Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries
Abstract
:1. Introduction
1.1. Preliminaries
1.2. Objectives and Outline of the Study
- the data used concerns a panel of 28 EU countries containing all available information for the period 1990–2016;
- the analysis includes the aggregate influence of GIC and REC, in addition to GDP, on the GHGs, which is a novelty in this configuration of macroeconomic indicators, using both a quadratic and a cubic model to test the EKC hypothesis.
2. Brief Literature Review
3. Data, Model, Methodology
3.1. Data
- per capita greenhouse gas emissions (GHG), measured in tones of CO2 equivalent;
- per capita gross domestic product (GDP), measured in thousands of US dollars;
- per capita gross inland energy consumption (GIC), measured in tonnes of oil equivalent;
- per capita energy consumption from renewable sources (REC), measured in tonnes of oil equivalent.
- cross-section data—containing the values for the analyzed indicators (GHG, GDP, GIC and REC) yearly for the 28 EU countries and EU;
- time series data—containing the values of each of the four indicators during 1990 and 2016, for each of the 28 EU countries.
3.2. Models
3.3. Econometric Methodology
4. Empirical Findings and Results
4.1. Data Analysis
4.2. Panel Cointegration
4.3. Heterogeneous Regression
- The quadratic EKC hypothesis is satisfied for 11 countries, namely: Belgium, Cyprus, Denmark, Estonia, France, Greece, Italy, Poland, Romania, Spain, and Sweden. The results prove that the environment quality degrades as revenue increases to the critical value, after which there is a decrease of greenhouse gas emissions.
- The quadratic EKC hypothesis is not satisfied for the other 17 countries or the EU.
- All estimates for the coefficients of GIC were found to be positive, thus supporting the idea that as the energy consumption increases, the GHG also increases.
- All estimates for the coefficients of REC were found to be negative, thus indicating that with an increase in the energy consumption from renewable sources, greenhouse gas emissions will decrease.
5. Conclusions
Author Contributions
Acknowledgments
Funding
Conflicts of Interest
References
- U.S. Environmental Protection Agency (U.S. EPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014. EPA 430-R-16-002; 2016. Available online: www.Epa.Gov/Climatechange/Ghgemissions/Usinventoryreport.Html (accessed on 20 March 2018).
- Cengiz, Y. Modelling of Carbon Sink Capacity of the Black Sea. Master’s Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkey, May 2016. [Google Scholar]
- Dmitrienko, M.A.; Nyashina, G.S.; Strizhak, P.A. Major gas emissions from combustion of slurry fuels based on coal, coal waste, and coal derivatives. J. Clean. Prod. 2018, 177, 284–301. [Google Scholar] [CrossRef]
- Dmitrienko, M.A.; Strizhak, P.A. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review. Sci. Total Environ. 2018, 613, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Nyashina, G.S.; Vershinina, K.Y.; Dmitrienko, M.A.; Strizhak, P.A. Environmental benefits and drawbacks of composite fuels based on industrial wastes and different ranks of coal. J. Hazard Mater. 2018, 347, 359–370. [Google Scholar] [CrossRef] [PubMed]
- European Commission (CE). Analysis of Options Beyond 20% GHG Emission Reductions: Member State Results. 2012. Available online: https://ec.europa.eu/clima/sites/clima/files/strategies/2020/docs/swd_2012_5_en.pdf (accessed on 18 February 2018).
- European Commission (CE). Energy Roadmap 2050 Impact Assessment and Scenario Analysis. 2011. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/roadmap2050_ia_20120430_en_0.pdf (accessed on 15 January 2018).
- Soava, G.; Mehedintu, A.; Sterpu, M.; Raduteanu, M. Impact of renewable energy consumption on economic growth: Evidence from European Union countries. Technol. Econ. Dev. Econ. 2018, 24, 1197–1215. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=RO (accessed on 21 February 2018).
