Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System
Abstract
:1. Introduction
2. Materials and Methods
2.1. The RISE Method
2.2. Study Design
2.3. RISE Assessments
2.4. Biodiversity Analyses
2.5. Statistical Analyses
3. Results
3.1. General Characteristics of the Farms
3.2. Assessment of Sustainable Performance of Organic and Conventional Farms
3.2.1. Sustainability Polygon
3.2.2. Soil Use
3.2.3. Animal Husbandry
3.2.4. Material Use & Environmental Protection
3.2.5. Water Use
3.2.6. Energy & Climate
3.2.7. Biodiversity
3.2.8. Working Conditions
3.2.9. Quality of Life
3.2.10. Economic Viability
3.2.11. Farm Management
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Halamska, M. The Evolution of Family Farms in Poland: Present Time and the Weight of the Past. East Eur. Countryside 2016, 22, 27–51. [Google Scholar] [CrossRef]
- Kopiński, J. Agri-environmental effects of changes in agricultural production in Poland. Econ. Reg. Stud. 2015, 8, 5–18. [Google Scholar]
- Stalenga, J.; Brzezińska, K.; Stańska, M.; Błaszkowska, B.; Czekała, W.; Feledyn-Szewczyk, B.; Gutkowska, A.; Hajdamowicz, I.; Kaliszewski, G.; Kazuń, A.; et al. Code of Good Agricultural Practices Supporting Biodiversity; Institute of Soil Science and Plant Cultivation—State Research Institute: Pulawy, Poland, 2016; p. 306. ISBN 978-83-7562-249-2. [Google Scholar]
- Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds (Codified Version). Off. J. Eur. Union 2009, 20, 7–25. Available online: http://extwprlegs1.fao.org/docs/pdf/eur92236.pdf (accessed on 29 May 2018).
- Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Off. J. Eur. Union 1992, 206, 7–50. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31992L0043&from=EN (accessed on 29 May 2018).
- Maps of General Directorate for Environmental Protection. Available online: http://geoserwis.gdos.gov.pl/mapy (accessed on 15 January 2018).
- Sutcliffe, L.M.E.; Batary, P.; Kormann, U.; Báldi, A.; Dicks, L.V.; Herzon, I.; Kleijn, D.; Tryjanowski, P.; Apostolova, I.; Arlettaz, R.; et al. Harnessing the biodiversity value of Central and Eastern European farmland. Divers. Distrib. 2015, 21, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Central Statistical Office of Poland. Użytkowanie Gruntów i Powierzchnia Zasiewów w 2015 r.; Central Statistical Office: Warszawa, Polska, 2016. [Google Scholar]
- Belfrage, K.; Björklund, J.; Salomonsson, L. The Effects of Farm Size and Organic Farming on Diversity of Birds, Pollinators, and Plants in a Swedish Landscape. AMBIO J. Hum. Environ. Syst. 2005, 34, 582–588. [Google Scholar] [CrossRef]
- Schmitzberger, I.; Wrbka, T.; Steurer, B.; Aschenbrenner, G.; Peterseil, J.; Zechmeister, H.G. How farming styles influence biodiversity maintenance in Austrian agricultural landscapes. Agric. Ecosyst. Environ. 2005, 108, 274–290. [Google Scholar] [CrossRef]
- Marini, L.; Fontana, P.; Klimek, S.; Battisti, A.; Gaston, K.J. Impact of farm size and topography on plant and insect diversity of managed grasslands in the Alps. Biol. Conserv. 2009, 142, 394–403. [Google Scholar] [CrossRef]
- Dicks, L.V.; Ashpole, J.E.; Dänhardt, J.; James, K.; Jönsson, A.M.; Randall, N.; Showler, D.A.; Smith, R.K.; Turpie, S.; Williams, D.R.; et al. Farmland Conservation: Evidence for the Effects of Interventions in Northern and Western Europe; Synopses of Conservation Evidence, Volume 3; Pelagic Publishing Ltd.: Exeter, UK, 2013; p. 504. [Google Scholar]
- Agricultural and Food Quality Inspection. Condition of Organic Farming in Poland; The Report 2013–2014; Main Agricultural and Food Quality Inspection: Warsaw, Poland, 2015; p. 80. Available online: http://www.ijhar-s.gov.pl/pliki/A-pliki-z-glownego-katalogu/ethernet/2015/wrzesien/Raport%20o%20stanie%20rolnictwa%20ekologicznego%20w%20Polsce%20w%20latach%202013-2014.pdf (accessed on 29 May 2018).
