in the SBR
4.2. Determinants of Agricultural Diversification
4.2.1. Socioeconomic Factors Affecting Agricultural Diversification
4.2.2. Tendency to Agricultural Specialization
4.3. Policy Implication for More Sustainable Production Systems
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Herrero, A.M.; Thornton, P.K.; Notenbaert, A.M.; Wood, S.; Msangi, S.; Freeman, H.A.; Bossio, D.; Dixon, J.; Peters, M.; van de Steeg, J.; et al. Smart investments in sustainable food production: Revisiting mixed crop–livestock systems. Science 2010, 327, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.; Knoke, T. Between land sharing and land sparing—What role remains for forest management and conservation? Int. For. Rev. 2015, 17, 210–230. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agriculture sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Aclad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Le Queré, C.; Al, E. Global carbon budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef]
- Joshi, P.K.; Gulati, A.; Birthal, P.; Tewari, L. Agriculture diversification in south asia: Patterns, determinants and policy implications. Econ. Political Wkly. 2004, 39, 2457–2467. [Google Scholar]
- Knoke, T.; Román-Cuesta, R.M.; Weber, M.; Haber, W. How can climate policy benefit from comprehensive land-use approaches? Front. Ecol. Environ. 2012, 10, 438–445. [Google Scholar] [CrossRef]
- Michler, J.D.; Josephson, A.L. To specialize or diversify: Agricultural diversity and poverty dynamics in Ethiopia. World Dev. 2017, 89, 214–226. [Google Scholar] [CrossRef]
- Pellegrini, L.; Tasciotti, L. Crop diversification, dietary diversity and agricultural income: Empirical evidence from eight developing countries. Can. J. Dev. Stud. 2014, 35, 221–227. [Google Scholar] [CrossRef]
- Ashley, C.; Carney, D. Sustainable Livelihoods: Lessons from Early Experience; Department for International Development: London, UK, 1999; p. 64. [Google Scholar]
- Ellis, F. The determinants of rural livelihood diversification in developing countries. J. Agric. Econ. 2000, 51, 289–302. [Google Scholar] [CrossRef]
- Altieri, M.A. Linking ecologists and traditional farmers in the search for sustainable agriculture. Front. Ecol. Environ. 2004, 2, 35–42. [Google Scholar] [CrossRef]
- McCord, P.F.; Cox, M.; Schmitt-harsh, M.; Evans, T. Land use policy crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near mount kenya. Land Use Policy 2015, 42, 738–750. [Google Scholar] [CrossRef]
- Jones, A.; Shrinivas, A.; Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in malawi: Findings from nationally representative data. Food Policy 2014, 46, 1–12. [Google Scholar] [CrossRef]
- Denevan, W.M. Prehistoric agricultural methods as models for sustainability. Adv. Plant Pathol. 1995, 11, 21–43. [Google Scholar]
- Amine, M.B.; Brabez, F. Determinants of on-farm diversification among rural households: Empirical evidence from rural households: Empirical evidence from Northern Algeria. Int. Food Agric. Econ. 2016, 4, 87–99. [Google Scholar]
- Ullah, R.; Shivakoti, G.P. Adoption of on-farm and off-farm diversification to manage agricultural risks are these decisions correlated? Outlook Agric. 2014, 43, 265–271. [Google Scholar] [CrossRef]
- Tung, D.T. Measurement of on-farm diversification in Vietnam. Outlook Agric. 2017, 46, 3–12. [Google Scholar] [CrossRef]
- McNamara, K.T.; Weiss, C. Farm household income and on- and off-farm diversification. J. Agric. Appl. Econ. 2005, 37, 37–48. [Google Scholar] [CrossRef]
- Babatunde, R.O.; Qaim, M. Patterns of income diversification in rural Nigeria: Determinants and impacts. Q. J. Int. Agric. 2009, 48, 305–320. [Google Scholar]
