Do Large Slaughterhouses Promote Sustainable Intensification of Cattle Ranching in Amazonia and the Cerrado?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Period of Study and Datasets
2.3. Mapping of Large Slaughterhouses and Definition of Influence Zones
2.4. Definition of Control Zones
2.5. Data Analysis
3. Results
3.1. Influence and Control Zones
3.2. Statistical Analysis
3.2.1. Environmental Impact Variable: Land Use Change Rate (∆LU)
3.2.2. Environmental Impact Variable: Total Greenhouse Gas Emissions (GE)
3.2.3. Intensification Variable: Protein from Crops (PC)
3.2.4. Intensification Variable: Calories from Crops (CC)
3.2.5. Intensification Variable: Stocking Rate (SR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Table with All Abbreviations Used in the Text
ABBREVIATIONS | |
AGB | Aboveground biomass |
BGB | Belowground biomass |
CAR | Cadastro Ambiental Rural (Rural Environmental Registry) |
CNPJ | Cadastro Nacional de Pessoa Jurídica (National Register of Legal Entities) |
DETER | Sistema de Detecção de Desmatamento em Tempo Real (System for the Detection of Deforestation in Real Time) |
DIPOA | Departamento de Inspeção de Produtos de Origem Animal (Department for Inspection of Animal Products) |
GHG | Greenhouse Gases |
GWP | Global Warming Potential |
IBGE | Instituto Brasileiro de Geografia e Estatística (Brazilian Institute of Geography and Statistics) |
INPE | Instituto Nacional de Pesquisas Espaciais (National Institute for Space Research) |
IPCC | Intergovernmental Panel on Climate Change |
LULUCF | Land Use, Land Use Change and Forestry |
MAPA | Ministério da Agricultura, Pecuária e Abastecimento (Brazilian Ministry of Agriculture, Livestock and Food Supply) |
MATOPIBA | Acronym created from the first two letters of the states of Maranhão, Tocantins, Piauí, and Bahia |
NGOs | Non-Governmental Organizations |
PNLT | Plano Nacional de Logística e Transporte (National Logistics and Transportation Plan) |
PNMC | Política Nacional sobre Mudanças no Clima (Brazil’s National Policy on Climate Change) |
PRODES | Projeto de Monitoramento da Floresta Amazônica Brasileira por Satélite (Program for Satellite Monitoring of the Brazilian Amazon Forest) |
Appendix B. Biomass Map and Emissions from Enteric Fermentation
References
- Ministério da Ciência, Tecnologia e Inovação. Third National Communication of Brazil to the United Nations Framework Convention on Climate Change; Ministério da Ciência, Tecnologia e Inovação: Brasilia, Brazil, 2016; Volume III, ISBN 9788588063198.
- De Azevedo, T.R.; Costa Junior, C.; Brandão Junior, A.; Cremer, M.D.S.; Piatto, M.; Tsai, D.S.; Barreto, P.; Martins, H.; Sales, M.; Galuchi, T.; et al. SEEG initiative estimates of Brazilian greenhouse gas emissions from 1970 to 2015. Sci. Data 2018, 5, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Cohn, A.S.; Mosnier, A.; Havlík, P.; Valin, H.; Herrero, M.; Schmid, E.; O’Hare, M.; Obersteiner, M. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl. Acad. Sci. USA 2014, 111, 7236–7241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strassburg, B.B.N.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Crosson, P.; Shalloo, L.; O’Brien, D.; Lanigan, G.J.; Foley, P.A.; Boland, T.M.; Kenny, D.A. A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Anim. Feed Sci. Technol. 2011, 166–167, 29–45. [Google Scholar] [CrossRef]
- De Oliveira Silva, R.; Barioni, L.G.; Hall, J.A.J.; Matsuura, M.F.; Zanett Albertini, T.; Fernandes, F.A.; Moran, D. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nat. Clim. Chang. 2016, 6, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Mazzetto, A.M.; Feigl, B.J.; Schils, R.L.M.; Cerri, C.E.P.; Cerri, C.C. Improved pasture and herd management to reduce greenhouse gas emissions from a Brazilian beef production system. Livest. Sci. 2015, 175, 101–112. [Google Scholar] [CrossRef]
- Palermo, G.C.; D’Avignon, A.L.D.A.; Freitas, M.A.V. Reduction of emissions from Brazilian cattle raising and the generation of energy: Intensification and confinement potentials. Energy Policy 2014, 68, 28–38. [Google Scholar] [CrossRef]
- Ferraz, J.B.S.; de Felício, P.E. Production systems—An example from Brazil. Meat Sci. 2010, 84, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Bowman, M.S.; Soares-Filho, B.S.; Merry, F.D.; Nepstad, D.C.; Rodrigues, H.; Almeida, O.T. Persistence of cattle ranching in the Brazilian Amazon: A spatial analysis of the rationale for beef production. Land Use Policy 2012, 29, 558–568. [Google Scholar] [CrossRef]
- Dias, L.C.P.; Pimenta, F.M.; Santos, A.B.; Costa, M.H.; Ladle, R.J. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob. Chang. Biol. 2016, 22, 2887–2903. [Google Scholar] [CrossRef] [PubMed]
- Barreto, P.; Pereira, R.; Arima, E. A Pecuária e o Desmatamento na Amazônia na era das Mudanças Climáticas; Instituto do Homem e Meio Ambiente da Amazônia: Belém, Brazil, 2008; ISBN 9788586212260. [Google Scholar]
- Gibbs, H.K.; Munger, J.; L’Roe, J.; Barreto, P.; Pereira, R.; Christie, M.; Amaral, T.; Walker, N.F. Did ranchers and slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Conserv. Lett. 2016, 9, 32–42. [Google Scholar] [CrossRef]
- Greenpeace. Eating up the Amazon. Available online: http://www.greenpeace.org/usa/research/eating-up-the-amazon/ (accessed on 16 May 2016).
