Production of Pig Feed under Future Atmospheric CO2 Concentrations: Changes in Crop Content and Chemical Composition, Land Use, Environmental Impact, and Socio-Economic Consequences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Assessment (LCA) Model
2.2. LCA System Boundary
2.3. Feed Formulation and Life Cycle Inventory (LCI)
2.3.1. Formulation of Present and Future Pig Feed
2.3.2. Life Cycle Inventory (LCI) Data for Crop and Non-Crop Ingredients
Crop Ingredients
Industrial Amino Acids
Enzymes
Other Ingredients
2.4. Land-Use Changes (LUC)
2.4.1. Land Conversion: Determination of the Area and Geographical Location (Steps i and ii)
2.4.2. Environmental Consequences of Land Conversion
- 25% of the carbon in the soil is released as CO2 for all types of land-use conversion, except when forests are converted to grassland, where 0% is released;
- 100% of the carbon in vegetation is released as CO2 for all of the forest types as well as for tropical grassland conversions, while 0% is released for the remaining biome types (e.g., shrub land, non-tropical grassland, chaparral).
2.5. Direct Cost
3. Results and Discussion
3.1. Changes in Crops’ Chemical Composition and in the Compound Feed Formulation
3.2. Environmental Impact
3.3. Direct Cost
3.4. External Environmental Cost
3.5. Limits and Uncertainties
4. Conclusions
- A methodological framework was developed in order to assess the cascading environmental consequences that a change in crop yield and chemical composition (triggered by an increase in atmospheric CO2) can have for pig feed formulation, including land-use change consequences.
- The positive environmental effect of elevated CO2 on crop yield (carbohydrates) was counterbalanced by a need for increased soy content in pig feed, and the land-use that consequences this generated. Therefore, the net effects are close to zero.
- The four most important environmental impact categories in pig feed production under current and future atmospheric CO2, as determined by the stepwise normalization methodology, were human toxicity in terms of non-carcinogenic toxicity and respiratory inorganics, natural occupation, and global warming.
- The monetized environmental impact (shadow price) of compound pig feed produced today (€236.05 per tonne) was found to be of the same order of magnitude as the direct price of compound pig feed (€250.39 per tonne). Internalizing the cost of environmental impacts would nearly double the price of pig feed if the Rio Declaration was to be honored.
- Since the protein crops (soy, rape, and sunflower) account for about 60% of the overall environmental impact of pig feed, it is important to optimize their content in a future with expected growing demands for food and bioenergy (and thus for land). In this context, it is important to optimize the protein content in the feed based on the limiting amino acids in each crop rather than on total protein.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Högy, P.; Wieser, H.; Köhler, P.; Schwadorf, K.; Breuer, J.; Franzaring, J.; Muntefering, R.; Fangmeier, A. Effects of elevated CO2 on grain yield and quality of wheat: Results from a 3-year free-air CO2 enrichment experiment. Plant Biol. 2009, 11, 60–69. [Google Scholar] [CrossRef]
- Smith, M.R.; Myers, S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Chang. 2018, 8, 834–839. [Google Scholar] [CrossRef]
- International Grain Council. Grain Marked Report. 2018, pp. 1–8. Available online: http://www.igc.int/downloads/gmrsummary/gmrsumme.pdf (accessed on 14 August 2018).
- Steinfeld, H.; Gerber, P.; Wasssenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow; Environmental Issues and Options; FAO: Rome, Italy, 2006; pp. 1–390. [Google Scholar]
- Nellemann, C.; MacDevette, M.; Manders, T.; Eickhout, B.; Svihus, B.; Prins, A.G.; Kaltennorn, B.P. The Environmental Food Crisis–the Environment’s Role in Averting Future Food Crisis. A UNEP Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal. 2009. Available online: http://www.grida.no/publications/rr/food-crisis/ (accessed on 14 August 2018).
- Meul, M.; Ginneberge, C.; Van Middelaar, C.E.; de Boer, I.J.M.; Fremaut, D.; Haesaert, G. Carbon footprint of five pig diets using three land use change accounting methods. Livest. Sci. 2012, 149, 215–223. [Google Scholar] [CrossRef]
- Hamelin, L.; Naroznova, I.; Wenzel, H. Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl. Energy 2014, 114, 774–782. [Google Scholar] [CrossRef]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land Use Change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Johnston, M.; Foley, J.A.; Holloway, T.; Monfreda, C.; Ramankutty, N.; Zaks, D. Carbon payback times for crop-based biofuel expansion in the tropics: The effects of changing yield and technology. Environ. Res. Lett. 2008, 3, 1–10. [Google Scholar] [CrossRef]
- IPCC, Climate Change 2014. Synthesis Report. 2015. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf (accessed on 14 August 2018).
