Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. The Model of Typhoon Flood Risk Assessment
3.1.1. The Theory of Typhoon Flood Risk Assessment
3.1.2. Data Acquisition
3.1.3. Establishment of the Indicators System
3.2. The Methods Used in the Typhoon Flood Risk Assessment
3.2.1. GIS Spatial Interpolation
3.2.2. Standardization
3.2.3. Analytic Hierarchy Process (AHP)
3.2.4. The Comprehensive Weighted Evaluation (CWE)
4. Results and Discussions
4.1. Standardization and Weight Determination
4.1.1. Standardization
4.1.2. Determination of Weights
4.2. The risk Assessment of Typhoon Flood Disaster
4.3. Validation
4.4. Remaining Deficiencies and Future Research Direction
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Typhoon Flood Risk | Hazard | Sensitivity | Vulnerability | Restorability |
---|---|---|---|---|
Hazard | 1 | 3 | 3 | 4 |
Sensitivity | 1/3 | 1 | 1 | 3 |
Vulnerability | 1/3 | 1 | 1 | 2 |
Restorability | 1/4 | 1/3 | 1/2 | 1 |
Hazard | Mean Maximum Wind | Mean Daily Rainfall | Frequencies of Heavy Rainfall | Typhoon Frequencies |
---|---|---|---|---|
Mean maximum wind | 1 | 1/5 | 1/8 | 1/2 |
Mean daily rainfall | 5 | 1 | 1/3 | 3 |
Frequency of heavy rainfall | 8 | 3 | 1 | 6 |
Typhoon frequency | 2 | 1/3 | 1/6 | 1 |
Sensitivity | Elevation | Slope | Drainage Density | Vegetation Coverage |
---|---|---|---|---|
Elevation | 1 | 1/3 | 1/7 | 1/2 |
Slope | 3 | 1 | 1/2 | 2 |
Drainage density | 7 | 2 | 1 | 4 |
Vegetation coverage | 2 | 1/2 | 1/4 | 1 |
Vulnerability | Cultivated Land than | Population Density | Industrial Production | Urbanization Density |
---|---|---|---|---|
Cultivated land than | 1 | 1/3 | 1 | 1 |
Population density | 3 | 1 | 4 | 4 |
Industrial production | 1 | 1/4 | 1 | 2 |
Urbanization density | 1 | 1/4 | 1/2 | 1 |
Restorability | Hospital Bed Capacity | Medical Staff Number | Gauging Station Density | GDP Per Capita | Road Density |
---|---|---|---|---|---|
Hospital bed capacity | 1 | 1 | 1/2 | 3 | 3 |
Medical staff number | 1 | 1 | 1/3 | 2 | 2 |
Gauging station density | 2 | 3 | 1 | 4 | 3 |
GDP per capita | 1/3 | 1/2 | 1/4 | 1 | 1/3 |
Road density | 1/3 | 1/2 | 1/3 | 3 | 1 |
References
- Hoque, M.A.-A.; Phinn, S.; Roelfsema, C.; Childs, I. Assessing tropical cyclone risks using geospatial techniques. Appl. Geogr. 2018, 98, 22–33. [Google Scholar] [CrossRef]
- Nott, J. Palaeotempestology: The study of and implications Review article prehistoric tropical cyclones—A review for hazard assessment. Environ. Int. 2004, 30, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, J.; Weindl, H.; Hoppe, P.; Rauch, E.; Schmidt, V. Tropical cyclone hazard assessment using model-based track simulation. Nat. Hazards 2009, 48, 383–398. [Google Scholar] [CrossRef]
- Ren, R.; Yu, D.Q.; Wang, L.X.; Wang, K.; Wang, H.; He, S.Y. Typhoon triggered operation tunnel debris flow disaster in coastal areas of SE China. Geomat. Nat. Hazards Risk 2019, 10, 562–575. [Google Scholar] [CrossRef]
- Ni, X.; Zhang, Q.H.; Ma, D.; Wu, L.G.; Ren, F.M. Climatology and trends of tropical cyclone high wind in mainland China: 1959–2011. J. Geophys. Res. Atmos. 2015, 120, 12378–12393. [Google Scholar] [CrossRef]
- Zhang, X.R.; Li, Y.; Zhang, D.L.; Chen, L.S. A 65-yr Climatology of Unusual Tracks of Tropical Cyclones in the Vicinity of China’s Coastal Waters during 1949–2013. J. Appl. Meteorol. Climatol. 2018, 57, 155–170. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, H. The impact of climate change on coastal geological disasters in southeastern China. Nat. Hazards 2012, 65, 377–390. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.; Xu, S. Composite risk assessment of typhoon-induced disaster for China’s coastal area. Nat. Hazards 2013, 69, 1423–1434. [Google Scholar] [CrossRef]