- Bo, S. A literature survey on environmental Kuznets curve. Energy Procedia 2011, 5, 1322–1325. [Google Scholar] [CrossRef]
- Lapinskienė, G.; Tvaronavičienė, M.; Vaitkus, P. Greenhouse gases emissions and economic growth—Evidence substantiating the presence of environmental Kuznets curve in the EU. Technol. Econ. Dev. Econ. 2014, 20, 65–78. [Google Scholar] [CrossRef]
- Lorente, D.B.; Alvarez-Herranz, A. Economic growth and energy regulation in the environmental Kuznets curve. Environ. Sci. Pollut. Res. 2016, 23, 16478–16494. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A. Energy consumption and GDP: The strong relationship in OECD countries. J. Energy Source Part B Econ. Plan. Policy 2013, 8, 339–345. [Google Scholar] [CrossRef]
- Okyay, U.; Ebru, A.; Fatih, Y. Energy consumption and economic growth nexus: Evidence from developed countries in Europe. Int. J. Energy Econ. Policy 2014, 4, 411–419. [Google Scholar]
- Ozturk, F. Energy consumption–GDP causality in MENA countries. Energy Source Part B Econ. Plan. Policy 2017, 12, 231–236. [Google Scholar] [CrossRef]
- Bölük, G.; Mert, M. Fossil and renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy 2014, 74, 439–446. [Google Scholar] [CrossRef]
- Ben Mbarek, M.; Boukarraa, B.; Saidi, K. Role of energy consumption and economic growth in the spread of greenhouse emissions: Empirical evidence from Spain. Environ. Earth Sci. 2016, 75, 1161–1169. [Google Scholar] [CrossRef]
- Dalla Longa, F.; van der Zwaan, B. Do Kenya’s climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy? Renew. Energy 2017, 113, 1559–1568. [Google Scholar] [CrossRef]
- Azevedo, V.G.; Sartori, S.; Campos, L.M. CO2 emissions: A quantitative analysis among the BRICS nations. Renew. Sustain. Energy Rev. 2018, 81, 107–115. [Google Scholar] [CrossRef]
- Cifci, E.; Oliver, M.E. Reassessing the Links between GHG Emissions, Economic Growth, and the UNFCCC: A Difference-in-Differences Approach. Sustainability 2018, 10, 334. [Google Scholar] [CrossRef]
- Luo, G.Y.; Weng, J.H.; Zhang, Q.X.; Hao, Y. A reexamination of the existence of environmental Kuznets curve for CO2 emissions: Evidence from G20 countries. Nat. Hazards 2017, 85, 1023–1042. [Google Scholar] [CrossRef]
- Shahbaz, M.; Jam, F.A.; Bibi, S.; Loganathan, N. Multivariate Granger causality between CO2 emissions, energy intensity and economic growth in Portugal: Evidence from cointegration and causality analysis. Technol. Econ. Dev. Econ. 2016, 22, 47–74. [Google Scholar] [CrossRef]
- Bedir, S.; Yilmaz, V.M. CO2 emissions and human development in OECD countries: Granger causality analysis with a panel data approach. Eurasian Econ. Rev. 2016, 6, 97–110. [Google Scholar] [CrossRef]
- Mehedintu, A.; Sterpu, M.; Soava, G. Estimation and forecasts of the share of renewable energy consumption in final energy consumption by 2020 in European Union. Sustainability 2018, 10, 1515. [Google Scholar] [CrossRef]
- Saidi, K.; Hammami, S. The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Rep. 2015, 1, 62–70. [Google Scholar] [CrossRef]
- Sek, S.K.; Chu, J.F. Investigating economic growth-energy consumption-environmental degradation nexus in China. Int. J. Adv. Appl. Sci. 2017, 4, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Shuai, C.Y.; Chen, X.; Wu, Y.; Tan, Y.T.; Zhang, Y.; Shen, L.Y. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. J. Clean. Prod. 2018, 175, 612–623. [Google Scholar] [CrossRef]
- Jaforullah, M.; King, A. Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence. Energy Econ. 2015, 49, 711–717. [Google Scholar] [CrossRef]
- Robaina-Alves, M.; Moutinho, V.; Macedo, P. A new frontier approach to model the eco-efficiency in European countries. J. Clean. Prod. 2015, 103, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N. Environmental Kuznets curves: New evidence on both panel and country-level CO2 emissions. Energy Econ. 2016, 54, 263–271. [Google Scholar] [CrossRef]
- Moutinho, V.; Robaina, M. Is the share of renewable energy sources determining the CO2 kWh and income relation in electricity generation? Renew. Sustain. Energy Rev. 2016, 65, 902–914. [Google Scholar] [CrossRef]