- Bartolini, F.; Andreoli, M.; Brunori, G. Explaining determinants of the on-farm diversification: Empirical evidence from Tuscany Region. Bio-Based App. Econ. 2014, 3, 137–157. [Google Scholar]
- Archibald, B.; Asuming-Brempong, S.; Onumah, E.E. Determinants of income diversification of farm households in the western region of Ghana. Q. J. Int. Agric. 2014, 53, 55–72. [Google Scholar]
- Asante, B.O.; Villano, R.A.; Patrick, I.W.; Battese, G.E. Determinants of farm diversification in integrated crop—Livestock farming systems in Ghana. Renew. Agric. Food Syst. 2016, 33, 1–19. [Google Scholar] [CrossRef]
- Ersado, L. Income Diversification in Zimbawe: Welfare Implications from Urban and Rural Areas; World Bank: Washington, DC, USA, 2006; Volume 3964, p. 26. [Google Scholar]
- Schwarze, S.; Zeller, M. Income diversification of rural households in central Sulawesi, Indonesia. Q. J. Int. Agric. 2005, 44, 61–73. [Google Scholar]
- Mathebula, J.; Molokomme, M.; Jonas, S.; Nhemachena, C. Estimation of household income diversification in south africa: A case study of three provinces. S. Afr. J. Sci. 2017, 113, 1–9. [Google Scholar] [CrossRef]
- Asfaw, S.; Pallante, G.; Palma, A. Diversification strategies and adaptation deficit: Evidence from rural communities in Niger. World Dev. 2018, 101, 219–234. [Google Scholar] [CrossRef]
- Fausat, A.F. Income diversification determinants among farming households in Konduga, Borno State, Nigeria. Acad. Res. Int. 2012, 2, 555–561. [Google Scholar]
- Myers, N. Threatened biotas: “Hot spots” in tropical forests. Environmentalist 1988, 8, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Mittermeier, R.A.; Myers, N.; Thomsen, J.B.; da Fonseca, G.A.B.; Olivieri, S. Biodiversity hotspots and major tropical wilderness areas: Approaches to setting conservation priorities. Conserv. Biol. 1998, 12, 516–520. [Google Scholar] [CrossRef]
- Sierra, R. Patrones y Factores de Deforestación en el Ecuador Continental, 1990–2010. Y un Acercamiento a Los Próximos 10 Años; Forest Trends: Quito, Ecuador, 2013; p. 51. [Google Scholar]
- MAGAP. Agenda de Transformacion Productiva en la Amazonia Ecuatoriana; MAGAP: Quito, Ecuador, 2014; pp. 1–123. [Google Scholar]
- MAGAP. Atpa Proyecto Reconversion Agroproductiva Sostenible de la Amazonia; MAGAP: Quito, Ecuador, 2014; p. 11. [Google Scholar]
- Mena, C.F.; Bilsborrow, R.E.; McClain, M.E. Socioeconomic drivers of deforestation in the Northern Ecuadorian Amazon. Environ. Manag. 2006, 37, 802–815. [Google Scholar] [CrossRef] [PubMed]
- Bilsborrow, R.E.; Barbieri, A.F.; Pan, W. Changes in population and land use over time in the Ecuadorian Amazon. Acta Amazón. 2004, 34, 635–647. [Google Scholar] [CrossRef]
- Pan, W.K.Y.; Bilsborrow, R.E. The use of a multilevel statistical model to analyze factors influencing land use: A study of the Ecuadorian Amazon. Glob. Planet. Chang. 2005, 47, 232–252. [Google Scholar] [CrossRef]
- Pichón, F. Colonists, land allocation decisions, land use and deforestation in the Amazon frontier. Econ. Dev. Cult. Chang. 1997, 45, 707–744. [Google Scholar] [CrossRef]
- Pan, W.; Carr, D.; Barbieri, A.; Bilsborrow, R.; Suchindran, C. Forest clearing in the Ecuadorian Amazon: A study of patterns over space and time. Popul. Res. Policy Rev. 2007, 26, 635–659. [Google Scholar] [CrossRef] [PubMed]
- Torres, B.; Bilsborrow, R.; Barbieri, A.; Torres, A. Cambios en las estrategias de ingresos económicos a nivel de hogares rurales en el norte de la Amazonía Ecuatoriana. Rev. Amazón. Cienc. Tecnol. 2014, 3, 221–257. [Google Scholar]