- Council Regulation (EC). No. 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No. 2092/91. Off. J. Eur. Union 2007, 189, 1–23. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=EN (accessed on 29 May 2018).
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Tuck, S.; Winqvist, C.; Mota, F.; Ahnström, J.; Turnbull, L.; Bengtsson, J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 2014, 51, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rigby, D.; Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Grenz, J.; Thalmann, C.; Stämpfli, A.; Studer, C.; Häni, F. RISE—A method for assessing the sustainability of agricultural production at farm level. Rural Dev. News 2009, 1, 5–9. [Google Scholar]
- Grenz, J.; Mainiero, R.; Schoch, M.; Sereke, F.; Stalder, S.; Thalmann, C.; Wyss, R. RISE 3.0—Manual. Sustainability Themes and Indicators; HAFL: Zollikofen, Switzerland, 2016; p. 96. [Google Scholar]
- Häni, F.; Braga, F.; Stämpfli, A.; Keller, T.; Fischer, M.; Porsche, H. RISE, a tool for holistic sustainability assessment at the farm level. Int. Food Agribus. Manag. Rev. 2003, 6, 78–90. [Google Scholar]
- Häni, F.; Gerber, T.; Stämpfli, A.; Porsche, H.; Thalmann, C.; Studer, C. An evaluation of tea farms in southern India with the sustainability assessment tool RISE. In Proceedings of the First Symposium of the International Forum on Assessing Sustainability in Agriculture (INFASA) (Symposium ID-105), Bern, Switzerland, 16–17 March 2006; pp. 1–14. Available online: https://www.researchgate.net/profile/Christian_Thalmann2/publication/228467030_An_Evaluation_of_Tea_Farms_in_Southern_India_with_the_Sustainability_Assessment_Tool_RISE/links/558cf53908ae40781c206ac4.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail (accessed on 29 May 2018).
- De Olde, E.; Oudshoorn, F.; Bokkers, E.; Stubsgaard, A.; Sørensen, C.; de Boer, I. Assessing the Sustainability Performance of Organic Farms in Denmark. Sustainability 2016, 8, 957. [Google Scholar] [CrossRef]
- Central Statistical Office Databases. Available online: http://stat.gov.pl (accessed on 15 January 2018).