- Greenpeace. Slaughtering the Amazon. Available online: http://www.greenpeace.org/international/en/publications/reports/slaughtering-the-amazon/ (accessed on 16 May 2016).
- Walker, N.; Patel, S.; Kalif, K. From Amazon pasture to the high street: Deforestation and the Brazilian cattle product supply chain. Trop. Conserv. Sci. 2013, 6, 446–467. [Google Scholar] [CrossRef]
- Garcia, E.; Filho, F.S.V.R.; Mallmann, G.M.; Fonseca, F. Costs, benefits and challenges of sustainable livestock intensification in a major deforestation frontier in the Brazilian Amazon. Sustainability 2017, 9, 158. [Google Scholar] [CrossRef]
- Merry, F.; Soares-Filho, B. Will intensification of beef production deliver conservation outcomes in the Brazilian Amazon? Elem. Sci. Anth. 2017, 5, 1–12. [Google Scholar] [CrossRef]
- Barreto, P.; Pereira, R.; Brandão, A., Jr.; Baima, S. Os Frigoríficos vão Ajudar a Zerar o Desmatamento da Amazônia? Imazon: Belém, Brazil, 2017; ISBN 9788586212949. [Google Scholar]
- Alves-Pinto, H.N.; Newton, P.; Pinto, L.F.G. Certifying Sustainability: Opportunities and Challenges for the Cattle Supply Chain in Brazil; Research Program on Climate Change; Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2010; pp. 1–8. [Google Scholar]
- Zu Ermgassen, E.K.H.J.; de Alcântara, M.P.; Balmford, A.; Barioni, L.; Neto, F.B.; Bettarello, M.M.F.; de Brito, G.; Carrero, G.C.; Florence, E.D.A.S.; Garcia, E.; et al. Results from on-the-ground efforts to promote sustainable cattle ranching in the Brazilian Amazon. Sustainability 2018, 10, 1301. [Google Scholar] [CrossRef]
- Barreto, P.; Silva, D. Will cattle ranching continue to drive deforestation in the Brazilian Amazon? In Environment and Natural Resources Management in Developing and Transition Economies; Centre of Studies and Research on International Development from the University of Auvergne: Clermont Ferrand, France, 2010; pp. 1–23. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.; Santos, M.M.D.O.; Shimbo, J.Z.; Cantinho, R.Z.; Mello, T.D.R.B.D.; Oliveira, P.V.D.C.; Cunha, P.W.P.D.M.; Martins, F.D.S.R.V.; Aguiar, A.P.D.; Ometto, J. Emissões do Setor de uso da Terra, Mudança do uso da Terra e Florestas: Relatório de Referência; Ministério da Ciência, Tecnologia e Inovação: Brasíla, Brazil, 2015; p. 343.
- IBGE. Mapa de Vegetação. 2004. Available online: https://mapas.ibge.gov.br/tematicos/vegetacao (accessed on 13 February 2016).
- Berndt, A.; Lemes, A.P.; Romero, L.A.; Sakamoto, L.S.; Lima, M.A. De Emissões de Metano por Fermentação Entérica e Manejo de Dejetos de Animais: Relatório de Referência; EMBRAPA; Ministério da Ciência, Tecnologia e Inovação: Brasília, Brazil, 2015; p. 150.
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 1 April 2016).
- Cardoso, E.G. Engorda de Bovinos em Confinamento (Aspectos Gerais). Embrapa, 1996. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/317195/engorda-de-bovinos-em-confinamento-aspectos-gerais (accessed on 15 April 2018).
- Da Costa, M.J.R.P.; Quintiliano, M.H.; Tseimazides, S.P. Boas Praticas de Manejo—Transporte; MAPA/ACS: Brasília, Brazil, 2013; ISBN 9788579910715. [Google Scholar]
- Confederação Nacional do Transporte. Anuário CNT do Transporte—Estatísticas Consolidadas. Available online: http://anuariodotransporte.cnt.org.br/2017/ (accessed on 20 April 2018).