- Torres, B.; Günter, S.; Acevedo-cabra, R.; Knoke, T. Livelihood strategies, ethnicity and rural income: The case of migrant settlers and indigenous populations in the Ecuadorian Amazon. For. Policy Econ. 2018, 86, 22–34. [Google Scholar] [CrossRef]
- Vasco, C.; Torres, B.; Pacheco, P.; Griess, V. The socioeconomic determinants of legal and illegal smallholder logging: Evidence from the Ecuadorian Amazon. For. Policy Econ. 2017, 78, 133–140. [Google Scholar] [CrossRef]
- Ministerio del Ambiente del Ecuador. Superficie del Parque Nacional Sumaco Napo Galeras; Acuerdo 016 MAE; MAE: Quito, Ecuador, 2013; p. 8. [Google Scholar]
- UNESCO. Biosphere Reserves: The Sevilla Stratey and the Statutary Framework of the World Network; UNESCO: Paris, France, 1996; p. 21. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Ministerio del Ambiente del Ecuador-Deutsch Gesellschaft fuer Internationale Zusammentarbeit. Segunda Medición del Uso del Suelo y Cobertura Vergetal en la Reserva de Biosfera Sumaco; MAE-GIZ: Quito, Ecuador, 2013; pp. 1–118. [Google Scholar]
- Coq-Huelva, D.; Higuchi, A.; Alfalla-Luque, R.; Burgos-Morán, R.; Arias-Gutiérrez, R. Co-evolution and bio-social construction: The Kichwa agroforestry systems (chakras) in the Ecuadorian Amazonia. Sustainability 2017, 9, 1920. [Google Scholar] [CrossRef]
- Jadan, O.; Cifuentes, M.; Torres, B.; Selesi, D.; Veintimilla, D.; Günter, S. Influence of tree cover on diversity, carbon sequestration and productivity of cocoa systems in the Ecuadorian Amazon. Bois Forets Trop. 2015, 325, 35–47. [Google Scholar] [CrossRef]
- Oldekop, J.A.; Bebbington, A.J.; Hennermann, K.; McMorrow, J.; Springate, D.A.; Torres, B.; Truelove, N.K.; Tysklind, N.; Villamarín, S.; Preziosi, R.F. Evaluating the effects of common-pool resource institutions and market forces on species richness and forest cover in Ecuadorian indigenous Kichwa communities. Conserv. Lett. 2013, 6, 107–115. [Google Scholar] [CrossRef]
- Torres, B.; Jadan, O.; Aguirre, P.; Hinojosa, L.; Günter, S. The Contribution of Traditional Agroforestry to Climate Change Adaptation in the Ecuadorian Amazon: The Chakra System; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1973–1994. [Google Scholar]
- Vasco Pérez, C.; Bilsborrow, R.; Torres, B. Income diversification of migrant colonists vs. Indigenous populations: Contrasting strategies in the Amazon. J. Rural Stud. 2015, 42, 1–10. [Google Scholar] [CrossRef]
- Lerner, A.M.; Rudel, T.K.; Schneider, L.C.; McGroddy, M.; Burbano, D.V.; Mena, C.F. The spontaneous emergence of silvo-pastoral landscapes in the Ecuadorian Amazon: Patterns and processes. Region. Environ. Chang. 2014, 15, 1421–1431. [Google Scholar] [CrossRef]
- Coq-Huelva, D.; Torres, B.; Bueno-Suárez, C. Indigenous worldviews and western conventions: Sumak kawsay and cocoa production in Ecuadorian Amazonia. Agric. Hum. Values 2017, 35, 163–179. [Google Scholar] [CrossRef]
- Torres, B.; Starnfeld, F.; Vargas, J.C.; Ramm, G.; Chapalbay, R.; Jurrius, I.; Gómez, A.; Torricelli, Y.; Tapia, A.; Shiguango, J.; et al. Gobernanza Participativa en la Amazonía del Ecuador: Recursos Naturales y Desarrollo Sostenible; Universidad Estatal Amazónica ed.; Universidad Estatal Amazónica: Quito, Ecuador, 2014; p. 124. [Google Scholar]
- Vera, V.R.R.; Cota-Sánchez, J.H.; Grijalva Olmedo, J.E. Biodiversity, dynamics and impact of chakras on the Ecuadorian Amazon. J. Plant Ecol. 2017. [Google Scholar] [CrossRef]
- Jadán, O.; Günter, S.; Torres, B.; Selesi, D. Riqueza y potencial maderable en sistemas agroforestales tradicionales como alternativa al uso del bosque nativo, Amazonía del Ecuador. Rev. For. Mesoam. Kurú 2015, 12, 13–22. [Google Scholar] [CrossRef]