- Lublin Statistical Office 2016. Rolnictwo w Województwie Lubelskim w 2015 r; Informacje i Opracowania Statystyczne; Urząd Statystyczny w Lublinie: Lublin, Poland, 2016; p. 59. (In Polish)
- Price, J.N.; Wright, B.R.; Gross, C.L.; Whalley, W.R.D.B. Comparision of seedling emergence and seed extraction techniques for estimating the composition of soil seed banks. Methods Ecol. Evol. 2010, 1, 151–157. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Newcastle, UK, 2005. [Google Scholar]
- Hammer, Ø. PAST Paleontological Statistics Version 3.14: Reference Manual; University of Oslo: Oslo, Norway, 2016. [Google Scholar]
- Skłodowski, P.; Bielska, A. Właściwości i urodzajność gleb Polski-podstawą kształtowania relacji rolno-środowiskowych. Woda-Śr.-Obsz. Wiej. 2009, 9, 203–214. [Google Scholar]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Hayati, D.; Ranjbar, Z.; Karami, E. Measuring Agricultural Sustainability. In Sustainable Agriculture Reviews; Springer Nature: Berlin/Heidelberg, Germany, 2010; pp. 73–100. [Google Scholar]
- Feledyn-Szewczyk, B.; Kopiński, J. The comparison of sustainability of agricultural production of organic and conventional farms using the RISE model. J. Res. Appl. Agric. Eng. 2015, 60, 28–32. [Google Scholar]
- Rodrigues, G.S.; Rodrigues, I.A.; de Almeida Buschinelli, C.C.; de Barros, I. Integrated farm sustainability assessment for the environmental management of rural activities. Environ. Impact Assess. Rev. 2010, 30, 229–239. [Google Scholar] [CrossRef]
- McGlone, J.J. Farm animal welfare in the context of other society issues: Toward sustainable systems. Livest. Sci. 2001, 72, 75–81. [Google Scholar] [CrossRef]
- Broom, D.M. Animal Welfare: An Aspect of Care, Sustainability, and Food Quality Required by the Public. J. Vet. Med. Educ. 2010, 37, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Schader, C.; Grenz, J.; Meier, M.S.; Stolze, M. Scope and precision of sustainability assessment approaches to food systems. Ecol. Soc. 2014, 19, 1–15. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2009, 9, 189–212. [Google Scholar] [CrossRef]
- Marchand, F.; Debruyne, L.; Triste, L.; Gerrard, C.; Padel, S.; Lauwers, L. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- De Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.A.G.; Bokkers, E.A.M.; de Boer, I.J.M. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Niggli, U. Sustainability of organic food production: Challenges and innovations. Proc. Nutr. Soc. 2014, 74, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Meng, J.; Bo, W.; Cheng, D.; Li, Y.; Guo, L.; Li, C.; Zheng, Y.; Liu, M.; Ning, T.; et al. Biodiversity management of organic farming enhances agricultural sustainability. Sci. Rep. 2016, 6, 23816. [Google Scholar] [CrossRef]
- Pacini, C.; Wossink, A.; Giesen, G.; Vazzana, C.; Huirne, R. Evaluation of sustainability of organic, integrated and conventional farming systems: A farm and field-scale analysis. Agric. Ecosyst. Environ. 2003, 95, 273–288. [Google Scholar] [CrossRef]
- Rasul, G.; Thapa, G.B. Sustainability of ecological and conventional agricultural systems in Bangladesh: An assessment based on environmental, economic and social perspectives. Agric. Syst. 2004, 79, 327–351. [Google Scholar] [CrossRef]
- Fedele, A.; Mazzi, A.; Niero, M.; Zuliani, F.; Scipioni, A. Can the Life Cycle Assessment methodology be adopted to support a single farm on its environmental impacts forecast evaluation between conventional and organic production? An Italian case study. J. Clean. Prod. 2014, 69, 49–59. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Kopinski, J. Ocena zrównoważenia produkcji rolniczej w gospodarstwach uczestniczących w programie rolnośrodowiskowym za pomocą modelu RISE. Rocz. Naukowe SERIA 2015, 17, 45–51. [Google Scholar]
- Kuś, J. Produkcyjne i środowiskowe następstwa specjalizacji gospodarstw rolniczych. Stud. Rap. IUNG-PIB 2012, 29, 103–120. [Google Scholar]
- Stein-Bachinger, K.; Reckling, M.; Grandstedt, A. Volume I: Farming Guidelines. In Ecological Recycling Agriculture. Guidelines for Farmers and Advisors; Nikola Acuti: Berlin, Germany, 2013; p. 136. ISBN 978-3-00-042440-3. Available online: http://www.beras.eu/implementation/images/pdf/farming_guidelines.pdf (accessed on 29 May 2018).