- Boucher, D. How Brazil has dramatically reduced tropical deforestation. Solutions 2014, 5, 65–75. [Google Scholar]
- Kastens, J.H.; Brown, J.C.; Coutinho, A.C.; Bishop, C.R.; Esquerdo, J.C.D.M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 2017, 12, 0176168. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; da Motta, R.S.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Soares-Filho, B.; Rajao, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s forest code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F. Brazil’s soy moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef] [PubMed]
- INPE. Instituto Nacional de Pesquisas Espaciais 2013. Available online: http://www.inpe.br/ (accessed on 20 December 2017).
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IBAMA Projeto de Monitoramento dos Biomas Brasileiros via Satélite (PMDBBS). Available online: http://siscom.ibama.gov.br/monitora_biomas/ (accessed on 20 December 2017).
- Bellantonio, M.; Hurowitz, G.; GrØnlud, L.; Yousefi, A. Ultimate Mystery Meat. Available online: http://www.mightyearth.org/mysterymeat/ (accessed on 16 October 2017).
- Cardoso, D.; Brito, B.; Baima, S.; Siqueira, V. O Estado da Amazônia Potencial de Arrecadação Financeira com a Regularização Fundiária no Pará; Imazon: Belém, Brazil, 2018; p. 14. [Google Scholar]
- Azevedo-Ramos, C.; Silva, J.N.M.; Merry, F. The evolution of Brazilian forest concessions. Elem. Sci. Anth. 2015, 3, 000048. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Gibbs, H.K.; Heilmayr, R.; Carlson, K.M.; Fleck, L.C.; Garrett, R.D.; de Waroux, Y.L.P.; McDermott, C.L.; McLaughlin, D.; Newton, P.; et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Chang. 2018, 8, 109–116. [Google Scholar] [CrossRef]
- Monzoni, M.; Vendramini, A.; Rocha, F.C.; Peirão, P.; Campanili, M.; Sobreiro, A.; Monteiro, A. Análise dos Recursos do Programa ABC Safra 2016/17; Centro de Estudos em Sustentabilidade da Fundação Getúlio Vargas (GVces): São Paulo, Brazil, 2017; pp. 1–36. [Google Scholar]
- Latawiec, A.E.; Strassburg, B.B.N.; Valentim, J.F.; Ramos, F.; Alves-Pinto, H.N. Intensification of cattle ranching production systems: Socioeconomic and environmental synergies and risks in Brazil. Animal 2014, 8, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Leite, C.C.; Costa, M.H.; Soares-Filho, B.S.; Hissa, L.D.B.V. Historical land use change and associated carbon emissions in Brazil from 1940 to 1995. Glob. Biogeochem. Cycles 2012, 26, 1–13. [Google Scholar] [CrossRef]
Dry Matter (dc) * (Fraction) | Energy Content (ec) * (MJ/kg of Dry Matter) | Protein Content (pc) * (as a Fraction of Dry Matter) | |
---|---|---|---|
Maize | 0.88 | 13.6 | 0.105 |
Soy | 0.90 | 14.3 | 0.420 |
Sugarcane | 0.23 | 9.10 | 0.0430 |
SIF Code | Class * | Year of Operation Start (yos) | Latitude (°) | Longitude (°) | State | Biome |
---|---|---|---|---|---|---|
791 | MB1 | 2006 | 11°43′ S | 61°39′ W | Rondônia | Amazonia |