- Danish; Zhang, B.; Wang, B.; Wang, Z. Role of renewable energy and nonrenewable energy consumption on EKC: Evidence from Pakistan. J. Clean. Prod. 2017, 156, 855–864. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Cho, C.H.; Chu, Y.P.; Yang, H.Y. An environment Kuznets curve for GHG emissions: A panel cointegration analysis. Energy Source Part B 2014, 9, 120–129. [Google Scholar] [CrossRef]
- Mercan, M.; Karakaya, E. Energy consumption, economic growth and carbon emission: Dynamic panel cointegration analysis for selected OECD countries. Procedia Econ. Financ. 2015, 23, 587–592. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited environmental kuznets curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Riti, J.S.; Song, D.Y.; Shu, Y.; Kamah, M. Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? J. Clean. Prod. 2017, 166, 1448–1461. [Google Scholar] [CrossRef]
- Yang, X.C.; Lou, F.; Sun, M.X.; Wang, R.Q.; Wang, Y.T. Study of the relationship between greenhouse gas emissions and the economic growth of Russia based on the Environmental Kuznets Curve. Appl. Energy 2017, 193, 162–173. [Google Scholar] [CrossRef]
- Youssef, B.; Hammoudeh, S.; Omri, A. Simultaneity modeling analysis of the environmental Kuznets curve hypothesis. Energy Econ. 2016, 60, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.Y.; Chen, S.T.; Hsu, C.S.; Chen, C.C. Modeling the global relationships among economic growth, energy consumption and CO2 emissions. Renew. Sustain. Energy Rev. 2016, 65, 420–431. [Google Scholar] [CrossRef]
- Zaman, K.; Moemen, M.A.E. Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth. Renew. Sustain. Energy Rev. 2017, 74, 1119–1130. [Google Scholar] [CrossRef]
- Antonakakis, N.; Chatziantoniou, I.; Filis, G. Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renew. Sustain. Energy Rev. 2017, 68, 808–824. [Google Scholar] [CrossRef]
- Bölük, G.; Mert, M. The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach. Renew. Sustain. Energy Rev. 2015, 52, 587–595. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Dong, K.; Sun, R.; Hochman, G. Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries. Energy 2017, 141, 1466–1478. [Google Scholar] [CrossRef]
- Aung, T.S.; Saboori, B.; Rasoulinezhad, E. Economic growth and environmental pollution in Myanmar: An analysis of environmental Kuznets curve. Environ. Sci. Pollut. Res. 2017, 24, 20487–20501. [Google Scholar] [CrossRef] [PubMed]
- Zambrano-Monserrate, M.A.; Carvajal-Lara, C.; Urgiles-Sanchez, R. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in Singapore. Asia-Pac. J. Account. Econ. 2018, 25, 145–162. [Google Scholar] [CrossRef]
- Esteve, V.; Tamarit, C. Threshold integration and nonlinear adjustment between CO2 and income: The environmental Kuznets curve in Spain, 1857–2007. Energy Econ. 2012, 34, 2148–2156. [Google Scholar] [CrossRef]
- Lapinskienė, G.; Peleckis, K.; Radavičius, M. Economic development and greenhouse gas emissions in the European Union countries. J. Bus. Econ. Manag. 2015, 16, 1109–1123. [Google Scholar] [CrossRef]
- Lapinskienė, G.; Peleckis, K.; Nedelko, Z. Testing environmental Kuznets curve hypothesis: The role of enterprise’s sustainability and other factors on GHG in European countries. J. Bus. Econ. Manag. 2017, 18, 54–67. [Google Scholar] [CrossRef]
- Jovanovic, M.; Kascelan, L.; Despotovic, A.; Kascelan, V. The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies. Sustainability 2015, 7, 16290–16310. [Google Scholar] [CrossRef] [Green Version]
- Dogan, E.; Seker, F. Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renew. Energy 2016, 94, 429–439. [Google Scholar] [CrossRef]
- Lapinskienė, G.; Peleckis, K.; Slavinskaite, N. Energy consumption, economic growth and greenhouse gas emissions in the European union countries. J. Bus. Econ. Manag. 2017, 18, 1082–1097. [Google Scholar] [CrossRef]
- Vlontzos, G.; Niavis, S.; Pardalos, P. Testing for Environmental Kuznets Curve in the EU Agricultural Sector through an Eco-(in) Efficiency Index. Energies 2017, 10, 1992–2006. [Google Scholar] [CrossRef]
- Eurostat. Database. 2018. Available online: http://ec.europa.eu/eurostat/data/database (accessed on 11 March 2018).
- World Bank. DataBank, World Development Indicators. 2018. Available online: http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators&preview=on (accessed on 1 March 2018).