- Weidema, B.P.; Ekvall, T.; Heijungs, R. Guidelines for Applications of Deepened and Broadened LCA. Deliverable D18 of Work Package 5 of the CALCAC Project. 2009, pp. 1–49. Available online: https://www.leidenuniv.nl/cml/ssp/publications/calcas_report_d18.pdf (accessed on 14 August 2018).
- Earles, J.M.; Halog, A. Consequential life cycle assessment: A review. Int. J. LCA 2011, 16, 445–453. [Google Scholar] [CrossRef]
- Weidema, B.P. Using the budget constraint to monetarise impact assessment results. Ecol. Econ. 2008, 68, 1591–1598. [Google Scholar] [CrossRef]
- Hamelin, L.; Jørgensen, U.; Petersen, B.M.; Olesen, J.E.; Wenzel, H. Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark: A consequential life cycle inventory. GCB Bioenergy 2012, 4, 889–907. [Google Scholar] [CrossRef]
- Ecoinvent Centre. 2013. Available online: http://www.ecoinvent.org/database/ecoinvent-version-2/ (accessed on 14 August 2018).
- Adifo. Bestmix Software. 2011. Available online: https://www.adifo.com/products/bestmix-feed-formulation (accessed on 14 August 2018).
- VSP, Videncenter for Svineproduktion, 2012. Fodermiddeldatabase (Feed Database). Available online: https://www.lf.dk/aktuelt/nyheder/2015/april/ny-organisation-i-seges-videncenter-for-svineproduktion#.W05DYtL7SUk (accessed on 14 August 2018).
- Ainsworth, E.A.; Leakey, A.D.B.; Ort, D.R.; Long, S.P. FACE-ing the facts: Inconsistencies and interdependence among field, chamber and modelling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol. 2008, 179, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Högy, P.; Fangmeier, A. Review: Effects of elevated atmospheric CO2 on grain quality of wheat. J. Cereal Sci. 2008, 48, 580–591. [Google Scholar] [CrossRef]
- Mosnier, E.; van der Werf, H.M.G.; Boissy, J.; Dourmad, J.-Y. Evaluation of the environmental implications of the incorporation of feed-use amino acids in the manufacturing of pig and broiler feeds using Life Cycle Assessment. Animal 2011, 5, 1972–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, P.H.; Wenzel, H. Environmental assessment of Ronozyme® P5000 CT phytase as an alternative to inorganic phosphate supplementation to pig feed used in intensive pig production. Int. J. LCA 2007, 12, 514–520. [Google Scholar] [CrossRef]
- Schmidt, J.H.; Weidema, B.P.; Brandão, M. A framework for modelling indirect land use changes in Life Cycle Assessment. J. Clean. Prod. 2015, 99, 230–238. [Google Scholar] [CrossRef]
- Tonini, D.; Hamelin, L.; Astrup, T.F. Environmental implications of the use of agro-industrial residues for biorefineries: Application of a deterministic model for indirect land-use changes. GCB Bioenergy 2016, 8, 690–706. [Google Scholar] [CrossRef] [Green Version]
- JRC. World Atlas of Desertification. 2018. Available online: https://wad.jrc.ec.europa.eu/ (accessed on 14 August 2018).
- Marelli, L.; Mulligan, D.; Edwards, R.; Critical Issues in Estimating ILUC Emissions. Critical Issues in Estimating ILUC Emissions. JRC Scientific and Technical Reports. Outcomes of an Expert Consultation 9–10 November 2010, Ispra, Italy. 2011, pp. 1–64, EUR 24816EN-2011. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/22908/2/reqno_jrc64429_cirtical%20issues%20in%20estimating%20iluc%20emissions%20print%20version.pdf (accessed on 14 August 2018).
