Effect of Marine Microorganisms on Limestone as an Approach for Calcareous Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Microbial Groups from Algaenzims®
2.2. Strain Isolation, Propagation and First Characterization
2.3. Limestone Pretreatment
2.4. Microbial Treatments
2.5. Limestone Soil Assessments
3. Results
3.1. Isolation of Microbial Groups from Algaenzims®
3.2. Microbial Counts
3.3. Quantification of Ca, Mg and K in Leachates
3.4. Limestone Soil Assessments
4. Discussion
4.1. Isolation of Microbial Groups from Algaenzims®
4.2. Microbial Counts in the Treatments
4.3. Quantification of Ca, Mg and K in Leachates
4.4. Limestone Soil Assessments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karlen, D.L.; Rice, C.W. Soil degradation: Will humankind ever learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization. Calcareous Solis. FAO Soils Bulletin #21. Available online: http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/calcareous-soils/en/ (accessed on 4 June 2018).
- Villarreal, S.J.A. Búsqueda del Principio Activo del Extracto de Algas Marinas AlgaenzimsMR—Biotratamiento Agrícola. Master’s Thesis, Chemistry School, Universidad Autónoma de Coahuila, Saltillo, Mexico, May 2003. [Google Scholar]
- Bach, E.M.; Baer, S.G.; Clinton, K.M.; Six, J. Soil texture and soil microbial structural recovery during grassland restoration. Soil Biol. Biochem. 2010, 42, 2182–2191. [Google Scholar] [CrossRef]
- Li, Z.; Schneider, R.L.; Morreale, S.J.; Xie, Y.; Li, C.; Li, J. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma 2018, 310, 143–152. [Google Scholar] [CrossRef]
- Canales, L.B. Enzimas-algas: Posibilidades de su uso para estimular la producción agrícola y mejorar los suelos. Terra 2000, 17, 271–276. [Google Scholar]
- Clarholm, M.; Skyllberg, U. Translocation of metals by trees and fungi Regulates pH, soil organic matter and nitrogen turnover in acidic forest soils availability. Soil Biol. Biochem. 2013, 142, 142–153. [Google Scholar] [CrossRef]
- Elein, T.A.; Leyva, A.; Hernandez, A. Benefical microorganisms as efficient biofertilizers for tomato crops (Lycopersicon esculentum Mill). Colomb. J. Biotechnol. 2005, 7, 47–54. [Google Scholar] [CrossRef]
- Padilla, E.; Esqueda, M.; Sánchez, A.; Troncoso-Rojas, R.; Sánchez, A. Effect of biofertilizers on cantaloupe crop with plastic mulching. Rev. Fitotec. Mex. 2006, 29, 321–329. [Google Scholar]
- Alvarez, S.J.D.; Anzueto-Martinez, J.M. Soil microbial activity under different cropping system corn in the highlands of Chiapas, Mexico. Agrociencia 2004, 38, 13–22. [Google Scholar]
- Trejo, A.D.; Lara, L.; Zulueta, R.; Lopez, H.; Moreira, C.E. Agricultura Microbiológica y Productividad Sostenible. La Ciencia y el Hombre, 2005. Available online: https://www.uv.mx/cienciahombre/revistae/vol18num3/articulos/microbiologia (accessed on 4 June 2018).
- Olalde, P.V.; Aguilera, L.I. Microorganisms and biodiversity. Terra Latinoam. 1998, 16, 289–292. [Google Scholar]
- Villarreal, S.J.A.; Ilina, A.; Mendez, L.P.; Robledo, V.; Herrera, R.; Canales, B.; Rodriguez, J.L. Isolation of microbial groups from a seaweed extract and comparison of their effect on a growth culture of pepper (Capsicum annuum L.). Becth Mock 2003, 44, 92–96. [Google Scholar]
- Celis, R.; Koskinen, W.C.; Hermosin, M.C.; Cornejo, J. Sorption and desortion of triadimefon by soils and model soil colloids. J. Agric. Food Chem. 1999, 47, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Kuyukina, M.S.; Ivshina, I.B.; Makarov, S.O.; Litvinenko, L.V.; Cunningham, C.J.; Philp, J.C. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ. Int. 2005, 31, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.; Lee, C.-H.; Ahn, I.-S.; Mhin, B.J. Analysis of the adhesion of Pseudomonas putida NCIB 9816-4 to a silica gel as a model soil using extended DLVO theory. J. Hazard. Mater. 2010, 179, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Social Security Administration. NOM-092-SSA1-1994: Método Para la Cuenta de Bacterias aerobias en Placa; Norma Oficial Mexicana: Mexico City, Mexico, 1994.