- Anderson, R.L. Managing weeds with a dualistic approach of prevention and control. A review. Agron. Sustain. Dev. 2007, 2, 13–18. [Google Scholar] [CrossRef]
- Armengot, L.; José-María, L.; Chamorro, L.; Sans, F.X. Weed harrowing in organically grown cereal crops avoids yield losses without reducing weed diversity. Agron. Sustain. Dev. 2013, 33, 405–411. [Google Scholar] [CrossRef]
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Chikowo, R.; Faloya, V.; Petit, S.; Munier-Jolain, N.M. Integrated Weed Management systems allow reduced reliance on herbicides and long-term weed control. Agric. Ecosyst. Environ. 2009, 132, 237–242. [Google Scholar] [CrossRef]
- Davies, D.H.K.; Welsh, J.P. Weed control in organic cereals and pulses. In Organic Cereals and Pulses: Papers Presented at Conferences Held at the Heriot-Watt University, Edinburgh, and at Cranfield University Silsoe Campus, Bedfordshire, 6 and 9 November 2001; Younie, D., Taylor, B.R., Welch, J.M., Wilkinson, J.M., Eds.; Chalcombe Publications: Southampton, UK, 2002; Chapter 5; pp. 77–114. [Google Scholar]
- Kolb, L.N.; Gallandt, E.R. Weed management in organic cereals: Advances and opportunities. Org. Agric. 2012, 2, 23–42. [Google Scholar] [CrossRef]
- Olesen, J.; Trnka, M.; Kersebaum, K.; Skjelvåg, A.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Valentinov, V. Why are cooperatives important in agriculture? An organizational economics perspective. J. Inst. Econ. 2007, 3, 55–69. [Google Scholar] [CrossRef]
- Boller, E.F.; Häni, F.; Poehling, H.-M. Ecological Infrastructures: Ideabook on Functional Biodiversity at the Farm Level; Landwirtschaftliche Beratungszentrale Lindau (LBL): Berkeley, CA, USA, 2004. [Google Scholar]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity â ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Finley, L.; Chappell, M.J.; Thiers, P.; Moore, J.R. Does organic farming present greater opportunities for employment and community development than conventional farming? A survey-based investigation in California and Washington. Agroecol. Sustain. Food Syst. 2017, 42, 552–572. [Google Scholar] [CrossRef]
- Reder, H.; Redelberger, H.; Schmidt, S. Volume II: Economic Guidelines. In Ecological Recycling Agriculture. Guidelines for Farmers and Advisors; Nikola Acuti: Berlin, Germany, 2013; p. 64. Available online: http://beras.eu/wp-content/uploads/2013/08/new-farming-guidelines.pdf (accessed on 15 January 2018).
- Jonczyk, K.; Stalenga, A.; Heinonen, S.; Koreleska, E. Volume III: Marketing Guidelines. In Ecological Recycling Agriculture. Guidelines for Farmers and Advisors; Nikola Acuti: Berlin, Germany, 2013; p. 48. Available online: http://beras.eu/wp-content/uploads/2013/08/new-farming-guidelines.pdf (accessed on 15 January 2018).
- Koker, W.; Stein-Bachinger, K. Volume IV: Farm examples. In Ecological Recycling Agriculture. Guidelines for Farmers and Advisors; Nikola Acuti: Berlin, Germany, 2013; p. 88. Available online: http://beras.eu/wp-content/uploads/2013/08/new-farming-guidelines.pdf (accessed on 15 January 2018).