- Sidali, K.L.; Yépez Morocho, P.; Garrido-pérez, E. Food tourism in indigenous settings as a strategy of sustainable development: The case of Ilex guayusa Loes. In the Ecuadorian Amazon. Sustainability 2016, 8, 967. [Google Scholar] [CrossRef]
- Krause, T.; Ness, B. Energizing agroforestry: Ilex guayusa as an additional commodity to diversify Amazonian agroforestry systems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 191–203. [Google Scholar] [CrossRef]
- Angelsen, A.; Jagger, P.; Babigumira, R.; Belcher, B.; Hogarth, N.J.; Bauch, S.; Börner, J.; Smith-Hall, C.; Wunder, S. Environmental income and rural livelihoods: A global-comparative analysis. World Dev. 2014, 64, S12–S28. [Google Scholar] [CrossRef] [Green Version]
- Cavendish, W. How do Forests Support, Insure and Improve the Livelihoods of the Rural poor? A Research Note; Center for International Forestry Research: Bogor, Indonesia, 2003; pp. 1–23. [Google Scholar]
- Valarezo, V.; Gómez, J.; Mejía, L.; Célleri, Y. Plan de Manejo de la Reserva de Biosfera Sumaco; Fundación Bio-Parques: Tena, Ecuador, 2002; p. 137. [Google Scholar]
- Magurran, A.E. Diversity indices and species abundance models. In Ecological Diversity & Its Measurement; Springer: Dordrecht, The Netherlands, 1988; pp. 7–32. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; The MIT Press: Cambridge, MA, USA; London, UK, 2002. [Google Scholar]
- Murphy, L.L. Colonist farm income, off-farm work, cattle and differentiation in ecuador’s northern Amazon. Hum. Organ. 2001, 60, 67–79. [Google Scholar] [CrossRef]
- Gray, C.L.; Bilsborrow, R.E.; Bremner, J.L.; Lu, F. Indigenous land use in the Ecuadorian Amazon: A cross-cultural and multilevel analysis. Hum. Ecol. 2008, 36, 97–109. [Google Scholar] [CrossRef]
- Sellers, S.; Bilsborrow, R.; Salinas, V.; Mena, C. Population and development in the Amazon: A longitudinal study of migrant settlers in the northern Ecuadorian Amazon. Acta Amazon. 2017, 47, 321–330. [Google Scholar] [CrossRef]
- Vasco, C.; Tamayo, G.; Griess, V. The drivers of market integration among indigenous peoples: Evidence from the Ecuadorian Amazon. Soc. Nat. Resour. 2017, 30, 1212–1228. [Google Scholar] [CrossRef]
- Bravo, C.; Benítez, D.; Vargas, J.C.; Reinaldo, A.; Torres, B.; Aideé, M. Caracterización socio-ambiental de unidades de producción agropecuaria en la Región Amazónica Ecuatoriana: Caso Pastaza y Napo Socio-environmental characterization of agricultural production units in the Ecuadorian Amazon Region, subjects: Pastaza and Napo. Rev. Amazón. Cienc. Tecnol. 2015, 4, 3–31. [Google Scholar]
- Bravo, C.; Torres, B.; Alemán, R.; Marín, H.; Durazno, G.; Navarrete, H.; Gutiérrez, E.; Tapia, A. Indicadores morfológicos y estructurales de calidad y potencial de erosión del suelo bajo diferentes usos de la tierra en la Amazonía Ecuatoriana. An. Geogr. Univ. Complut. 2017, 37, 247–264. [Google Scholar] [CrossRef]
- Mainville, N.; Webb, J.; Lucotte, M.; Davidson, R.; Betancourt, O.; Cueva, E.; Mergler, D. Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador. Sci. Total Environ. 2006, 368, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Lu, F. Integration into the market among indigenous peoples. Curr. Anthropol. 2007, 48, 593–602. [Google Scholar] [CrossRef]
- Rudel, T.K.; Bates, D.; Machinguiashi, R. A tropical forest transition? Agricultural change, out-migration and secondary forests in the Ecuadorian Amazon. Ann. Assoc. Am. Geogr. 2002, 92, 87–102. [Google Scholar] [CrossRef]
- Lu, F.; Gray, C.; Bilsborrow, R.E.; Mena, C.F.; Erlien, C.M.; Bremner, J.; Barbieri, A.; Walsh, S.J. Contrasting colonist and indigenous impacts on Amazonian forest. Conserv. Biol. 2010, 24, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Jadán Maza, O.; Torres, B.; Selesi, D.; Peña, D.; Rosales, C.; Günter, S. Diversidad florística y estructura en cacaotales tradicionales y bosque natural (Sumaco, Ecuador). Colomb. For. 2016, 19, 5–18. [Google Scholar] [CrossRef]