- Social Security Administration. NOM-111-SSA1-1994: Método Para la Cuenta de Mohos y Levaduras en Alimento; Norma Oficial Mexicana: Mexico City, Mexico, 1994.
- Lu, L.; Liu, C.; Li, X.; Ran, Y. Mapping the soil texture in the Heihe River basin based on fuzzy logic and data fusion. Sustainability 2017, 9, 1246. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 2nd ed.; Agronomy Monograph No. 9; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar] [CrossRef]
- Hang, S.; Sereno, R. Adsorción de atrazina y su relación con las características sedimentológicas y el desarrollo del perfil de dos suelos de la provincia de Córdoba. Rev. Investig. Agropecu. 2002, 31, 73–87. Available online: www.redalyc.org/pdf/864/86431306.pdf (accessed on 4 June 2018).
- Motsara, M.R.; Roy, R.N. Guide to Laboratory, Establishment for Plant Nutrient Analysis; Food and Agriculture Organization: Rome, Italy, 2008; ISSN 0259-2495. [Google Scholar]
- Howard, P.J.A.; Howard, D.M.; Lowe, L.E. Effects of tree species and soil physicochemical conditions on the nature of soil organic matter. Soil Biol. Biochem. 1998, 30, 285–297. [Google Scholar] [CrossRef]
- Cetina, A.; Matos, A.; Garma, G.; Barba, H.; Vázquez, R.; Zepeda-Rodríguez, A.; Jay, D.; Monteón, V.; López-A, R. Actividad antimicrobiana de bacterias marinas aisladas del Golfo de México. Rev. Peru. Biol. 2010, 17, 231–236. [Google Scholar] [CrossRef]
- Belkin, S.H.; Colwell, R.R. Oceans and Health: Pathogens in the Marine Environment; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Pucci, G.; Acuna, A.; Llanes, M.L.; Tiedemann, M.C.; Pucci, O.H. Diversity of cultivable bacteria from the coast of Caleta Olivia, Patagonia, Argentina. Acta Biol. Colomb. 2009, 14, 121–134. [Google Scholar]
- Muñoz-Simon, N. Benthic Marine Cyanobacteria in the Caribbean and South Central Costa Rica. REVMAR-Rev. Cienci. Mar. Y Costeras 2012, 4, 13–32. [Google Scholar]
- Odisi, E.J.; Bruschi, M.; Uwamori, R.Y.; Castro, M.A.; Oliveira, A. Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electron. J. Biotechnol. 2012, 15. [Google Scholar] [CrossRef]
- Henao-Castro, A.N.; Comba-González, N.; Alvarado, E.M.; Santamaría, J. Bacterias autótrofas y heterótrofas asociadas a nieve marina lodosa en arrecifes con escorrentía continental. Univ. Sci. 2015, 20, 9–16. [Google Scholar] [CrossRef]
- León, J.; Liza, L.; Soto, I.; Cuadra, D.L.; Patiño, L.; Zerpa, R. Bioactives actinomycetes of marine sediment from the central coast of Peru. Rev. Peru. Biol. 2007, 14, 259–270. [Google Scholar] [CrossRef]
- Rosenberg, E.; Gophna, U. Beneficial Microorganisms in Multicellular Life Forms, 1st ed.; Springer: Berlin, Germany, 2011; ISBN 978-3-642-21680-0. [Google Scholar]
- Ertola, R.; Yantorno, O.; Mignone, C. Microbiología Industrial; Organización de los Estados Americanos: Washington, DC, USA, 2006; Available online: http://sgpwe.izt.uam.mx/files/users/uami/favela/Microbiologia_Industrial_Libro.pdf (accessed on 4 June 2018).
