Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models
Abstract
:1. Introduction
2. Land Use Model
2.1. Markov Chain
2.2. MLRMCA Model
2.3. MANNMCA Model
2.4. Transition Rules
2.5. Model Validation
3. Case Study: Simulating LUCC in the Zhangye Oasis, Northwest China
3.1. Datasets
3.2. Model Training
3.3. Simulation Results
3.4. Model Validation and Comparison
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A.; et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, G.D.; Li, X.; Zhao, W.Z.; Xu, Z.M.; Feng, Q.; Xiao, S.C.; Xiao, H.L. Integrated study of the water-ecosystem-economy in the Heihe River Basin. Nat. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Kang, E.S.; Xu, Z.M.; Nan, Z.T.; Zhou, J.; Han, X.J.; Wang, S.G. Digtial Heihe River Basin. 3: Model Integration. Adv. Earth Sci. 2010, 25, 851–865. (In Chinese) [Google Scholar]
- Li, X.; Cheng, G.D.; Lin, H.; Cai, X.M.; Fang, M.; Ge, Y.C.; Hu, X.L.; Chen, M.; Li, W.Y. Watershed system model: The essentials to model complex human-nature system at the river basin scale. J. Geophys. Res. Atmos. 2018, 123, 3019–3034. [Google Scholar] [CrossRef]
- Marcucci, D.J. Landscape history as a planning tool. Landsc. Urban Plan. 2000, 49, 67–81. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modeling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Wu, F.; Webster, C.J. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ. Plan. B 1998, 25, 103–126. [Google Scholar] [CrossRef]
- Wu, F. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 2002, 16, 795–818. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Neural-network-based cellular automata for simulating multiple land use change using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Yassemi, S.; Dragićević, S.; Schmidt, M. Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behavior. Ecol. Model. 2008, 210, 71–84. [Google Scholar] [CrossRef]
- Yang, Q.S.; Li, X. Calibration urban cellular automata using genetic algorithms. Geogr. Res. 2007, 26, 229–237. (In Chinese) [Google Scholar]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Han, H.R.; Yang, C.F.; Song, J.P. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Verburg, P. The Future variations of land use and land coverage in arid regions, Modeled in three scenarios of water resources. J. Glaciol. Geocryol. 2007, 29, 397–405. (In Chinese) [Google Scholar]
- Cao, X.; Luo, P.; Li, M.C.; Li, H.G.; Long, A.H. Spatio-temporal simulation of land use change based on a extended CA model: A case study of Shenzhen city, China. Resour. Sci. 2011, 33, 127–133. (In Chinese) [Google Scholar]
- Veldkamp, A.; Lambin, E.F. Prediction land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Weng, Q.H. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Serneels, S.; Lambin, E.F. Proximate causes of land use change in Narok district Kenya: A spatial statistical model. Agric. Ecosyst. Environ. 2001, 85, 65–82. [Google Scholar] [CrossRef]
- Xie, C.; Huang, B.; Claramunt, C.; Chandramouli, M. Spatial logistic regression and GIS to model rural-urban land conversion. In Proceedings of the PROCESSUS Second International Colloquium on the Behavioural Foundations of Integrated Land-use and Transportation Models: Frameworks, Models and Applications, University of Toronto, Toronto, ON, Canada, 12–15 June 2005. [Google Scholar]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar] [PubMed]
- Koomen, E.; Diogo, V.; Hilferink, M.; Van der Beek, M.C.J. EuClueScanner100m Model Description and Validation Results; European Commission JRC: Brussels, Belgium, 2010. [Google Scholar]
- Pontius, R.G.; Boersma, W.; Castella, J.C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Hu, X.L.; Lu, L.; Li, X.; Wang, J.H.; Guo, M. Land use/cover change in the middle reaches of the Heihe River Basin over 2000–2011 and its implications for sustainable water resource management. PLoS ONE 2015, 10, e0128960. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Liu, M.L.; Tian, H.Q.; Zhuang, D.F.; Zhang, Z.X.; Zhang, W.; Tang, X.M.; Deng, X.Z. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; He, C.Y. Scenario simulation and forecast of land use/cover in northern China. Chin. Sci. Bull. 2008, 53, 1401–1412. [Google Scholar] [CrossRef]
- Liu, X.P.; Li, X.; Zhang, X.H.; Chen, G.Q.; Li, S.Y.; Chen, Y.M. Embedding urban planning objective by integrated artificial immune system and cellular automata. Acta Geogr. Sin. 2008, 63, 882–894. (In Chinese) [Google Scholar]
- Wang, F. The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environ. Plan. A 1994, 26, 265–284. [Google Scholar] [CrossRef]
- Guan, D.J.; Li, H.F.; Inohae, T.; Su, W.C.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B 1997, 24, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Dietzel, C.; Clarke, K. The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. Comput. Environ. Urban 2006, 30, 78–101. [Google Scholar] [CrossRef]