3348 | MB1 | 2004 | 11°54′ S | 55°30′ W | Mato Grosso | Amazonia |
3047 | MB2 | 2006 | 17°36′ S | 52°36′ W | Goiás | Cerrado |
137 | MB3 | 2008 | 16°06′ S | 47°49′ W | Goiás | Cerrado |
1723 | MB3 | 2004 | 12°29′ S | 49°08′ W | Tocantins | Cerrado |
1886 | MB3 | 2006 | 16°33′ S | 54°40′ W | Mato Grosso | Cerrado |
1940 | MB3 | 2007 | 7°16′ S | 48°16′ W | Tocantins | Amazonia/Cerrado |
2583 | MB3 | 2008 | 6°48′ S | 50°31′ W | Pará | Amazonia |
2937 | MB3 | 2005 | 10°37′ S | 55°41′ W | Mato Grosso | Amazonia |
4149 | MB3 | 2004 | 8°42′ S | 63°55′ W | Rondônia | Amazonia |
4267 | MB3 | 2004 | 10°54′ S | 61°53′ W | Rondônia | Amazonia |
4333 | MB3 | 2004 | 12°43′ S | 60°10′ W | Rondônia | Amazonia |
2 h | 4 h | 6 h | 8 h | Control | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SIF Code | Control Code | ||||||||||
791 | 6557.552 | 2387.213 | 28,446.332 | 8836.650 | 61,395.094 | 19,953.500 | 92,905.984 | 30,894.844 | 1 | 80,372.484 | 47,051.168 |
3348 | 9407.771 | 1465.027 | 34,195.277 | 7676.226 | 82,200.266 | 18,956.490 | 137,136.984 | 42,684.102 | 2 | 81,378.305 | 53,318.988 |
3047 | 946.861 | 1135.288 | 5235.697 | 5093.823 | 14,266.354 | 11,852.601 | 25,618.500 | 21,087.488 | 3 | 15,819.864 | 16,464.074 |
137 | 250.060 | 735.411 | 1786.634 | 3959.375 | 7293.791 | 11,791.568 | 17,400.232 | 25,362.859 | 4 | 59,520.324 | 46,821.258 |
1723 | 1816.823 | 1779.501 | 9388.703 | 8416.078 | 22,971.779 | 19,033.506 | 36,794.273 | 31,167.559 | 5 | 59,506.941 | 50,930.031 |
1886 | 1868.623 | 1362.502 | 9610.937 | 5900.309 | 20,900.621 | 12,623.756 | 35,851.840 | 22,329.553 | 6 | 117,978.461 | 46,430.785 |
1940 | 1576.978 | 1439.517 | 10,806.022 | 8332.689 | 26,263.994 | 18,966.988 | 55,317.758 | 35,559.426 | 7 | 105,355.867 | 38,125.027 |
2583 | 2439.150 | 563.163 | 9376.688 | 2705.178 | 23,052.080 | 7771.413 | 42,548.234 | 14,280.646 | 8 | 30,946.521 | 19,714.889 |
2937 | 781.155 | 469.791 | 5982.479 | 2420.442 | 22,798.094 | 8578.547 | 56,155.816 | 18,531.934 | 9 | 35,776.426 | 38,022.645 |
4149 | 4107.312 | 2648.438 | 18,282.762 | 11,317.136 | 39,151.117 | 24,151.670 | 79,550.453 | 41,369.051 | 10 | 39,928.773 | 36,683.539 |
4267 | 3596.003 | 1793.645 | 24,930.428 | 8992.448 | 64,370.426 | 20,787.986 | 122,377.789 | 38,633.922 | 11 | 34,875.188 | 35,362.727 |
4333 | 7961.677 | 3783.414 | 22,355.818 | 10,142.759 | 47,414.707 | 18,169.438 | 76,847.141 | 27,719.873 | 12 | 29,021.994 | 36,196.199 |
13 | 22,420.396 | 32,550.551 |
Latter Values–Former Values (∆LU) | |||||||
---|---|---|---|---|---|---|---|
SIF Code | 2 h (ha/year) | 4 h (ha/year) | 6 h (ha/year) | 8 h (ha/year) | Control Code | Control (ha/year) | |
Amazonia | 791 | −4170.339 | −19,609.682 | −41,441.594 | −62,011.140 | 1 | −33,321.316 |
3348 | −7942.744 | −26,519.051 | −63,243.776 | −94,452.882 | 2 | −28,059.317 | |
1940 | −137.461 | −2473.333 | −7297.006 | −19,758.332 | 3 | 644.210 | |