- Yu, J.H.; Xue, H.X.; Song, J. Tropical cyclone potential hazard in Southeast China and its linkage with the East Asian westerly jet. Asia Pac. J. Atmos. Sci. 2017, 53, 295–304. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, Z.W.; Wang, W.H.; Luo, K. The comprehensive risk evaluation on rainstorm and flood disaster losses in China mainland from 2004 to 2009: Based on the triangular gray correlation theory. Nat. Hazards 2014, 71, 1001–1016. [Google Scholar] [CrossRef]
- Penades-Pla, V.; Garcia-Segura, T.; Marti, J.V.; Yepes, V. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability 2016, 8, 1295. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Shi, J.E. Frequency of typhoon landfall over Guangdong Province of China during the period 1470–1931. Int. J. Climatol. 2000, 20, 183–190. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Chen, Y.D.; Jiang, T. Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China. Nat. Hazards 2011, 57, 267–278. [Google Scholar] [CrossRef]
- Wang, X.N.; Wang, X.W.; Zhai, J.Q.; Li, X.C.; Huang, H.B.; Li, C.M.; Zheng, J.; Sun, H.Y. Improvement to flooding risk assessment of storm surges by residual interpolation in the coastal areas of Guangdong Province, China. Quat. Int. 2017, 453, 1–14. [Google Scholar] [CrossRef]
- Wang, W.; Xun, H.M.; Zhou, M.G.; Jiang, B.F.; Wang, S.W.; Guo, Q.; Kang, R.H.; Wang, X.; Gifty, M.; Ma, W. Impacts of Typhoon ‘Koppu’ on Infectious Diarrhea in Guangdong Province, China. Biomed. Environ. Sci. 2015, 28, 920–923. [Google Scholar]
- Cornell, C.A. Engineering Seismic Risk Analysis. Bull. Seismol. Soc. Am. 1968, 58 (Suppl. 1), 183–188. [Google Scholar]
- Maskrey, A. Disaster Mitigation: A Community Based Approach; Oxfam International: Oxford, UK, 1989. [Google Scholar]
- Blaikie, P.M. Post-modernism and global environmental change. Glob. Environ. Chang. 1996, 6, 81–85. [Google Scholar] [CrossRef]
- Crichton, D. UK and global insurance responses to flood hazard. Water Int. 2002, 27, 119–131. [Google Scholar] [CrossRef]
- De Risi, R.; De Paola, F.; Turpie, J.; Kroeger, T. Life Cycle Cost and Return on Investment as complementary decision variables for urban flood risk management in developing countries. Int. J. Disaster Risk Reduct. 2018, 28, 88–106. [Google Scholar] [CrossRef]
- Williams, A.; Archer, D. The use of historical flood information in the English Midlands to improve risk assessment. Hydrol. Sci. J. 2002, 47, 67–76. [Google Scholar] [CrossRef]
- Polomcic, D.; Bajic, D.; Ratkovic, J. Assessment of Historical Flood Risk to the Groundwater Regime: Case Study of the Kolubara Coal Basin, Serbia. Water 2018, 10, 588. [Google Scholar] [CrossRef]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.R.; Yeh, C.H.; Yu, B.F. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat. Hazards 2011, 59, 1261–1276. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Yi, S.; Tang, Z. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Sci. Total Environ. 2017, 599–600, 1034–1046. [Google Scholar] [CrossRef]
- Ouma, Y.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Sado, K. Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrol. Process. 2000, 14, 605–620. [Google Scholar] [CrossRef]
- Islam, M.D.M.; Sado, K. Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS. Hydrol. Sci. J. 2000, 45, 337–355. [Google Scholar] [CrossRef] [Green Version]
- Du, S.Q.; Van Rompaey, A.; Shi, P.J.; Wang, J.A. A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation. Nat. Hazards 2015, 77, 111–128. [Google Scholar] [CrossRef]
- Li, M.Y.; Wu, W.; Wang, J.; Che, Z.M.; Xie, Y.L. Simulating and mapping the risk of surge floods in multiple typhoon scenarios: A case study of Yuhuan County, Zhejiang Province, China. Stoch. Environ. Res. Risk A 2017, 31, 645–659. [Google Scholar] [CrossRef]
- Yao, L.; Wei, W.; Yu, Y.; Xiao, J.; Chen, L.D. Rainfall-runoff risk characteristics of urban function zones in Beijing using the SCS-CN model. J. Geogr. Sci. 2018, 28, 656–668. [Google Scholar] [CrossRef]