- Ashfaq, M.; Hassan, S.; Naseer, M.Z.; Baig, I.A.; Asma, J. Factors affecting farm diversification in rice-wheat. Pak. J. Agric. Sci. 2008, 45, 91–94. [Google Scholar]
- Makate, C.; Wang, R.; Makate, M.; Mango, N. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: Adaptive management for environmental change. SpringerPlus 2016, 5, 1135. [Google Scholar] [CrossRef] [PubMed]
- Revelo, J.; Sandoval, P. Factores que Afecta la Produccion y Productividad de la Naranjilla (Solanum quitoense lam.) en la Región Amazónica del Ecuador; INIAP, Santa Catalina: Quito, Ecuador, 2003; p. 110. [Google Scholar]
- Von Thünen, J.H.; Hall, P.G. Isolated State: An English Edition of der Isolierte Staat; Pergamon Press: Pergamon, Turkey, 1966. [Google Scholar]
- Southgate, D.; Sierra, R.; Brown, L. The causes of tropical deforestation in Ecuador: A statistical analysis. World Dev. 1991, 19, 1145–1151. [Google Scholar] [CrossRef]
- Angelsen, A.; Kaimowitz, D. Rethinking the causes of deforestation: Lessons from economics models. World Bank Res. Obs. 1999, 14, 73–98. [Google Scholar] [CrossRef] [PubMed]
- Culas, R.J. Causes of farm diversification over time: An Australian perspective on an eastern Norway model. Aust. Farm Bus. Manag. J. 2006, 3, 1–9. [Google Scholar]
- Wilson, M.H.; Lovell, S.T. Agroforestry—The next step in sustainable and resilient sgriculture. Sustainability 2016, 8, 574. [Google Scholar] [CrossRef]
- Nielsen, J.Ø.; Rayamajhi, S.; Uberhuaga, P.; Meilby, H.; Smith-Hall, C. Quantifying rural livelihood strategies in developing countries using an activity choice approach. Agric. Econ. 2013, 44, 57–71. [Google Scholar] [CrossRef]
- Walelign, S.Z.; Charlery, L.; Smith-Hall, C.; Chhetri, K.; Larsen, H.O. Environmental income improves household- level poverty assessments and dynamics. For. Policy Econ. 2016, 71, 23–35. [Google Scholar] [CrossRef]
- Rudel, T.K.; Defries, R.; Asner, G.P.; Laurance, W.F. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 2009, 23, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Aguilar, M.J.; Konold, W.; Schmitt, C.B. Community mapping of ecosystem services in tropical rainforest of Ecuador. Ecol. Indic. 2017, 73, 460–471. [Google Scholar] [CrossRef]
- Whitten, N.E. Symbolic inversion, the topology of El Mestizaje and the spaces of Las Razas in Ecuador. J. Latin Am. Anthropol. 2003, 8, 52–85. [Google Scholar] [CrossRef]
- Arslan, A.; Cavatassi, R.; Alfani, F.; McCarthy, N.; Lipper, L.; Kokwe, M. Diversification under climate variability as part of a CSA strategy in rural Zambia. J. Dev. Stud. 2018, 54, 457–480. [Google Scholar] [CrossRef]
Community | Elevation m.a.s.l. | Ethnic Group | Population | Major Agricultural Activities |
---|---|---|---|---|
Arapino | 538 | Kichwa | 120 | Agriculture, agroforestry |
Avila Viejo | 596 | Kichwa | 400 | Agriculture, agroforestry |
Campo Alegre | 420 | Settler | 490 | Agriculture, cattle |
Cascabel 2 | 343 | Kichwa | 300 | Agriculture, timber |
Centro K. Río Guacamayos | 628 | Kichwa | 300 | Agriculture, agroforestry |
Cinco de Octubre | 325 | Kichwa | 60 | Agriculture, agroforestry |
Cosanga | 2004 | Settler | 700 | Cattle, fish ecotourism |
Diez de Agosto | 377 | Kichwa | 80 | Agriculture, agroforestry |
Gonzalo Diaz de Pineda | 1625 | Settler | 350 | Cattle, monoculture |
Guayusaloma | 1997 | Kichwa | 108 | Agroforestry, cattle |
Juan Pio Montufar | 497 | Settler | 700 | Agriculture, timber |
Makana Cocha | 325 | Kichwa | 130 | Agriculture, timber |