2583 | −1875.987 | −6671.510 | −15,280.667 | −28,267.588 | 4 | −12,699.066 | |
2937 | −311.364 | −3562.037 | −14,219.547 | −37,623.882 | 5 | −8576.910 | |
4149 | −1458.874 | −6965.626 | −14,999.447 | −38,181.402 | 6 | −71,547.676 | |
4267 | −1802.358 | −15,937.980 | −43,582.440 | −83,743.867 | 7 | −67,230.840 | |
4333 | −4178.263 | −12,213.059 | −29,245.269 | −49,127.268 | 8 | −11,231.632 | |
Median | −1839.173 | −9589.343 | −22,262.968 | −43,654.335 | −20,379.192 | ||
p | 0.004 * | 0.004 * | 0.004 * | 0.004 * | 0.008 * | ||
Cerrado | 3047 | 188.427 | −141.874 | −2413.753 | −4531.012 | 9 | 2246.219 |
137 | 485.351 | 2172.741 | 4497.777 | 7962.627 | 10 | −3245.234 | |
1723 | −37.322 | −972.625 | −3938.273 | −5626.714 | 11 | 487.539 | |
1886 | −506.121 | −3710.628 | −8276.865 | −13,522.287 | 12 | 7174.205 | |
1940 | −137.461 | −2473.333 | −7297.006 | −19,758.332 | 13 | 10,130.155 | |
Median | −37.322 | −972.625 | −3938.273 | −5626.714 | 2246.219 | ||
p | 0.500 NS | 0.156 NS | 0.156 NS | 0.156 NS | 0.906 NS |
2 h | 4 h | 6 h | 8 h | Control | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SIF Code | (Tg-CO2e/year) | (Tg-CO2e/year) | (Tg-CO2e/year) | (Tg-CO2e/year) | (Tg-CO2e/year) | (Tg-CO2e/year) | (Tg-CO2e/year) | (Tg-CO2e/year) | Control Code | (Tg-CO2e/year) | (Tg-CO2e/year) |
791 | 4.8 | 2.5 | 19 | 8.2 | 38 | 17 | 57 | 24 | 1 | 59 | 36 |
3348 | 5.6 | 0.93 | 20 | 4.4 | 44 | 11 | 70 | 24 | 2 | 58 | 39 |
3047 | 0.35 | 0.35 | 1.9 | 1.7 | 5.1 | 4.4 | 10 | 9.3 | 3 | 6.1 | 7.0 |
137 | 0.14 | 0.19 | 0.86 | 1.1 | 3.2 | 3.9 | 7.3 | 8.8 | 4 | 42 | 34 |
1723 | 0.50 | 0.55 | 2.3 | 2.4 | 5.9 | 5.6 | 10 | 9.6 | 5 | 37 | 32 |
1886 | 0.96 | 0.84 | 3.3 | 2.7 | 6.0 | 4.7 | 9.6 | 7.6 | 6 | 64 | 28 |
1940 | 1.0 | 0.87 | 6.1 | 4.2 | 14 | 9.4 | 28 | 16 | 7 | 69 | 27 |
2583 | 1.9 | 0.58 | 7.6 | 2.9 | 18 | 7.8 | 33 | 14 | 8 | 18 | 11 |
2937 | 0.73 | 0.53 | 4.1 | 2.3 | 14 | 6.9 | 30 | 13 | 9 | 15 | 16 |
4149 | 2.3 | 1.4 | 9.5 | 5.6 | 22 | 13 | 46 | 24 | 10 | 7.7 | 6.8 |
4267 | 3.0 | 2.0 | 18 | 9.1 | 43 | 19 | 78 | 31 | 11 | 9.3 | 9.4 |
4333 | 4.2 | 2.1 | 12 | 5.7 | 25 | 11 | 41 | 18 | 12 | 7.3 | 8.3 |
13 | 3.9 | 5.4 |
Latter Values–Former Values (GE) | |||||||
---|---|---|---|---|---|---|---|
T1 | T2 (Ha: ) | ||||||
SIF Code | 2 h (Tg-CO2e/year) | 4 h (Tg-CO2e/year) | 6 h (Tg-CO2e/year) | 8 h (Tg-CO2e/year) | Control Code | Control (Tg-CO2e/year) | |
Amazonia | 791 | −2.3 | −11 | −22 | −33 | 1 | −23 |
3348 | −4.7 | −15 | −33 | −46 | 2 | −19 | |
1940 | −0.13 | −1.9 | −4.8 | −12 | 3 | 0.94 | |
2583 | −1.3 | −4.6 | −11 | −19 | 4 | −7.8 | |
2937 | −0.20 | −1.8 | −7.1 | −17 | 5 | −4.4 | |
4149 | −0.90 | −3.8 | −8.4 | −22 | 6 | −36 | |
4267 | −0.95 | −8.8 | −24 | −47 | 7 | −42 | |
4333 | −2.1 | −5.9 | −14 | −23 | 8 | −7.6 | |
Median | −1.1 | −5.3 | −12 | −23 | −13.6 | ||
p | 0.004 * | 0.004 * | 0.004 * | 0.004 * | 0.008 * | ||
Cerrado | 3047 | 0.0010 | −0.16 | −0.69 | −1.0 | 9 | 0.86 |
137 | 0.048 | 0.28 | 0.71 | 1.5 | 10 | −0.92 | |