- Yang, X.L.; Ding, J.H.; Hou, H. Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis. Nat. Hazards 2013, 68, 657–674. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, L.; Chen, L.; Wu, J.; Li, J. Risk assessment and validation of flood disaster based on fuzzy mathematics. Prog. Nat. Sci. 2009, 19, 1419–1425. [Google Scholar] [CrossRef]
- Wahab, R.; Tiong, R. Multi-variate residential flood loss estimation model for Jakarta: An approach based on a combination of statistical techniques. Nat. Hazards 2017, 86, 779–804. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Pan, F.F.C. Application of Monte Carlo AHP in ranking dental quality attributes. Expert Syst. Appl. 2009, 36, 2310–2316. [Google Scholar] [CrossRef]
- Dario, A.; Sicim, H.O.; Balikci, E. A new approach for dopant distribution and morphological stability in crystals grown by the axial heat processing (AHP) technique. J. Cryst. Growth 2011, 337, 65–71. [Google Scholar] [CrossRef]
- Ba-Shammakh, M.S. A Decision Support Tool for Multi-Pollutants Reduction in Cement Industry Using Analytic Hierarchy Process (Ahp). Can. J. Chem. Eng. 2011, 89, 1508–1515. [Google Scholar] [CrossRef]
- De Felice, F. Research and applications of AHP/ANP and MCDA for decision making in manufacturing. Int. J. Prod. Res. 2012, 50, 4735–4737. [Google Scholar] [CrossRef] [Green Version]
- Bian, F.L.; Cai, H.Q. Choice of Crack Repairing Material for Asphalt Pavement Based on AHP. J. Test. Eval. 2012, 40, 1144–1147. [Google Scholar] [CrossRef]
- Saeed, M.O.; Ahamad, M.S.S.; Aziz, H.A.; Ahmad, S.Z. An integrated AHP-GIS technique for landfill siting: A case study in Malaysia. Kuwait J. Sci. Eng. 2012, 39, 23–46. [Google Scholar]
- Stefanidis, S.; Stathis, D. Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat. Hazards 2013, 68, 569–585. [Google Scholar] [CrossRef]
- Apel, H.; Thieken, A.H.; Merz, B.; Bloschl, G. Flood risk assessment and associated uncertainty. Nat. Hazards Earth Syst. Sci. 2004, 4, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Kooistra, L.; Huijbregts, M.A.J.; Ragas, A.M.J.; Wehrens, R.; Leuven, R.S.E.W. Spatial variability and uncertainty in ecological risk assessment: A case study on the potential risk of cadmium for the little owl in a Dutch river flood plain. Environ. Sci. Technol. 2005, 39, 2177–2187. [Google Scholar] [CrossRef]
- Cao, C.; Wang, Q.; Chen, J.P.; Ruan, Y.K.; Zheng, L.J.; Song, S.Y.; Niu, C.C. Landslide Susceptibility Mapping in Vertical Distribution Law of Precipitation Area: Case of the Xulong Hydropower Station Reservoir, Southwestern China. Water 2016, 8, 270. [Google Scholar] [CrossRef]
- Huang, C.F.; Da, R.A. Fuzzy risks and an updating algorithm with new observations. Risk Anal. 2008, 28, 681–694. [Google Scholar] [CrossRef]
- Roder, G.; Sofia, G.; Wu, Z.; Tarolli, P. Assessment of Social Vulnerability to Floods in the Floodplain of Northern Italy. Weather Clim. Soc. 2017, 9, 717–737. [Google Scholar] [CrossRef]
- Karagiorgos, K.; Thaler, T.; Heiser, M.; Hubl, J.; Fuchs, S. Integrated flash flood vulnerability assessment: Insights from East Attica, Greece. J. Hydrol. 2016, 541, 553–562. [Google Scholar] [CrossRef]
- National Meteorological Information Center. Available online: http://data.cma.cn/ (accessed on 11 December 2018).
- CMA Tropical Cyclone Data Center. Available online: http://tcdata.typhoon.org.cn/ (accessed on 13 December 2018).
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.Q.; Feng, J.X.; Fan, Y.X.; Zhu, Y.T.; Chen, D.Q. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Resource and Environment Data Cloud Platform. Available online: http://www.resdc.cn/Default.aspx (accessed on 10 December 2018).
- SRTM Data. Available online: http://srtm.csi.cgiar.org/ (accessed on 5 December 2018).