Category | Data | Calculation Method |
---|---|---|
Land use | Land use data (2000 and 2011) | Land use maps were generated using the visual interpretation method based on Landsat TM/ETM+ images. |
Distance-based variables | Distance to town | The distance raster maps were generated using the distance analysis function of the Spatial Analysis module in ArcGIS. The distance data for each cell were read from the distance raster maps. |
Distance to village | ||
Distance to road | ||
Distance to river | ||
Distance to channel | ||
Neighborhood conditions | Amount of cropland | where N(Cmn, l) is the effect of the lth type of land use on the center cell Cmn in the window, classij is the land use type in cell Cij. If the land use type in cell Cij is l, then classij = 1; otherwise classij = 0. The calculation of neighborhood effects was realized using Matlab. |
Amount of forestland | ||
Amount of grassland | ||
Amount of water body | ||
Amount of built-up land | ||
Amount of wetland | ||
Amount of desert | ||
Topography | Elevation | DEM with 90 m resolution was come from the Shuttle Radar Topography Mission (SRTM) spearheaded by NASA and NIMA (ftp://e0mss21u.ecs.nasa.gov/srtm/). Slope and aspect data were extracted based on the DEM. |
Slope | ||
Aspect | ||
Socio-economic | Population density | The population density with 25 m by 25 m resolution was obtained from the Environmental and Ecological Science Data Center for West China (http://westdc.westgis.ac.cn). The population data of each cell were read from the raster maps. |
Types | Actual Change | Simulated Change | Different between Simulated and Observed Change | |||
---|---|---|---|---|---|---|
Number | Percentage | Number | Percentage | Number | Percentage | |
Cropland | 25539 | 11.97% | 24864 | 11.66% | −675 | −0.32% |
Forestland | 962 | 7.16% | 818 | 6.09% | −144 | −1.07% |
Grassland | −6926 | −6.25% | −6514 | −5.88% | 412 | 0.37% |
Water body | −1325 | −8.61% | −1230 | −7.99% | 95 | 0.62% |
Built-up land | 3160 | 24.05% | 3280 | 24.97% | 120 | 0.91% |
Wetland | −73 | −0.46% | −79 | −0.5% | −6 | −0.04% |
Desert | −21337 | −3.11% | −21139 | −3.08% | 198 | 0.03% |
Actual Land Use in 2011 | Simulated Land Use in 2011 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cropland | Forestland | Grassland | Water Body | Built-Up Land | Wetland | Desert | Total | PA (%) | |
Cropland | 213,635 | 2565 | 4681 | 631 | 2704 | 927 | 13,690 | 238,833 | 89.45 |
Forestland | 1661 | 8252 | 1725 | 65 | 28 | 187 | 2477 | 14,395 | 57.33 |
Grassland | 6015 | 1839 | 81,202 | 423 | 9 | 1177 | 13,158 | 103,823 | 78.21 |
Water Body | 416 | 238 | 462 | 11,773 | 6 | 410 | 764 | 14,069 | 83.68 |
Built-Up Land | 2168 | 17 | 43 | 3 | 13,610 | 15 | 442 | 16,298 | 83.51 |
Wetland | 1363 | 34 | 571 | 538 | 40 | 12,291 | 841 | 15,678 | 78.40 |
Desert | 12,900 | 1305 | 15,551 | 731 | 21 | 665 | 634,227 | 665,400 | 95.32 |
Total | 238,158 | 14,205 | 104,235 | 14,164 | 16,418 | 15,672 | 665,599 | 1,068,496 | |
UA (%) | 89.70 | 57.91 | 77.90 | 83.12 | 82.90 | 78.43 | 95.29 |
Actual Land Use in 2011 | Simulated Land Use in 2011 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cropland | Forestland | Grassland | Water Body | Built-Up Land | Wetland | Desert | Total | PA (%) | |
Cropland | 215,943 | 2997 | 2910 | 598 | 1781 | 844 | 13,760 | 238,833 | 90.42 |
Forestland | 1492 | 9320 | 1503 | 66 | 73 | 66 | 1875 | 14,395 | 64.74 |
Grassland | 5040 | 1262 | 85,984 | 418 | 468 | 1002 | 9649 | 103,823 | 82.82 |
Water Body | 498 | 62 | 160 | 11,714 | 7 | 800 | 828 | 14,069 | 83.26 |
Built-Up Land | 1991 | 9 | 17 | 3 | 13,687 | 51 | 540 | 16,298 | 83.98 |
Wetland | 1708 | 68 | 190 | 687 | 43 | 11,643 | 1339 | 15,678 | 74.26 |
Desert | 11,486 | 533 | 13,471 | 678 | 359 | 1266 | 637,607 | 665,400 | 95.82 |
Total | 238,158 | 14,251 | 104,235 | 14,164 | 16,418 | 15,672 | 665,598 | 1,068,496 | |
UA (%) | 90.67 | 65.40 | 82.49 | 82.70 | 83.37 | 74.29 | 95.79 |
Model | Cropland | Forestland | Grassland | Water Body | Built-Up Land | Wetland | Desert | Overall |
---|---|---|---|---|---|---|---|---|
MLRMCA | 32.17 | 4.06 | 2.12 | 0.00 | 14.44 | 3.40 | 1.43 | 12.56 |
MANNMCA | 32.93 | 1.22 | 21.51 | 0.85 | 16.79 | 3.89 | 20.04 | 22.32 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Li, X.; Lu, L. Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models. Sustainability 2018, 10, 2878. https://doi.org/10.3390/su10082878
Hu X, Li X, Lu L. Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models. Sustainability. 2018; 10(8):2878. https://doi.org/10.3390/su10082878
Chicago/Turabian StyleHu, Xiaoli, Xin Li, and Ling Lu. 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models" Sustainability 10, no. 8: 2878. https://doi.org/10.3390/su10082878
APA StyleHu, X., Li, X., & Lu, L. (2018). Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models. Sustainability, 10(8), 2878. https://doi.org/10.3390/su10082878