1723 | 0.046 | 0.075 | −0.27 | −0.70 | 11 | 0.14 | |
1886 | −0.12 | −0.65 | −1.2 | −2.0 | 12 | 1.0 | |
1940 | −0.13 | −1.9 | −4.8 | −12 | 13 | 1.6 | |
Median | 0.0010 | −0.16 | −0.69 | −1.0 | 0.86 | ||
p | 0.406 NS | 0.219 NS | 0.156 NS | 0.156 NS | 0.969 NS |
2 h | 4 h | 6 h | 8 h | Control | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SIF Code | Control Code | ||||||||||
791 | 8.7 | 15 | 21 | 38 | 36 | 67 | 63 | 1.2 × 102 | 1 | 17 | 37 |
3348 | 42 | 1.1 × 102 | 2.6 × 102 | 5.1 × 102 | 6.2 × 102 | 1.1 × 103 | 1.0 × 103 | 1.8 × 103 | 2 | 6.5 | 18 |
3047 | 89 | 1.2 × 102 | 3.7 × 102 | 4.9 × 102 | 9.3 × 102 | 1.2 × 103 | 1.5 × 103 | 2.0 × 103 | 3 | 0.20 | 1.0 |
137 | 32 | 49 | 1.5 × 102 | 2.5 × 102 | 4.2 × 102 | 7.2 × 102 | 7.5 × 102 | 1.3 × 103 | 4 | 14 | 22 |
1723 | 3.3 | 10 | 13 | 36 | 28 | 77 | 55 | 1.4 × 102 | 5 | 2.0 | 3.1 |
1886 | 1.0 × 102 | 1.5 × 102 | 3.5 × 102 | 4.8 × 102 | 7.1 × 102 | 9.5 × 102 | 1.1 × 103 | 1.4 × 103 | 6 | 5.6 × 102 | 1.3 × 103 |
1940 | 1.2 | 2.5 | 6.4 | 14 | 34 | 70 | 87 | 1.7 × 102 | 7 | 78 | 1.3 × 102 |
2583 | 0.20 | 0.19 | 1.4 | 1.4 | 4.0 | 4.2 | 8.5 | 10 | 8 | 4.4 | 4.4 |
2937 | 1.2 | 2.7 | 10 | 25 | 35 | 95 | 78 | 2.2 × 102 | 9 | 28 | 80 |
4149 | 0.17 | 0.21 | 0.36 | 0.57 | 0.68 | 1.3 | 1.6 | 3.0 | 10 | 2.8 × 102 | 5.6 × 102 |
4267 | 1.1 | 1.1 | 7.3 | 10 | 21 | 35 | 32 | 61 | 11 | 3.2 × 102 | 5.3 × 102 |
4333 | 16 | 37 | 63 | 1.3 × 102 | 1.6 × 102 | 2.8 × 102 | 3.4 × 102 | 5.4 × 102 | 12 | 3.2 × 102 | 5.1 × 102 |
13 | 1.0 × 102 | 2.7 × 102 |
Latter Values–Former Values (PC) | |||||||
---|---|---|---|---|---|---|---|
T1 (Ha: ) | T2 (Ha: ) | ||||||
SIF Code | 2 h (Gg) | 4 h (Gg) | 6 h (Gg) | 8 h (Gg) | Control Code | Control (Gg) | |
Amazonia | 791 | 6.3 | 17 | 32 | 59 | 1 | 20 |
3348 | 66 | 2.6 × 102 | 5.2 × 102 | 8.3 × 102 | 2 | 11 | |
1940 | 1.3 | 7.6 | 36 | 83 | 3 | 0.78 | |
2583 | −0.011 | −0.050 | 0.19 | 1.8 | 4 | 7.4 | |
2937 | 1.5 | 16 | 60 | 1.4 × 102 | 5 | 1.1 | |
4149 | 0.049 | 0.21 | 0.57 | 1.4 | 6 | 7.1 × 102 | |
4267 | −0.032 | 2.5 | 14 | 30 | 7 | 51 | |
4333 | 21 | 70 | 1.3 × 102 | 1.9 × 102 | 8 | −0.069 | |
Median | 1.4 | 12 | 34 | 71 | 9.3 | ||
p | 0.020 * | 0.008 * | 0.004 * | 0.004 * | 0.008 * | ||
Cerrado | 3047 | 32 | 1.2 × 102 | 2.8 × 102 | 4.9 × 102 | 9 | 51 |
137 | 17 | 1.0 × 102 | 3.0 × 102 | 5.1 × 102 | 10 | 2.9 × 102 | |
1723 | 7.0 | 23 | 49 | 88 | 11 | 2.1 × 102 | |
1886 | 43 | 1.4 × 102 | 2.4 × 102 | 3.5 × 102 | 12 | 1.9 × 102 | |
1940 | 1.3 | 7.6 | 36 | 83 | 13 | 1.7 × 102 | |
Median | 17 | 1.0 × 102 | 2.4 × 102 | 3.5 × 102 | 1.9 × 102 | ||
p | 0.031 * | 0.031 * | 0.031 * | 0.031 * | 0.031 * |
2 h | 4 h | 6 h | 8 h | Control | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SIF Code | Control Code | ||||||||||
791 | 0.13 | 0.24 | 0.33 | 0.58 | 0.53 | 1.0 | 0.84 | 1.6 | 1 | 0.47 | 0.77 |
3348 | 0.39 | 1.2 | 2.4 | 5.6 | 5.8 | 12 | 10 | 20 | 2 | 0.17 | 0.32 |
3047 | 1.1 | 1.8 | 4.4 | 7.4 | 11 | 18 | 18 | 30 | 3 | 0.0067 | 0.015 |