- Schneegurt, M.A. Media and conditions for the growth of halophilic and halotolerant bacteria and archaea. In Advances in Understanding the Biology of Halophilic Microorganisms; Springer Science + Business Media: Dordrecht, The Netherlands, 2012; pp. 35–58. ISBN 978-94-007-5538-3. [Google Scholar]
- Serrato, S.R.; Ortíz, A.; Dimas, J.; Berúmen, S. Aplicación de Lavado y Estiércol Para Recuperar Suelos Salinos en la Comarca Lagunera, México. Terra Latinoam. 2002, 20, 329–336. [Google Scholar]
- Honorato, R.P. Manual de Edafología, 4th ed.; Alfaomega: Mexico City, Mexico, 2001; ISBN 970150531X. [Google Scholar]
- Harrison-Kirk, T.; Beare, M.H.; Meenken, E.D.; Condron, L.M. Soil organic matter and texture affect responses to dry/wet cycles: Changes in soil organic matter fractions and relationships with C and N mineralization. Soil Biol. Biochem. 2014, 74, 50–60. [Google Scholar] [CrossRef]
- Fernández, A.; Villafane, R.; Hernandez, R. Water quality and its affect soils by salts in the Paraguaná peninsula, Venezuela. Agron. Trop. 2011, 61, 253–265. [Google Scholar]
- Jakab, G.; Madarázs, B.; Szabó, J.A.; Tóth, A.; Zacháry, D.; Szalai, Z.; Kertész, A.; Dyson, J. Infiltration and soil loss changes during the growing season under ploughing and conservation tillage. Sustainability 2017, 9, 1726. [Google Scholar] [CrossRef]
- Matus, F.J.; Maire, C.R. Interaction between soil organic matter, soil texture and mineralization rates of carbon and nitrogen. Agric. Téc. 2000, 60, 112–126. [Google Scholar] [CrossRef]
- Melero, S.; Madejón, E.; Herencia, J.F.; Ruiz, J.C. Biochemical properties of two different textured soils (loam and clay) after the Addition of two different composts during conversion to organic farming. Span. J. Agric. Res. 2007, 5, 593–604. [Google Scholar] [CrossRef]
- Botía-Díaz, W.A. Manual de Procedimientos de Ensayos de Suelos y Memoria de Cálculo; Universidad Militar Nueva Granada: Bogota, Colombia, 2015; Available online: https://repository.unimilitar.edu.co/bitstream/10654/6239/1/MANUAL%20DE%20PROCEDIMIENTOS%20DE%20ENSAYOS%20DE%20SUELOS.pdf (accessed on 4 June 2018).
Microbial Group | CFU mL−1 |
---|---|
Mesophilic aerobes | 4.90 × 103 |
Yeast and Molds | 5.00 × 101 |
Nitrogen fixers | 2.50 × 104 |
Halophilous | 1.00 × 103 |
Key | Microorganism or Assigned Key |
---|---|
MAB-4 | Escherichia vulneris |
MAB-5 | Enterobacter nimipressuratis |
MAB-6 | Corynebacterium nitrilophilus |
MAB-7 | Xenorhabdus nematophilus |
MAB-8 | Serratia marsecens |
MAB-9 | Hafnia alvel BioGroup 1 |
MAB-10 | Bacillus thermoglucosidasius |
NF-2 | Bacillus thermoglucosidasius |
NF-3 | Acinetobacter calcoaceticus |
NF-4 | NF-4 |
NF-5 | FN-5 |
YM-1 | Aquaspirillum dispar |
YM-2 | Brevundimimonas vesicularis |