- Verchot, L.V.; Davidson, E.A.; Cattânio, J.H.; Ackerman, I.L.; Erickson, H.E.; Keller, M. Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Glob. Biogeochem. Cycles 1999, 13, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Wolosin, M.; Harris, N. Ending Tropical Deforestation: A Stock-Take of Progress and Challenges. Tropical Forests and Climate Change: The Latest Science. 2018. World Resources Institute, Working Paper. Available online: https://wriorg.s3.amazonaws.com/s3fs-public/ending-tropical-deforestation-tropical-forests-climate-change.pdf (accessed on 14 August 2018).
- De Lima, R.F.; Dallimer, M.; Atkinson, P.W.; Barlow, J. Biodiversity and land-use change: Understanding the complex responses of an endemic-rich bird assemblage. Divers. Distrib. 2013, 19, 411–422. [Google Scholar] [CrossRef]
- Nielsen, O.-K.; Mikkelsen, M.H.; Hoffmann, L.; Gyldenkærne, S.; Winther, M.; Nielsen, M.; Fauser, P.; Thomsen, M.; Plejdrup, M.S.; Albrektsen, R.; et al. Denmark’s National Inventory Report 2011-Emission Inventories 1990–2009-Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol; NERI Technical Report 827; The National Environmental Research Institute, Aarhus University: Aarhus, Denmark, 2011; pp. 1–1199. Available online: http://www2.dmu.dk/pub/fr827.pdf (accessed on 14 August 2018).
- Schmidt, J.H. Life Cycle Assessment of Rapeseed Oil and Palm Oil. Ph.D. Thesis, Department of Development and Planning, Aalborg University, Aalborg, Denmark, 15 June 2007. [Google Scholar]
- Dalgaard, R.; Schmidt, J.; Halberg, N.; Christensen, P.; Thrane, M.; Pengue, W.A. LCA of soybean meal. Int. J. LCA 2008, 13, 240–254. [Google Scholar] [CrossRef]
- Edwards, R.; Mulligan, D.; Marelli, L. Indirect Land Use Change from Increased Biofuels Demand. Comparison of Models and Results for Marginal Biofuels Production from Different Feedstocks. (No. EUR 24485). European Commission Joint Research Centre. 2010. Available online: https://www.energy.eu/publications/Indirect-Land-Use-Change-from-increased-Biofuels-Demand.pdf (accessed on 14 August 2018).
- Hertel, T.W.; Golub, A.A.; Jones, A.D.; O’Hare, M.; Plevin, R.J.; Kammen, D.M. Effects of US Maize Ethanol on Global Land Use and Greenhouse Gas Emissions: Estimating Market-mediated Responses. Bioscience 2010, 60, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Laborde, D. Assessing the Land Use Change Consequences of European Biofuel Policies. ATLASS Consortium, 2011. Available online: http://trade.ec.europa.eu/doclib/docs/2011/october/tradoc_148289.pdf (accessed on 14 August 2018).
- Tonini, D.; Hamelin, L.; Wenzel, H.; Astrup, T. Bioenergy Production from Perennial Energy Crops: A Consequential LCA of 12 Bioenergy Scenarios including Land Use Changes. Environ. Sci. Technol. 2012, 46, 13521–13530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekvall, T.; Weidema, B. System Boundaries and Input Data in Consequential Life Cycle Inventory Analysis. Int. J. LCA 2004, 9, 161–171. [Google Scholar] [CrossRef]
- Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wernet, G. The Ecoinvent Database: Overview and Methodology, Data Quality Guideline for the Ecoinvent Database Version 3. 2017. Available online: https://lca-net.com/publications/show/overview-methodology-data-quality-guideline-ecoinvent-database-version-3/ (accessed on 14 August 2018).
- FAOSTAT. 2011. Available online: http://www.fao.org/faostat/en/#data (accessed on 14 August 2018).
- De Vries, J.W.; Vinken, T.M.W.J.; Hamelin, L.; De Boer, I.M.J. Comparing environmental consequences of anaerobic mono- and co-digestion alternatives for pig manure to produce bio-energy—A life cycle perspective. Bioresour. Technol. 2012, 125, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Hamelin, L. Carbon Management and Environmental Consequences of Agricultural Biomass in a Danish Renewable Energy Strategy. Ph.D. Thesis, University of Southern Denmark, Odense, Denmark, February 2013. [Google Scholar]
- Edwards, R.; Padella, M.; Vorkapic, V.; Marelli, L. Historical Deforestation Due to Expansion of Crop Demand: Implications for Biofuels. 2014. Available online: http://publications.jrc.ec.europa.eu/repository/handle/JRC83819 (accessed on 14 August 2018).