137 | 0.45 | 0.74 | 2.1 | 3.6 | 5.3 | 9.7 | 10 | 17 | 4 | 0.29 | 0.33 |
1723 | 0.037 | 0.10 | 0.15 | 0.36 | 0.34 | 0.78 | 0.75 | 1.7 | 5 | 0.057 | 0.070 |
1886 | 1.1 | 1.7 | 3.7 | 5.7 | 7.3 | 11 | 11 | 17 | 6 | 5.4 | 14 |
1940 | 0.016 | 0.029 | 0.092 | 0.17 | 0.47 | 0.82 | 1.1 | 1.9 | 7 | 0.77 | 1.3 |
2583 | 0.0063 | 0.0058 | 0.043 | 0.039 | 0.11 | 0.11 | 0.22 | 0.22 | 8 | 0.070 | 0.056 |
2937 | 0.017 | 0.031 | 0.11 | 0.28 | 0.37 | 1.0 | 0.80 | 2.4 | 9 | 0.80 | 1.7 |
4149 | 0.0052 | 0.0055 | 0.011 | 0.015 | 0.021 | 0.030 | 0.048 | 0.067 | 10 | 3.0 | 6.1 |
4267 | 0.034 | 0.033 | 0.18 | 0.22 | 0.38 | 0.58 | 0.52 | 0.93 | 11 | 3.3 | 5.6 |
4333 | 0.16 | 0.41 | 0.62 | 1.5 | 1.6 | 3.2 | 3.4 | 6.0 | 12 | 3.8 | 5.8 |
13 | 1.1 | 2.9 |
Latter Values–Former Values (CC) | |||||||
---|---|---|---|---|---|---|---|
T1 (Ha: ) | T2 (Ha: ) | ||||||
SIF Code | 2 h (Pcal) | 4 h (Pcal) | 6 h (Pcal) | 8 h (Pcal) | Control Code | Control (Pcal) | |
Amazonia | 791 | 0.10 | 0.26 | 0.45 | 0.79 | 1 | 0.30 |
3348 | 0.78 | 3.2 | 6.6 | 11 | 2 | 0.14 | |
1940 | 0.012 | 0.073 | 0.35 | 0.86 | 3 | 0.0085 | |
2583 | −0.00056 | −0.0043 | −0.0065 | −0.0022 | 4 | 0.037 | |
2937 | 0.014 | 0.17 | 0.67 | 1.6 | 5 | 0.013 | |
4149 | 0.00027 | 0.0034 | 0.0090 | 0.019 | 6 | 8.8 | |
4267 | −0.0012 | 0.045 | 0.20 | 0.40 | 7 | 0.58 | |
4333 | 0.26 | 0.86 | 1.6 | 2.7 | 8 | −0.014 | |
Median | 0.013 | 0.12 | 0.40 | 0.82 | 0.090 | ||
p | 0.039 * | 0.012 * | 0.008 * | 0.008 * | 0.020 * | ||
Cerrado | 3047 | 0.76 | 3.0 | 7.3 | 13 | 9 | 0.90 |
137 | 0.28 | 1.5 | 4.3 | 7.9 | 10 | 3.1 | |
1723 | 0.063 | 0.21 | 0.43 | 0.91 | 11 | 2.3 | |
1886 | 0.58 | 1.9 | 3.8 | 5.9 | 12 | 2.1 | |
1940 | 0.012 | 0.073 | 0.35 | 0.86 | 13 | 1.8 | |
Median | 0.28 | 1.5 | 3.8 | 5.9 | 2.1 | ||
p | 0.031 * | 0.031 * | 0.031 * | 0.031 * | 0.031 * |
2 h | 4 h | 6 h | 8 h | Control | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SIF Code | (head/ha) | (head/ha) | (head/ha) | (head/ha) | (head/ha) | (head/ha) | (head/ha) | (head/ha) | Control Code | (head/ha) | (head/ha) |
791 | 2.023 | 1.915 | 1.990 | 1.855 | 1.946 | 1.856 | 1.936 | 1.873 | 1 | 0.981 | 1.073 |
3348 | 0.717 | 0.753 | 0.867 | 0.915 | 1.066 | 1.117 | 1.194 | 1.240 | 2 | 1.204 | 1.554 |
3047 | 0.875 | 1.002 | 0.953 | 1.055 | 0.968 | 1.059 | 1.033 | 1.124 | 3 | 0.249 | 0.286 |
137 | 1.011 | 1.257 | 0.866 | 1.143 | 0.821 | 1.119 | 0.886 | 1.184 | 4 | 1.452 | 1.504 |
1723 | 0.811 | 1.060 | 0.858 | 1.181 | 0.845 | 1.144 | 0.834 | 1.115 | 5 | 1.342 | 1.684 |
1886 | 1.543 | 2.033 | 1.130 | 1.433 | 0.980 | 1.186 | 0.921 | 1.073 | 6 | 1.458 | 1.588 |
1940 | 0.984 | 1.043 | 0.993 | 1.081 | 1.025 | 1.146 | 1.024 | 1.150 | 7 | 1.589 | 2.018 |
2583 | 2.532 | 2.672 | 1.817 | 1.774 | 1.628 | 1.522 | 1.509 | 1.423 | 8 | 0.584 | 1.453 |
2937 | 2.085 | 1.850 | 1.913 | 1.744 | 1.782 | 1.719 | 1.708 | 1.728 | 9 | 0.968 | 1.267 |
4149 | 1.347 | 1.668 | 1.407 | 1.604 | 1.421 | 1.691 | 1.577 | 1.902 | 10 | 0.656 | 0.905 |