- Akbostanci, E.; Türüt-Aşık, S.; Tunç, G.İ. The relationship between income and environment in Turkey: Is there an environmental Kuznets curve? Energy Policy 2009, 37, 861–867. [Google Scholar] [CrossRef]
- EViews 9 User’s Guide I, II. Available online: www.eviews.com (accessed on 11 March 2018).
- Kyoto Protocol. 1997. Available online: http://unfccc.int/kyoto_protocol/background/items/2879.php (accessed on 2 February 2018).
- Levin, M.; Lin, C.F.; Chu, C.S. Unit root tests in panel data: Asymptotic and finite sample properties. J. Econ. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Choi, I. Unit root tests for panel data. J. Int. Money Finan. 2001, 20, 249–272. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1990, 90, 1–44. [Google Scholar] [CrossRef]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–673. [Google Scholar] [CrossRef]
Country | Increase/Decrease GHG 2015/1990 (%) | Mean GHG 1990–2015 in Thousand Tonnes of CO2 Equiv. | Increase/Decrease GHG/Capita 2015/1990 (%) | Mean GHG/Capita 1990–2015 in Tonnes of CO2 Equiv. |
---|---|---|---|---|
European Union (EU) | 76.35 | 5,067,016.00 | 71.34 | 10.33 |
Austria (AT) | 100.06 | 82,766.96 | 89.19 | 10.20 |
Belgium (BE) | 80.28 | 140,595.80 | 71.07 | 13.50 |
Bulgaria (BG) | 59.32 | 67,294.14 | 72.21 | 8.46 |
Croatia (HR) | 75.44 | 26,024.19 | 85.21 | 5.90 |
Cyprus (CY) | 149.97 | 8246.17 | 101.39 | 11.43 |
Czech Republic (CZ) | 64.92 | 148,803.60 | 63.83 | 14.40 |
Denmark (DK) | 69.31 | 69,154.55 | 62.89 | 12.91 |
Estonia (EE) | 44.65 | 21,420.63 | 53.34 | 15.23 |
Finland (FI) | 78.04 | 71,624.49 | 70.95 | 13.75 |
France (FR) | 83.56 | 531,512.10 | NA | 9.01 |
Germany (GE) | 72.10 | 1,036,141.00 | 55.66 | 12.91 |
Greece (EL) | 92.85 | 117,407.40 | 86.55 | 10.87 |
Hungary (HU) | 65.06 | 72,914.87 | 68.49 | 7.17 |
Ireland (IE) | 106.73 | 63,114.66 | 80.86 | 15.83 |
Italy (IT) | 83.29 | 522,948.60 | 77.67 | 9.05 |
Latvia (LV) | 43.24 | 13,131.89 | 58.08 | 5.62 |
Lithuania (LT) | 41.83 | 24,367.81 | 52.89 | 7.16 |
Luxembourg (LU) | 80.66 | 11,408.65 | 54.35 | 25.44 |
Malta (MT) | 93.49 | 2837.46 | 76.74 | 7.19 |
Netherlands (NL) | 88.35 | 216,477.30 | 77.85 | 13.57 |
Poland (PO) | 82.47 | 413,321.70 | 82.54 | 10.80 |
Portugal (PT) | 115.72 | 72,908.22 | 111.49 | 7.07 |
Romania (RO) | 47.28 | 153,165.90 | 55.22 | 7.03 |
Slovakia (SK) | 55.42 | 51,496.57 | 54.06 | 9.60 |
Slovenia (SI) | 90.52 | 19,129.50 | 87.60 | 9.52 |
Spain (ES) | 116.62 | 358,898.20 | 97.55 | 8.45 |
Sweden (SE) | 74.95 | 66,904.26 | 65.57 | 7.44 |
United Kingdom (UK) | 63.45 | 682,999.70 | 55.90 | 11.43 |
INDIC. | Mean | Median | Max. | Min. | Std. Dev. | Skew. | Kurtosis | Jarque-Bera |
---|---|---|---|---|---|---|---|---|
EU | ||||||||
GDP | 26.00 | 24.368 | 38.251 | 15.95 | 7.967 | 0.155 | 1.339 | 3.214 |
GHG | 10.33 | 10.572 | 11.875 | 8.45 | 0.938 | −0.640 | 2.448 | 2.103 |
GIC | 3.493 | 3.514 | 3.706 | 3.17 | 0.154 | −0.517 | 2.386 | 1.628 |
REC | 0.256 | 0.220 | 0.425 | 0.15 | 0.090 | 0.639 | 1.968 | 3.035 |