- Erbs, M.; Manderscheit, R.; Jansen, G.; Seddig, S.; Pacholski, A.; Weigel, H.-J. Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agric. Ecosyst. Environ. 2010, 136, 59–68. [Google Scholar] [CrossRef]
- Högy, P.; Franzaring, J.; Schwadorf, K.; Breuer, J.; Schütze, W.; Fangmeier, A. Effects of free-air CO2 enrichment on energy traits and seed quality of oilseed rape. Agric. Ecosyst. Environ. 2010, 139, 239–344. [Google Scholar] [CrossRef]
- Taub, D.R.; Miller, B.; Allen, H. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis. Glob. Chang. Biol. 2008, 14, 65–575. [Google Scholar] [CrossRef]
- Fangmeier, A.; Chrost, B.; Högy, P.; Krupinska, K. CO2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity. Environ. Exp. Bot. 2000, 44, 151–164. [Google Scholar] [CrossRef]
- Morgan, P.B.; Bollero, G.A.; Nelson, R.L.; Dohleman, F.G.; Long, S.P. Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Glob. Chang. Biol. 2005, 11, 1856–1865. [Google Scholar] [CrossRef]
- Clausen, S.K.; Frenck, G.; Linden, L.G.; Mikkelsen, T.N.; Lunde, C.; Jørgensen, R.B. Effects of single and multifactor treatment with elevated temperature, CO2 and ozone on oilseed rape and barley. J. Agron. Crop Sci. 2011, 197, 442–453. [Google Scholar] [CrossRef]
- Rio Declaration. 1992. Rio Declaration on Environment and Development. Principle 16. Available online: https://www.jus.uio.no/lm/environmental.development.rio.declaration.1992/16.html (accessed on 14 August 2018).
- Nonhebel, S. Global food supply and the impacts of increased biofuels. Energy 2012, 37, 115–121. [Google Scholar] [CrossRef]
- Qaderi, M.M.; Reid, D.M. Crop Responses to Elevate Carbon Dioxide and Temperature; Singh, S.N., Ed.; Chapter 1 in: Climatic Change and Crops, Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–17. [Google Scholar]
- Booker, F.; Muntifering, R.; McGrath, M.; Burkey, K.; Decoteau, D.; Fiscus, E.; Manning, W.; Krupa, S.; Chappelka, A.; Grantz, D. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 2009, 51, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Plevin, R.J.; O’Hara, M.; Jones, A.D.; Torn, M.S.; Gibbs, H.K. Greenhouse Gas Emissions from Biofuels’ Indirect Land Use Change Are Uncertain but May Be Much Greater than Previously Estimated. Environ. Sci. Technol. 2010, 44, 8015–8021. [Google Scholar] [CrossRef] [PubMed]
- Khanna, M.; Crago, C.L. Measuring Indirect Land Use Change with Biofuels: Implications for Policy. Annu. Rev. Resour. Econ. 2012, 4, 161–184. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, S.T.; Woods, J.; Akhurst, M.; Brander, M.; O’Hara, M.; Dawson, T.P.; Edwards, R.; Liska, A.J.; Malpas, R. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains. J. R. Soc. Interface 2012, 9, 1105–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkman, T.J.; Birkved, M.; Saxe, H.; Wenzel, H. Environmental impacts of barley cultivation under current and future climatic conditions. J. Clean. Prod. 2017, 140, 644–653. [Google Scholar] [CrossRef]
- Kløverpris, J. Consequential Life Cycle Inventory Modelling of Land Use Induced by Crop Consumption. Ph.D. Thesis, DTU Management Engineering, Lyngby, Denmark, November 2008. Updated Version 2010. Available online: http://orbit.dtu.dk/en/publications/consequential-life-cycle-inventory-modelling-of-land-use-induced-by-crop-consumption%286457fc93-c53a-4beb-83ff-015c8047b682%29.html (accessed on 14 August 2018).