4267 | 1.826 | 1.925 | 1.835 | 1.971 | 1.866 | 2.014 | 1.855 | 2.036 | 11 | 0.653 | 0.974 |
4333 | 1.237 | 1.075 | 1.756 | 1.721 | 1.869 | 1.815 | 1.794 | 1.821 | 12 | 0.612 | 0.936 |
13 | 0.512 | 0.530 |
Latter Values–Former Values (SR) | |||||||
---|---|---|---|---|---|---|---|
T1 (Ha: ) | T2 (Ha: ) | ||||||
SIF Code | 2 h (Head/ha) | 4 h (Head/ha) | 6 h (Head/ha) | 8 h (Head/ha) | Control Code | Control (Head/ha) | |
Amazonia | 791 | −0.108 | −0.135 | −0.090 | −0.063 | 1 | 0.092 |
3348 | 0.036 | 0.048 | 0.051 | 0.046 | 2 | 0.350 | |
1940 | 0.059 | 0.088 | 0.121 | 0.126 | 3 | 0.037 | |
2583 | 0.140 | −0.043 | −0.106 | −0.086 | 4 | 0.052 | |
2937 | −0.235 | −0.169 | −0.063 | 0.020 | 5 | 0.342 | |
4149 | 0.321 | 0.197 | 0.270 | 0.325 | 6 | 0.130 | |
4267 | 0.099 | 0.136 | 0.148 | 0.181 | 7 | 0.429 | |
4333 | −0.162 | −0.035 | −0.054 | 0.027 | 8 | 0.869 | |
Median | 0.048 | 0.007 | −0.002 | 0.037 | 0.236 | ||
p | 0.473 NS | 0.371 NS | 0.320 NS | 0.125 NS | 0.004 * | ||
Cerrado | 3047 | 0.127 | 0.102 | 0.091 | 0.091 | 9 | 0.299 |
137 | 0.246 | 0.277 | 0.298 | 0.298 | 10 | 0.249 | |
1723 | 0.249 | 0.323 | 0.299 | 0.281 | 11 | 0.321 | |
1886 | 0.490 | 0.303 | 0.206 | 0.152 | 12 | 0.324 | |
1940 | 0.059 | 0.088 | 0.121 | 0.126 | 13 | 0.018 | |
Median | 0.246 | 0.277 | 0.206 | 0.152 | 0.299 | ||
p | 0.031 * | 0.031 * | 0.031 * | 0.031 * | 0.031 * |
Former Period (Ha: ) | |||
---|---|---|---|
SIF Code | Control Code | ||
791 | 1.936 | 1 | 0.981 |
3348 | 1.194 | 2 | 1.204 |
1940 | 1.024 | 3 | 0.249 |
2583 | 1.509 | 4 | 1.451 |
2937 | 1.708 | 5 | 1.342 |
4149 | 1.577 | 6 | 1.458 |
4267 | 1.855 | 7 | 1.589 |
4333 | 1.794 | 8 | 0.584 |
Median | 1.643 | 1.273 | |
p | 0.031 * |
Latter Period (Ha: ) | |||
---|---|---|---|
SIF Code | Control Code | ||
791 | 1.873 | 1 | 1.073 |
3348 | 1.240 | 2 | 1.554 |
1940 | 1.150 | 3 | 0.286 |
2583 | 1.423 | 4 | 1.504 |
2937 | 1.728 | 5 | 1.684 |
4149 | 1.902 | 6 | 1.588 |
4267 | 2.036 | 7 | 2.018 |
4333 | 1.821 | 8 | 1.453 |
Median | 1.775 | 1.529 | |
p | 0.328 NS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.B.; Costa, M.H. Do Large Slaughterhouses Promote Sustainable Intensification of Cattle Ranching in Amazonia and the Cerrado? Sustainability 2018, 10, 3266. https://doi.org/10.3390/su10093266
Santos AB, Costa MH. Do Large Slaughterhouses Promote Sustainable Intensification of Cattle Ranching in Amazonia and the Cerrado? Sustainability. 2018; 10(9):3266. https://doi.org/10.3390/su10093266
Chicago/Turabian StyleSantos, Ana Beatriz, and Marcos Heil Costa. 2018. "Do Large Slaughterhouses Promote Sustainable Intensification of Cattle Ranching in Amazonia and the Cerrado?" Sustainability 10, no. 9: 3266. https://doi.org/10.3390/su10093266
APA StyleSantos, A. B., & Costa, M. H. (2018). Do Large Slaughterhouses Promote Sustainable Intensification of Cattle Ranching in Amazonia and the Cerrado? Sustainability, 10(9), 3266. https://doi.org/10.3390/su10093266