Mushullacta | 936 | Kichwa | 600 | Agriculture, agroforestry |
Pacto Sumaco | 1519 | Settler | 600 | Agroforestry, cattle |
Pandayacu | 472 | Kichwa | 550 | Agriculture, agroforestry |
Playas del Rio Coca | 566 | Kichwa | 124 | Agriculture, agroforestry |
Pununo | 414 | Settler | 250 | Timber, Agriculture |
San José de Payamino | 304 | Kichwa | 325 | Agriculture, agroforestry |
San Pablo | 349 | Kichwa | 500 | Agriculture, agroforestry |
San Vicente de Huaticocha | 621 | Settler | 220 | Cattle, agriculture |
San Vicente de Parayacu | 825 | Kichwa | 22 | Agriculture, agroforestry |
Santa Elena de Guacamayos | 1646 | Settler | 135 | Cattle, agriculture, fish |
Santa Rosa | 1493 | Settler | 350 | Cattle, agriculture |
Sardinas | 1706 | Settler | 600 | Cattle, agriculture |
Serena | 544 | Kichwa | 280 | Agriculture, agroforestry |
Shandia | 514 | Kichwa | 320 | Agriculture, agroforestry |
Supayacu | 395 | Kichwa | 55 | Agriculture, agroforestry |
Tambayacu | 699 | Kichwa | 500 | Agriculture, agroforestry |
Union y Progreso | 761 | Settler | 150 | Agriculture, cattle |
Verde Sumaco | 324 | Kichwa | 290 | Agriculture, agroforestry |
Villano | 821 | Kichwa | 370 | Agriculture, agroforestry |
Wamani | 1174 | Kichwa | 700 | Agroforestry, cattle |
Variables | Nature | Description | Mean (Standard Deviation) |
---|---|---|---|
Dependent variable (OLS) | |||
Hcrop_area | Continuous | Shannon diversity index of crop area | 0.75 (0.5) |
NCS | Continuous | Number of crop sources (Richness) | 2.9 (1.6) |
Dependent variable (MLM) | |||
Household degree of crop area diversification | Categorical | Values taken from one to three based on the results of the Shannon equitable diversification status of Ecrop_area: high diversification, medium diversification and low diversification | |
Independent variables | |||
Forest-based LS | Dummy | Numbers of households in forest-based LS (0/1) | 36 |
Crop-based LS | Dummy | Numbers of households in crop-based LS (0/1) | 81 |
Livestock-based LS | Dummy | Numbers of households in livestock-based LS (0/1) | 23 |
Wage-based LS | Dummy | Numbers of households in wage-based LS (0/1) | 46 |
Age head household | Continuous | Age of household head (years) | 44.4 (12.1) |
Household size | Continuous | Number of household members | 6.6 (3.4) |
Ethnicity (Kichwa) | Dummy | Household head is Kichwa (0/1) | 66 |
Education head | Continuous | Length of formal education of household head (years) | 6.2 (3.5) |
Access to credit | Dummy | Households access to any type of credit (0/1) | 54 |
Subsistence income | Continuous | Percentage of subsistence income | 24.2 |
Remaining forest land | Continuous | Percentage of remaining forest cover on farm | 46.6 |
Total land | Continuous | Household’s total land (ha) | 28.3 (20.5) |
Inside buffer zone | Continuous | Percentage of households inside the buffer zone/SBR | 68 |
Distance city | Continuous | Time it takes to reach cities from communities (minutes) | 70.1 (62.8) |
Road access | Dummy | Availability of road to access village by car (0/1) | 78 |
Crop Area/LS | Absolute (Abs.) and Relative (Rel.) Mean Crops Sources | Overall n = 186 | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Forest-Based Strategy n = 36 | Crop-Based Strategy n = 81 | Livestock-Based Strategy n = 23 | Wage-Based Strategy n = 46 | ||||||||
Abs. (ha) | Rel. (%) | Abs. (ha) | Rel. % | Abs. (ha) | Rel. % | Abs. (ha) | Rel. % | Abs. (ha) | Rel. % | ||
Maize | 0.55 a (0.81) | 8.7 (13.9) | 0.70 a (0.85) | 15.5 (20.8) | 0.13 b (0.43) | 1.2 (3.7) | 0.26 b (0.50) | 9.1 (20.0) | 0.49 (0.76) | 10.8 18.6) | *** |
Rice | 0.06 (0.24) | 1.5 (6.0) | 0.06 (0.20) | 1.9 (6.3) | - - | - - | 0.02 (0.10) | 0.5 (3.6) | 0.04 (0.17) | 1.3 (5.2) | - |