- Jungbluth, N.; Dinkel, F.; Doka, G.; Chudacoff, M.; Dauriat, A.; Gnansounou, E.; Sutter, J.; Spielmann, M.; Kljun, N.; Keller, M. Life Cycle Inventory of Bioenergy. Data v2.0. Ecoinvent Report no. 17. Swiss Centre for Life Cycle Inventories. A Joint Initiative of the ETH Domain and Swiss Federal Offices, Ulster, Switzerland. Available online: https://www.researchgate.net/profile/Niels_Jungbluth/publication/230725648_Life_Cycle_Inventories_of_Bioenergy_ecoinvent_report_No_17/links/0c96051b76e2fb8dce000000/Life-Cycle-Inventories-of-Bioenergy-ecoinvent-report-No-17.pdf (accessed on 14 August 2018).
- Schmidt, J.H.; Christensen, P.; Christensen, T.S. Assessing the land use implications of biodiesel use from an LCA perspective. J. Land Use Sci. 2009, 4, 35–52. [Google Scholar] [CrossRef]
- Nemecek, T.; Kägi, T. Life Cycle Inventory of Agricultural Production Systems. Data ver. 2.0. Ecoinvent Report no. 15. Agroscope Reckenholz-Tänikon Research Station ART, Zürich and Dübendorf, Switzerland. Available online: https://db.ecoinvent.org/reports/15_Agriculture.pdf (accessed on 14 August 2018).
- Miyagi, K.-M.; Kinugasa, T.; Hikosaka, K.; Hirose, T. Elevated CO2 concentration, nitrogen use, and seed production in annual plants. Glob. Chang. Biol. 2007, 13, 2161–2170. [Google Scholar] [CrossRef]
- Buckley, T.N. The role of stomatal acclimation in modelling tree adaptation to high CO2. J. Exp. Bot. 2008, 59, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Attavanich, W.; McCarl, B.A. The effect of climate change, CO2 fertilization, and crop production technology on crop yields and its economic implications on market outcomes and welfare distribution. In Proceedings of the Agricultural & Applied Economics Association’s 2001 AAEA & NAREA Joint Annual Meeting, Pittsburgh, PA, USA, 24–26 July 2011. [Google Scholar]
- Sprague, G.F.; Duncan, W.G.; Kommedahl, T.; BeMiller, J.N. Corn. In AccessScience, ®McGraw-Hill Companies. 2008. Available online: https://www.accessscience.com/content/corn/162600 (accessed on 14 August 2018).
- Cederberg, C.; Flysjö, A. Environmental Assessment of Future Pig Farming Systems–Quantification of Three Scenarios from the FOOD 21 Synthesis Work. SIK Rapport nr. 723. SIK, Sweden. 2004. Available online: http://www.vaxteko.nu/html/sll/institutet_livsm_bioteknik/sik-rapport/SIK723/SIK723.PDF (accessed on 14 August 2018).
Chemical Composition | Wheat, Denmark | Barley, Denmark | Soy, Argentina/Brazil | Rapeseed, Germany | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Present 1 | Change 2 (%) | Future 7 | Present 1 | Change 3, 4 (%) | Future | Present | Change 3 (%) | Future | Present 1 | Change 5 (%) | Future | |
Total Dry Matter, % | 85 | 0 | 85 | 85 | 0 | 85 | 88 | unknown | unknown | 89 | unknown | unknown |
Starch (g/kg) | 670 | +7.5 | 720 | 630 | +4.1 4 | 660 | 27 | unknown | unknown | 19 | unknown | unknown |
Raw Protein, % | 9.5 | −14 | 8.2 | 9.7 | −15 3 | 8.2 | 47 | −1.4 | 46 | 35 | −4.6 | 33 |
Amino Acids (g/kg) | ||||||||||||
Lysine | 2.3 | −10 | 2.0 | 2.6 | unknown | unknown | 26 | unknown | unknown | 15 | −2.5 | 14 |