Panel | ||||||||
GDP | 24.14 | 21.619 | 120.67 | 1.101 | 18.737 | 1.643 | 7.677 | 936.757 |
GHG | 10.84 | 10.072 | 34.77 | 4.340 | 4.309 | 1.856 | 9.006 | 1428.937 |
GIC | 3.669 | 3.333 | 10.408 | 1.612 | 1.576 | 1.611 | 6.259 | 602.169 |
REC | 0.351 | 0.220 | 1.959 | 0.001 | 0.400 | 2.198 | 7.436 | 1118.024 |
Variable | Levin, Lin & Chu t* | ADF-Fisher Chi-Square | PP-Fisher Chi-Square | |||
---|---|---|---|---|---|---|
Statistic | Prob. | Statistic | Prob. | Statistic | Prob. | |
Log per capita GHG | 1.11684 | 0.868 | 80.1813 | 0.0187 | 99.4034 | 0.0003 |
Log per capita GDP | −3.66071 | 0.0001 | 29.3748 | 0.9987 | 28.4487 | 0.9992 |
Log per capita GIC | −4.29757 | 0 | 111.882 | 0 | 113.261 | 0 |
Log per capita REC | −0.22843 | 0.4097 | 28.3064 | 0.9993 | 24.5547 | 0.9999 |
Variable | Quadratic Equation (1) | Cubic Equation (2) | ||||
---|---|---|---|---|---|---|
Coefficient | Std. Error | Prob. | Coefficient | Std. Error | Prob. | |
Const. | 1.027866 | 0.032791 | 0.0000 | 1.080486 | 0.038415 | 0.0000 |
LGDP | 0.079693 | 0.011436 | 0.0000 | 0.010152 | 0.029077 | 0.7271 |
LGDP^2 | −0.034711 | 0.002517 | 0.0000 | −0.001042 | 0.013194 | 0.9371 |
LGDP^3 | - | - | - | −0.004628 | 0.001781 | 0.0096 |
LGIC | 1.085879 | 0.026100 | 0.0000 | 1.072061 | 0.026524 | 0.0000 |
LREC | −0.028384 | 0.005918 | 0.0000 | −0.027303 | 0.005906 | 0.0000 |
Statistics | ||||||
R-squared | 0.980299 | 0.980500 | ||||
S.E. of regression | 0.051307 | 0.051083 | ||||
Durbin-Watson stat | 0.425081 | 0.425116 |
Variable | Quadratic Equation (1) | Cubic Equation (2) | ||||
---|---|---|---|---|---|---|
Coefficient | Std. Error | Prob. | Coefficient | Std. Error | Prob. | |
Const. | 0.736807 | 0.348042 | 0.0346 | 0.487931 | 0.351190 | 0.1652 |
GDP | −0.065589 | 0.008009 | 0.0000 | −0.026337 | 0.013231 | 0.0469 |
GDP^2 | 6.86 × 10−5 | 6.31 × 10−5 | 0.2771 | −0.000907 | 0.000271 | 0.0008 |
GDP^3 | - | - | - | 6.00 × 10−6 | 1.62 × 10−6 | 0.0002 |
GIC | 3.357526 | 0.092212 | 0.0000 | 3.332516 | 0.091578 | 0.0000 |
REC | −1.973848 | 0.380285 | 0.0000 | −1.966560 | 0.376651 | 0.0000 |
Statistics | ||||||
R-squared | 0.972556 | 0.973120 | ||||
S.E. of regression | 0.730559 | 0.723567 | ||||
Durbin-Watson stat | 0.290159 | 0.293170 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sterpu, M.; Soava, G.; Mehedintu, A. Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries. Sustainability 2018, 10, 3327. https://doi.org/10.3390/su10093327
Sterpu M, Soava G, Mehedintu A. Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries. Sustainability. 2018; 10(9):3327. https://doi.org/10.3390/su10093327
Chicago/Turabian StyleSterpu, Mihaela, Georgeta Soava, and Anca Mehedintu. 2018. "Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries" Sustainability 10, no. 9: 3327. https://doi.org/10.3390/su10093327
APA StyleSterpu, M., Soava, G., & Mehedintu, A. (2018). Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries. Sustainability, 10(9), 3327. https://doi.org/10.3390/su10093327