Theme | Indicators | Theme | Indicators |
---|---|---|---|
1. Soil use | 1.1. Soil management 1.2. Crop productivity 1.3. Soil organic matter 1.4. Soil reaction 1.5. Soil erosion 1.6. Soil compaction | 6. Biodiversity | 6.1. Biodiversity management 6.2. Ecological infrastructures 6.3. Distribution of ecological infrastructures 6.4. Intensity of agricultural production 6.5. Diversity of agricultural production |
2. Animal husbandry | 2.1. Herd management 2.2. Livestock productivity 2.3. Opportunity forspecies-appropriate behaviour 2.4. Living conditions 2.5. Animal health | 7. Working conditions | 7.1. Personnel management 7.2. Working times 7.3. Safety at work 7.4. Wage and income levels |
3. Material use & environmental protection | 3.1. Material flows 3.2. Fertilization 3.3. Plant protection 3.4. Air pollution 3.5. Soil and water pollution | 8. Quality of life | 8.1. Occupation and education 8.2. Financial situation 8.3. Social relations 8.4. Personal freedom and values 8.5. Health 8.6. Other aspects of life |
4. Water use | 4.1. Water management 4.2. Water supply 4.3. Water use intensity 4.4. Irrigation | 9. Economic viability | 9.1. Liquidity 9.2. Profitability 9.3. Stability 9.4. Indebtedness 9.5. Livelihood security |
5. Energy and climate | 5.1. Energy management 5.2. Energy intensity ofagricultural production 5.3. Greenhouse gas balance | 10. Farm management | 10.1. Business goals, strategy, implementation 10.2. Availability of information 10.3. Risk management 10.4. Resilient relationships |
6. Biodiversity | Valuation Scheme |
---|---|
6.1 Biodiversity management
|
|
6.2 Ecological Infrastructures Share of AA (optionally whole farm area) with high ecological value (planar, linear, and point structures). | 17% = 100 pts. 0% = 0 pts. Contribution of the farm to UN Nagoya biodiversity goal. |
6.3 Distribution of ecological infrastructures
|
|
6.4 Intensity of agricultural production
|
|
6.5 Diversity of agricultural production
| 100 pts. when
|
Item | Tested Farms (Mean Lublin Region) | |
---|---|---|
Organic | Conventional | |
Agricultural area (AA) (ha), including: | 27.2 (18.5) | 49.7 (38.8) |
arable lands | 20.3 (14.4) | 37.3 (32.5) |
grasslands | 7.2 (2.3) | 15.9 (4.1) |
permanent crops | 0.8 (0.0) | 0 (0.0) |
Cropping pattern (%), including: | ||
cereals | 59.0 | 73.3 |
mixture of cereals and legumes | 9.8 | 2.0 |
industrial crops (sugar beet, rape) | 0 | 7.8 |
fodder crops on arable lands | 3.9 | 8.1 |
remaining crops | 27.3 | 8.7 |
Catch crops (% AA of farm in winter) | 14.5 | 26.5 |
Livestock density (large unit per ha AA) (LU/ha) | 0.13 | 0.54 |
Item | Type of Farms | |
---|---|---|
Organic | Conventional | |
Livestock density for farms with livestock (LU/ha AA) | 0.21 | 1.10 |
N input (kg/ha AA): | 54.5 | 144.3 |
from mineral fertilizers | 1.0 | 59.5 |
from manure | 6.7 | 32.8 |
from legumes, N input from air | 46.9 | 52.0 |
P input kg/ha AA: | 2.1 | 15.8 |
from mineral fertilizers | 0 | 6.7 |
from manure | 1.9 | 9.1 |
from imported organic fertilizers | 0.2 | 0 |
N balance (%) | 134 | 143 |
P balance (%) | 27 | 66 |
N balance (kg/ha AA) | 12 | 49 |
P balance (kg/ha AA) | −8 | −3 |
Number of chemical plant protection measures in cereals | 0 | 0.9 |
Yields of cereals and their mixture (t/ha AA) | 2.0 | 3.1 |
GHG emissions (t/ha/year CO2-eq.) | 0.9 | 2.7 |