Methionine | 1.3 | −17 | 1.1 | 1.4 | unknown | unknown | 5.7 | unknown | unknown | 6.0 | −4.3 | 5.7 |
Cystine | 1.9 | −17 | 1.6 | 1.8 | unknown | unknown | 5.8 | unknown | unknown | 7.0 | −5.4 | 6.6 |
Threonine | 2.2 | −21 | 1.8 | 2.4 | unknown | unknown | 16 | unknown | unknown | 12 | −1.8 | 11 |
Tryptophan | 0.93 | −17 | 0.77 | 0.93 | unknown | unknown | 5.7 | unknown | unknown | 3.3 | −3.1 | 3.2 |
Isoleucine | 2.8 | −22 | 2.2 | 2.7 | unknown | unknown | 18 | unknown | unknown | 11 | −3.1 | 10 |
Leucine | 5.2 | −19 | 4.2 | 5.1 | unknown | unknown | 32 | unknown | unknown | 20 | −3.7 | 19 |
Histidine | 1.9 | −16 | 1.6 | 1.7 | unknown | unknown | 11 | unknown | unknown | 8.1 | −3.9 | 7.7 |
Phenylalanine | 3.6 | −14 | 3.1 | 3.7 | unknown | unknown | 21 | unknown | unknown | 11 | −1.9 | 11 |
Tyrosine | 2.4 | −16 | 2.0 | 2.3 | unknown | unknown | 16 | unknown | unknown | 8.2 | −2.6 | 8.0 |
Valine | 3.5 | −8 | 3.2 | 3.6 | unknown | unknown | 20 | unknown | unknown | 14 | −3.4 | 13 |
Macroelements (g/kg) | (4) | |||||||||||
Calcium | 0.43 | −15 | 0.36 | 0.43 | 4.8 | 0.45 | 3.5 | unknown | unknown | 8.5 | −1.5 | 8.4 |
Phosphorus | 2.6 | −4 | 2.5 | 3.0 | −4.6 | 2.8 | 6.8 | unknown | unknown | 11 | 1.8 | 11 |
Sodium | 0.085 | −6 | 0.080 | 0.17 | unknown | unknown | 0.18 | unknown | unknown | 0.36 | 0.1 | 0.36 |
Potassium | 5.0 | −1 | 4.9 | 4.8 | 0 | 4.8 | 22 | unknown | unknown | 13 | 0.3 | 13 |
Magnesium | 1.0 | −7 | 0.95 | 1.0 | −3.3 | 0.99 | 3.2 | unknown | unknown | 4.7 | 0.8 | 4.8 |
Sulphur | 1.1 | −13 | 0.96 | 0.94 | −5.0 | 0.89 | 3.6 | unknown | unknown | 6.5 | −6.1 | 6.1 |
Microelements (mg/kg) | (4) | |||||||||||
Iron | 27 | −18 | 22 | 29 | −11 | 26 | 260 | unknown | unknown | 230 | 1.0 | 230 |
Manganese | 25 | −3 | 24 | 12 | unknown | unknown | 47 | unknown | unknown | 68 | −2.6 | 66 |
Zink | 34 | −13 | 30 | 24 | −13 | 21 | 48 | unknown | unknown | 65 | −5.6 | 61 |
Yield (t fm ha−1) | 6.8 6 | +11% 5 | 7.3 | 5.0 6 | +20% 8 | 6.0 | 3.4 9 | +15% 10 | 3.9 | 3.8 11 | + 5.0% 12 | 4.0 |
Product | Main Function in the Feed | Sow Feed (20%) | Piglet Feed (20%) | Slaughter Pig Feed (60%) | Weighted Average Pig Feed | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Present | Future | Present | Future | Present | Future | Present | Future | Absolute Change | Relative Change | ||
Percent by Mass (Dry Weight Basis) | kg | percent | |||||||||
Wheat | Energy | 52 | 50 | 46 | 44 | 47 | 45 | 48 | 46 | −25 | −5.1% |
Barley | Energy | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 0.0 | 0.0% |
Soy meal | Protein | 6.0 | 8.6 | 19 | 20 | 6.9 | 9.4 | 9.2 | 11 | +22 | +23% |
Rape meal | Protein | 4.0 | 4.0 | 0.0 | 0.0 | 10 | 10 | 6.8 | 6.8 | 0.0 | 0.0% |
Sunflower meal | Protein | 6.0 | 6.0 | 0.0 | 0.0 | 5.0 | 5.0 | 4.2 | 4.2 | 0.0 | 0.0% |
Beet molasses | Energy | 2.0 | 2.0 | 0.50 | 2.0 | 2.0 | 2.0 | 1.7 | 2.0 | +3.0 | +18% |
PFAD oil, palm fatty acid distillate | Energy and technical aid | 1.3 | 1.3 | 1.5 | 1.3 | 1.3 | 1.3 | 1.3 | 1.30 | −0.39 | −2.9% |
Limestone meal (CaCO3) | Production requirement | 1.4 | 1.3 | 0.86 | 0.85 | 1.3 | 1.3 | 1.2 | 1.2 | −0.25 | −2.1% |