Cassava | 0.03 (0.12) | 0.4 (1.2) | 0.05 (0.15) | 2.3 (11.5) | - - | - - | 0.03 (0.15) | 2.8 (14.9) | 0.04 (0.13) | 1.8 (10.6) | - |
Plantain | 0.09 (0.22) | 1.2 (3.2) | 0.05 (0.17) | 1.1 (3.2) | 0.03 (0.11) | 0.2 (0.8) | 0.038 (0.15) | 0.9 (3.4) | 0.05 (0.17) | 0.9 (3.1) | - |
Naranjilla | 0.41 a (0.74) | 6.3 (12.6) | 0.22 a (0.55) | 3.3 (8.6) | 0.04 b (0.20) | 0.1 (0.8) | 0.10 a,b (0.31) | 2.1 (7.1) | 0.21 (0.52) | 3.2 (8.8) | ** |
Cocoa | 0.59 a (0.89) | 7.6 (12.3) | 0.51 a (0.70) | 12.0 (19.3) | 0.10 b (0.25) | 3.0 (10.5) | 0.54 a (0.92) | 14.8 (23.3) | 0.49 (0.77) | 10.7 (18.7) | * |
Coffee | 0.55 a (0.95) | 8.6 (14.9) | 0.78 a (0.91) | 22.6 (44.3) | 0.06 c (0.17) | 2.7 (10.5) | 0.29 b (0.72) | 8.6 (19.3) | 0.52 (0.85) | 14.0 (32.1) | *** |
Crops in Chakra | 1.68 a (2.28) | 18.9 (22.6) | 1.01 a (1.34) | 24.8 (45.3) | 0.29 c (1.05) | 1.1 (2.9) | 0.77 b,c (1.06) | 18.3 (22.7) | 0.99 (1.52) | 19.1 (34.1) | *** |
Pasture | 5.41 a (7.30) | 43.4 (38.3) | 2.34 a (5.15) | 20.5 (29.9) | 14.8 b (11.1) | 86.5 (28.5) | 3.15 a (4.74) | 33.7 (40.2) | 4.68 (7.60) | 36.4 (39.8) | *** |
Other | 0.08 (0.22) | 0.8 (2.1) | 0.11 (0.37) | 1.3 (4.8) | 0.14 (0.30) | 4.9 (20.7) | 0.02 (0.10) | 2.2 (14.7) | 0.08 (0.29) | 1.8 (10.7) | - |
Total mean crop area | 9.5 b (7.31) | 100 | 5.88 a (5.78) | 100 | 15.67 c (11.61) | 100 | 5.26 a (5.02) | 100 | 7.64 (7.63) | 100 | *** |
Total mean property size † | 35.7 b (18.4) | 100 | 24.1 a (18.1) | 100 | 39.6 c (22.7) | 100 | 24.4 a (22.0) | 100 | 28.3 (20.55) | 100 | *** |
Crops/LS | Absolute (Abs.) and Relative (Rel.) Mean Crops Sources | Overall n = 186 | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Forest-Based Strategy n = 36 | Crop-Based Strategy n = 81 | Livestock-Based Strategy n = 23 | Wage-Based Strategy n = 46 | ||||||||
Abs. (U.S.$) | Rel. % | Abs. (U.S.$) | Rel. % | Abs. (U.S.$) | Rel. % | Abs. (U.S.$) | Rel. % | Abs. (U.S.$) | Rel. % | ||
Maize | 66.8 a,b (138.3) | 11.4 (23.9) | 132.9 b (224.9) | 15.9 (20.6) | 22.0 a (68.1) | 0.7 (1.8) | 30.5 a (79.0) | 9.3 (18.8) | 81.1 (172.7) | 11.5 (20.0) | *** |
Rice | - - | - - | 6.7 (27.0) | 1.4 (5.7) | - - | - - | 16.3 (110.5) | 1.0 (6.9) | 7.0 (57.6) | 0.9 (5.1) | - |
Cassava | 42.9 (175.2) | 5.8 (18.1) | 85.3 (167.7) | 13.2 (20.0) | 198.0 (934.7) | 3.3 (15.3) | 53.3 (137.5) | 13.5 (25.2) | 83.1 (358.7) | 10.6 (121.3) | - |
Plantain | 26.5 (46.5) | 8.9 (20.3) | 40.3 (54.6) | 7.8 (13.1) | 26.7 (102.3) | 0.7 (1.8) | 16.1 (34.8) | 8.9 (21.4) | 30.0 (57.8) | 7.4 (16.5) | - |
Naranjilla | 323.5 a (936.8) | 23.9 (35.5) | 161.6 a,b (500.1) | 9.8 (23.0) | 9.3 b (32.9) | 0.7 (2.8) | 30.8 b (135.2) | 5.0 (19.5) | 141.8 (539.1) | 10.2 (25.0) | * |
Cocoa | 112.5 a (214.1) | 19.8 (33.5) | 112.7 a (176.0) | 14.7 (21.4) | 29.2 b (62.7) | 1.2 (3.1) | 56.1 b (102.2) | 21.2 (32.3) | 88.4 (161.7) | 15.7 (26.5) | * |
Coffee | 86.0 a,b (171.2) | 15.2 (24.6) | 166.1 b (259.0) | 22.5 (27.6) | 14.2 a (40.0) | 14.0 (5.3) | 25.4 a (71.7) | 9.4 (19.9) | 97.1 (200.1) | 15.3 (24.5) | *** |
Livestock | 16.0 a (68.7) | 1.5 (6.4) | 46.0 a (186.2) | 3.13 (13.6) | 2221.8 b (1475.3) | 82.3 (27.4) | 76.5 a (242.1) | 12.0 (32.0) | 316.8 (896.8) | 14.8 (33.0) | *** |
Other | 29.9 a (64.7) | 5.1 (11.1) | 132.3 a,b (450.1) | 9.0 (18.6) | 203.6 b (511.1) | 5.5 (11.2) | 9.7 a (51.3) | 2.2 (9.9) | 91.0 (353.3) | 6.1 (14.8) | * |
Total agricultural income | 704.1 a,b (917.1) | 100 | 884.3 b (807.9) | 100 | 2725.0 c (1754.0) | 100 | 314.8 a (365.5) | 100 | 936.2 (1159.9) | 100 | *** |
Total Household income † | 2021 a,b (1618) | 100 | 1449 a (1154) | 100 | 2898 b (1736) | 100 | 1353 a (1586) | 100 | 1750 (1524) | 100 | *** |