Number of family members employed (full-employment person according to RISE method) | 1.8 | 1.6 |
Number of employees | 0 | 0.5 |
Total employment per ha | 0.06 | 0.04 |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
1. Soil use | 70 (64–77) | 73 (58–84) | 0.165 |
1.1. Soil management | 67 (50–100) | 84 (50–100) | 0.393 |
1.2. Crop productivity | 54 (16–94) | 77 (42–100) | 0.123 |
1.3. Soil organic matter | 84 (50–98) | 81 (56–90) | 0.436 |
1.4. Soil reaction | 3 (0–50) | 3 (0–70) | 0.912 |
1.5. Soil erosion | 100 (84–100) | 100 (100–100) | 0.739 |
1.6. Soil compaction | 100 (70–100) | 100 (30–100) | 0.280 |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
2. Animal husbandry | 73 (61–84) | 77 (53–94) | 0.613 |
2.1. Herd management | 50 (33–100) | 67 (33–100) | 0.867 |
2.2. Livestock productivity | 43 (18–56) | 72 (22–100) | 0.072 |
2.3. Opportunity for species-appropriate behavior | 74 (45–100) | 67 (53–100) | 0.189 |
2.4. Living conditions | 97 (83–100) | 89 (69–100) | 0.397 |
2.5. Animal health | 92 (83–100) | 90 (67–95) | 0.152 |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
3. Materials use & environmental protection | 75 (55–87) | 73 (69–81) | 0.796 |
3.1. Material flows | 81 (63–88) | 77 (50–93) | 0.190 |
3.2. Fertilization | 43 (0–79) | 64 (48–69) | 0.089 |
3.3. Plant protection | 75 (25–100) | 50 (25–100) | 0.218 |
3.4. Air pollution | 77 (56–88) | 77 (65–85) | 1.000 |
3.5. Soil and water pollution | 97 (94–100) | 97 (86–99) | 0.190 |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
4. Water use | 76 (70–87) | 74 (66–93) | 0.393 |
4.1. Water management | 37 (21–67) | 37 (10–91) | 1.000 |
4.2. Water supply | 100 (100–100) | 100 (100–100) | 1.000 |
4.3. Water use intensity | 91 (76–97) | 87 (78–97) | 0.481 |
4.4. Irrigation | 94 (88–100) | No irrigation |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
5. Energy & Climate | 81 (57–91) | 77 (44–91) | 0.481 |
5.1. Energy management | 64 (18–77) | 58 (25–100) | 0.684 |
5.2. Energy intensity of agricultural production | 94 (7–100) | 94 (78–100) | 0.912 |
5.3. Greenhouse gas balance | 100 (67–100) * | 89 (11–100) * | 0.043 |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
6. Biodiversity | 67 (46–76) * | 56 (24–70) * | 0.043 |
6.1. Biodiversity management | 72 (37–83) | 56 (33–73) | 0.123 |
6.2. Ecological infrastructures | 88 (29–100) | 74 (0–100) | 0.481 |
6.3. Distribution of ecological infrastructures | 33 (15–80) | 18 (5–70) | 0.089 |
6.4. Intensity of agricultural production | 99 (92–100) * | 76 (47–97) * | <0.001 |
6.5. Diversity of agricultural production | 31 (25–72) | 29 (13–48) | 0.165 |
On-Farm Biodiversity Indices | RISE Biodiversity Theme and Indicators | ||||||
---|---|---|---|---|---|---|---|
Biodiversity | Biodiversity Management | Ecological Infrastructu-Res | Distribution of Ecological Infrastructu-Res | Intensity of Agricultural Production | Diversity of Agricultural Production | ||
Orthoptera | N ** | 0.31 | 0.25 | 0.33 | 0.32 | 0.45 * | −0.11 |
N | 0.21 | 0.32 | 0.34 | 0.12 | 0.38 | 0.03 | |
H′ | 0.31 | 0.03 | 0.26 | 0.45 * | 0.48 * | 0.01 | |
Weeds | N | 0.66 * | 0.28 | 0.42 | 0.71 * | 0.69 * | 0.22 |
n | 0.41 | 0.24 | 0.30 | 0.58 * | 0.35 | 0.03 | |
H′ | 0.63 * | 0.12 | 0.48 * | 0.70 * | 0.56 * | 0.33 | |