Amino acids (fermentation) | Production requirement | 0.37 | 0.28 | 0.73 | 0.66 | 0.48 | 0.40 | 0.51 | 0.43 | −0.81 | −16% |
Salt, sodium chloride: | Production requirement | 0.43 | 0.42 | 0.46 | 0.50 | 0.50 | 0.44 | 0.48 | 0.45 | +0.02 | +6.3% |
Monocalcium phosphate: | Production requirement | 0.64 | 0.66 | 0.88 | 0.94 | 0.22 | 0.23 | 0.43 | 0.47 | +0.34 | +5.5% |
Protein (from fish): | Protein | 0.00 | 0.00 | 2.00 | 2.00 | 0.00 | 0.00 | 0.40 | 0.40 | 0.00 | 0.0% |
Vitamins | Production requirement | 0.59 | 0.59 | 0.20 | 0.20 | 0.20 | 0.20 | 0.32 | 0.32 | 0.00 | 0.0% |
Phytase and xylanase | Health, economy, environment | 0.04 | 0.04 | 0.14 | 0.14 | 0.08 | 0.08 | 0.08 | 0.08 | 0.00 | 0.0% |
Dl-methionine (synthetic) | Production requirement | 0.00 | 0.00 | 0.10 | 0.11 | 0.00 | 0.01 | 0.02 | 0.03 | +0.03 | +14% |
Hemoglobin meal | Protein | 0.00 | 0.00 | 1.00 | 1.7 | 0.00 | 0.00 | 0.20 | 0.34 | +1.4 | +65% |
Formic acid, calcium salt | PH-adjustment | 0.00 | 0.00 | 0.80 | 0.80 | 0.00 | 0.00 | 0.16 | 0.16 | 0.00 | 0.0% |
Sum | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Present CO2 | Future CO2 | Difference | |
---|---|---|---|
Sows, 200 kg feed | €47.69 | €48.14 | €0.45 |
Piglets, 200 kg feed | €60.92 | €61.05 | €0.13 |
Slaughter pigs, 600 kg feed | €141.78 | €143.12 | €1.34 |
Total pig feed, 1000 kg | €250.39 | €252.31 | €1.92 |
Per cent | 100% | 100.77% | 0.77% |
Importance of Crop Ingredients in Terms of Monetized Impact | Wheat | Barley | Soy | Rape | Sunflower |
---|---|---|---|---|---|
Content, kg per tonne of feed (see Table 2) | 480 | 250 | 92 | 68 | 42 |
Monetary weight of environmental impact, % | 25 | 18 | 35 | 5 | 23 |
Monetized environmental impact relative to kg content, % | 5.2 | 7.2 | 38.3 | 6.9 | 54.2 |
Factor of the above | 1 | 1 | 7 | 1 | 11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saxe, H.; Hamelin, L.; Hinrichsen, T.; Wenzel, H. Production of Pig Feed under Future Atmospheric CO2 Concentrations: Changes in Crop Content and Chemical Composition, Land Use, Environmental Impact, and Socio-Economic Consequences. Sustainability 2018, 10, 3184. https://doi.org/10.3390/su10093184
Saxe H, Hamelin L, Hinrichsen T, Wenzel H. Production of Pig Feed under Future Atmospheric CO2 Concentrations: Changes in Crop Content and Chemical Composition, Land Use, Environmental Impact, and Socio-Economic Consequences. Sustainability. 2018; 10(9):3184. https://doi.org/10.3390/su10093184
Chicago/Turabian StyleSaxe, Henrik, Lorie Hamelin, Torben Hinrichsen, and Henrik Wenzel. 2018. "Production of Pig Feed under Future Atmospheric CO2 Concentrations: Changes in Crop Content and Chemical Composition, Land Use, Environmental Impact, and Socio-Economic Consequences" Sustainability 10, no. 9: 3184. https://doi.org/10.3390/su10093184
APA StyleSaxe, H., Hamelin, L., Hinrichsen, T., & Wenzel, H. (2018). Production of Pig Feed under Future Atmospheric CO2 Concentrations: Changes in Crop Content and Chemical Composition, Land Use, Environmental Impact, and Socio-Economic Consequences. Sustainability, 10(9), 3184. https://doi.org/10.3390/su10093184