Crops/LS | Absolute and Relative Mean Crops Sources | Overall n = 186 | Significance | |||
---|---|---|---|---|---|---|
Forest-Based Strategy n = 36 | Crop-Based Strategy n = 81 | Livestock-Based Strategy n = 23 | Wage-Based Strategy n = 46 | |||
Hcrop_area | 0.83 (0.49) | 0.94 (0.50) | 0.20 (0.29) | 0.61 (0.51) | 0.75 (0.54) | *** |
Ecrop_area (%) | 67.08 (32.15) | 74.20 (33.30) | 21.04 (27.27) | 56.41 (41.64) | 61.85 (38.36) | *** |
Number of crop area sources (NCS) | 3.3 (1.6) | 3.4 (1.5) | 1.8 (1.0) | 2.4 (1.3) | 2.9 (1.5) | *** |
Variables | NCS | Hcrop_area |
---|---|---|
Livelihoods strategies | ||
Forest-based LS | −0.513 (0.292) | −0.195 * (0.093) |
Livestock-based LS | −1.786 *** (0.329) | −0.642 *** (0.097) |
Wage-based LS | −0.833 *** (0.244) | −0.263 *** (0.086) |
Individual variables | ||
Kichwa (yes) | 0.825 *** (0.287) | 0.351 *** (0.096) |
Age of household head | −0.001 (0.052) | −0.006 (0.018) |
Age squared | −0.000 (0.000) | 0.000 (0.000) |
Education of head (years) | −0.022 (0.030) | −0.002 (0.010) |
Household variables | ||
Household size | 0.017 (0.030) | 0.015 (0.010) |
Access to credit (yes) | 0.203 (0.201) | 0.046 (0.065) |
Forest land (ha) | −0.021 (0.012) | 0.003 (0.004) |
Total land (ha) | 0.052 *** (0.011) | 0.007 * (0.003) |
Community variables | ||
Inside buffer zone (yes) | −0.202 (0.241) | −0.062 0.078) |
Distance to city (minutes) | −0.001 (0.001) | 0.000 (0.000) |
Road access (yes) | 0.765 *** (0.265) | 0.196 ** (0.093) |
Numbers of observation | 186 | 186 |
F (14, 171) | 12.44 *** | 20.12 *** |
Pseudo R2 | 0.375 | 0.406 |
Variables | Agricultural Area Diversification | ||
---|---|---|---|
High Diversification | Medium Diversification | Low Diversification | |
Livelihoods strategies | |||
Forest-based LS | −0.191 (0.128) | 0.054 (0.116) | 0.137 (0.149) |
Livestock-based LS | −0.644 *** (0.057) | −0.107 (0.084) | 0.752 *** (0.096) |
Wage-based LS | −0.224 * (0.111) | 0.044 (0.112) | 0.179 (0.121) |
Individual variables | |||
Kichwa (yes) | 0.414 *** (0.112) | −0.058 (0.101) | −0.355 ** (0.138) |
Age of household head | −0.043 (0.028) | 0.028 (0.025) | 0.014 (0.020) |
Age squared | 0.000 (0.000) | −0.000 (0.000) | −0.000 (0.000) |
Education of head (years) | −0.002 (0.016) | 0.007 (0.013) | −0.004 (0.013) |
Household variables | |||
Household size | 0.033 ** (0.016) | −0.001 (0.013) | −0.031 ** (0.014) |
Access to credit (yes) | 0.088 (0.104) | 0.035 (0.081) | −0.124 (0.087) |
Forest land (ha) | 0.023 *** (0.008) | −0.018 *** (0.005) | −0.005 (0.006) |
Total land (ha) | −0.010 (0.006) | 0.017 *** (0.004) | −0.007 (0.005) |
Community variables | |||
Inside buffer zone (yes) | −0.058 (0.121) | 0.005 (0.095) | 0.053 (0.092) |
Distance to city (minutes) | −0.000 (0.000) | 0.000 (0.000) | −0.000 (0.001) |
Road access (yes) | 0.057 (0.151) | 0.280 *** (0.077) | −0.338 ** (0.160) |
Numbers of observation | 186 | ||
Chi2 (28) | 128.01 *** | ||
Pseudo R2 | 0.33 | ||
Log likelihood | −126.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, B.; Vasco, C.; Günter, S.; Knoke, T. Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2018, 10, 1432. https://doi.org/10.3390/su10051432
Torres B, Vasco C, Günter S, Knoke T. Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability. 2018; 10(5):1432. https://doi.org/10.3390/su10051432
Chicago/Turabian StyleTorres, Bolier, Cristian Vasco, Sven Günter, and Thomas Knoke. 2018. "Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon" Sustainability 10, no. 5: 1432. https://doi.org/10.3390/su10051432
APA StyleTorres, B., Vasco, C., Günter, S., & Knoke, T. (2018). Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability, 10(5), 1432. https://doi.org/10.3390/su10051432