Soil seed bank | N | 0.66 * | 0.14 | 0.41 | 0.61 * | 0.67 * | 0.46 * |
n | 0.63 * | 0.23 | 0.40 | 0.65 * | 0.66 * | 0.39 | |
H′ | 0.63 * | 0.12 | 0.41 | 0.59 * | 0.57 * | 0.45 * |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
7. Working conditions | 66 (53–77) | 69 (55–77) | 0.853 |
7.1. Personnel management | 83 (56–89) | 80 (67–89) | 0.684 |
7.2. Working hours | 50 (13–79) | 59 (38–83) | 0.353 |
7.3. Safety at work | 80 (75–100) | 80 (62–92) | 0.529 |
7.4. Wage and income levels | 53 (13–75) | 50 (19–72) | 1.000 |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
8. Quality of life | 67 (54–84) | 73 (31–85) | 0.481 |
8.1. Occupation & training | 75 (50–92) | 83 (25–100) | 0.315 |
8.2. Financial situation | 57 (38–100) | 63 (13–100) | 0.684 |
8.3. Social relations | 88 (63–100) | 82 (63–100) | 0.796 |
8.4. Personal freedom & values | 58 (25–75) | 50 (0–83) | 0.796 |
8.5. Health | 69 (38–88) | 69 (25–88) | 0.853 |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
9. Economic viability | 64 (40–100) | 79 (34–99) | 0.481 |
9.1. Liquidity | 50 (0–100) | 63 (25–100) | 0.912 |
9.2. Profitability | 88 (50–100) | 94 (38–100) | 0.579 |
9.3. Stability | 66 (44–100) | 72 (25–100) | 0.631 |
9.4. Indebtedness | 79 (0–100) | 96 (33–100) | 0.315 |
9.5. Livelihood security | 69 (38–100) | 75 (38–100) | 0.481 |
Theme and Indicators | Organic | Conventional | p-Value |
---|---|---|---|
10. Farm management | 83 (58–97) | 86 (58–94) | 0.631 |
10.1. Business goals, strategy, implementation | 82 (65–100) | 86 (54–92) | 0.739 |
10.2. Availability of information | 77 (43–89) | 76 (33–85) | 0.796 |
10.3. Risk management | 100 (50–100) | 100 (11–100) | 0.315 |
10.4. Resilient relationships | 75 (63–100) * | 100 (92–100) * | <0.001 |
Indicator | Organic Farms | Conventional Farms | Examples from Literature |
---|---|---|---|
1. Soil use |
| [48,49] | |
2. Animal husbandry |
| [49] | |
3. Material use & environmental protection |
|
| [50,51,52,53,54,55] |
| |||
4. Water use |
| [56] | |
5. Energy & Climate |
| [57] | |
6. Biodiversity |
|
| [43,58,59] |
| [43] | ||
7. Working conditions |
| [60] | |
8. Quality of life |
|
| [41] |
| |||
9. Economic viability |
|
| [61] |
| |||
10. Farm management |
|
| [62] |
| [63] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berbeć, A.K.; Feledyn-Szewczyk, B.; Thalmann, C.; Wyss, R.; Grenz, J.; Kopiński, J.; Stalenga, J.; Radzikowski, P. Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System. Sustainability 2018, 10, 1792. https://doi.org/10.3390/su10061792
Berbeć AK, Feledyn-Szewczyk B, Thalmann C, Wyss R, Grenz J, Kopiński J, Stalenga J, Radzikowski P. Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System. Sustainability. 2018; 10(6):1792. https://doi.org/10.3390/su10061792
Chicago/Turabian StyleBerbeć, Adam Kleofas, Beata Feledyn-Szewczyk, Christian Thalmann, Rebekka Wyss, Jan Grenz, Jerzy Kopiński, Jarosław Stalenga, and Paweł Radzikowski. 2018. "Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System" Sustainability 10, no. 6: 1792. https://doi.org/10.3390/su10061792
APA StyleBerbeć, A. K., Feledyn-Szewczyk, B., Thalmann, C., Wyss, R., Grenz, J., Kopiński, J., Stalenga, J., & Radzikowski, P. (2018). Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System. Sustainability, 10(6), 1792. https://doi.org/10.3390/su10061792