YM-3 | YM-3 |
YM-4 | YM-4 |
HALO-1 | Bacillus thermoglucosidasius |
HALO-2 | Vibrio spp. |
HALO-3 | HALO-3 |
HALO-4 | HALO-4 |
HALO-5 | HALO-5 |
HALO-6 | HALO-6 |
HALO-7 | HALO-7 |
Treatment | Initial Count | Month 1 | Month 2 | Month 3 | Month 4 |
---|---|---|---|---|---|
T1 | 2.46 × 103 | 5.00 × 105 | 5.00 × 103 | 5.00 × 107 | 5.00 × 103 |
T2 | 3.00 × 103 | 3.70 × 105 | 1.80 × 105 | 2.50 × 105 | 5.50 × 105 |
T3 | 1.10 × 104 | 2.50 × 104 | 2.20 × 105 | 2.70 × 107 | 4.20 × 105 |
T4 | 1.26 × 104 | 2.50 × 104 | 2.50 × 103 | 2.40 × 105 | 3.90 × 105 |
Microorganism in Algaenzims | Initial Count | Month 1 | Month 2 | Month 3 | Month 4 |
---|---|---|---|---|---|
MAB | 5.00 × 101 | 5.00 × 104 | 5.00 × 105 | 5.00 × 105 | 5.00 × 103 |
YM | 4.90 × 103 | 4.50 × 105 | 2.70 × 105 | 7.10 × 105 | 6.10 × 105 |
NF | 2.50 × 104 | 5.00 × 105 | 3.30 × 105 | 2.27 × 106 | 8.00 × 105 |
HALO | 1.00 × 103 | 2.50 × 108 | 1.00 × 104 | 8.50 × 105 | 7.60 × 105 |
Treatment | Sand % | Clay % | Silt % |
---|---|---|---|
Control | 88.33 ± 4.0 | 9.26 ± 3.0 | 2.41 ± 0.7 |
T1 | 83.31 ± 1.5 | 13.09 ± 1.0 | 3.60 ± 0.4 |
T2 | 81.57 ± 1.5 | 15.00 ± 1.0 | 3.44 ± 0.8 |
T3 | 81.83 ± 1.5 | 14.32 ± 0.5 | 3.85 ± 0.4 |
T4 | 83.30 ± 1.5 | 13.30 ± 0.5 | 3.40 ± 0.3 |
T5 | 86.22 ± 3.0 | 10.80 ± 2.0 | 2.98 ± 0.1 |
Treatment | Bulk Density (g cm−3) |
---|---|
Control | 1.711 ± 0.04 |
T1 | 1.651 ± 0.05 |
T2 | 1.683 ± 0.08 |
T3 | 1.754 ± 0.06 |
T4 | 1.716 ± 0.07 |
T5 | 1.683 ± 0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villarreal Sanchez, J.A.; Diaz Jimenez, L.; Escobedo Bocardo, J.C.; Cardenas Palomo, J.O.; Guerra Escamilla, N.E.; Luna Alvarez, J.S. Effect of Marine Microorganisms on Limestone as an Approach for Calcareous Soil. Sustainability 2018, 10, 2078. https://doi.org/10.3390/su10062078
Villarreal Sanchez JA, Diaz Jimenez L, Escobedo Bocardo JC, Cardenas Palomo JO, Guerra Escamilla NE, Luna Alvarez JS. Effect of Marine Microorganisms on Limestone as an Approach for Calcareous Soil. Sustainability. 2018; 10(6):2078. https://doi.org/10.3390/su10062078
Chicago/Turabian StyleVillarreal Sanchez, Juan Antonio, Lourdes Diaz Jimenez, Jose Concepcion Escobedo Bocardo, Jose Omar Cardenas Palomo, Nereida Elizabeth Guerra Escamilla, and Jesus Salvador Luna Alvarez. 2018. "Effect of Marine Microorganisms on Limestone as an Approach for Calcareous Soil" Sustainability 10, no. 6: 2078. https://doi.org/10.3390/su10062078
APA StyleVillarreal Sanchez, J. A., Diaz Jimenez, L., Escobedo Bocardo, J. C., Cardenas Palomo, J. O., Guerra Escamilla, N. E., & Luna Alvarez, J. S. (2018). Effect of Marine Microorganisms on Limestone as an Approach for Calcareous Soil. Sustainability, 10(6), 2078. https://doi.org/10.3390/su10062078