- Guangdong Bureau of Statistics. Available online: http://www.gdstats.gov.cn/ (accessed on 17 December 2018).
- Socioeconomic Data and Applications Center (SEDAC). Available online: http://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed on 15 December 2018).
- OpenStreetMap. Available online: https://www.openstreetmap.org (accessed on 12 December 2018).
- Guo, E.; Zhang, J.; Ren, X.; Zhang, Q.; Sun, Z. Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China. Nat. Hazards 2014, 74, 947–965. [Google Scholar] [CrossRef]
- Wang, Y.M.; Liu, J.; Elhag, T.M.S. An integrated AHP-DEA methodology for bridge risk assessment. Comput. Ind. Eng. 2008, 54, 513–525. [Google Scholar] [CrossRef]
- Tesfamariam, S.; Sadiq, R. Risk-based environmental decision-making using fuzzy analytic hierarchy process (F-AHP). Stoch. Environ. Res. Risk A 2006, 21, 35–50. [Google Scholar] [CrossRef]
- Li, F.W.; Phoon, K.K.; Du, X.L.; Zhang, M.J. Improved AHP Method and Its Application in Risk Identification. J. Constr. Eng. Manag. 2013, 139, 312–320. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J. Clean. Prod. 2018, 196, 216–229. [Google Scholar] [CrossRef]
- Zuo, R.; Chen, X.J.; Li, X.B.; Shan, D.; Yang, J.; Wang, J.S.; Teng, Y.G. Distribution, genesis, and pollution risk of ammonium nitrogen in groundwater in an arid loess plain, northwestern China. Environ. Earth Sci. 2017, 76, 629. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Hajkowicz, S.; Collins, K. A review of multiple criteria analysis for water resource planning and management. Water Resour. Manag. 2007, 21, 1553–1566. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- De Risi, R.; Jalayer, F.; De Paola, F. Meso-scale hazard zoning of potentially flood prone areas. J. Hydrol. 2015, 527, 316–325. [Google Scholar] [CrossRef]
Assessment Objectives | Consistency Ratio (CR) | Weight | |
---|---|---|---|
Comprehensive risk | 0.0235 | 4.0627 | 1.0000 |
Hazard risk | 0.0179 | 4.0477 | 0.5074 |
Sensitivity risk | 0.0029 | 4.0078 | 0.2108 |
Vulnerability risk | 0.0268 | 4.0716 | 0.1858 |
Restorability risk | 0.0451 | 5.2019 | 0.0960 |
Aspect | Indicator | Aspect Weight | Overall Weight | Aspect | Indicator | Weight | Overall Weight |
---|---|---|---|---|---|---|---|
Hazard (0.5074) | Frequency of heavy rainfall | 0.5871 | 0.2979 | Vulnerability (0.1858) | Population density | 0.5402 | 0.1004 |
Mean daily rainfall | 0.2560 | 0.1299 | Industrial production | 0.1767 | 0.0328 | ||
Typhoon frequency | 0.0991 | 0.0503 | Cultivated land | 0.1568 | 0.0291 | ||
Mean maximum wind | 0.0578 | 0.0293 | Urbanization density | 0.1262 | 0.0235 | ||
Sensitivity (0.2108) | Drainage density | 0.5305 | 0.1118 | Restorability (0.0960) | Gauging station density | 0.3943 | 0.0378 |
Slope | 0.2556 | 0.0539 | Hospital bed capacity | 0.2280 | 0.0219 | ||
Vegetation coverage | 0.1374 | 0.0290 | Medical staff number | 0.1774 | 0.0170 | ||
Elevation | 0.0765 | 0.0161 | Road density | 0.1261 | 0.0121 | ||
GDP per capita | 0.0742 | 0.0071 |
Four Aspects | Risk Value Range | Level | Coverage (%) |
---|---|---|---|
The severity of hazard causing factors | 0.04–0.20 | Very low | 14.82 |
0.20–0.35 | Low | 28.72 | |
0.35–0.50 | Medium | 22.93 | |
0.50–0.65 | High | 18.97 | |
0.65–0.90 | Very high | 14.56 | |
The sensitivity of the hazard breeding environment | 0.16–0.50 | Very low | 13.76 |
0.50–0.60 | Low | 32.14 | |
0.60–0.70 | Medium | 37.51 | |
0.70–0.80 | High | 13.98 | |
0.80–0.96 | Very high | 2.61 | |
The vulnerability of hazard bearing objects | 0–0.10 | Very low | 69.99 |
0.10–0.20 | Low | 24.70 | |
0.20–0.30 | Medium | 4.45 | |
0.30–0.40 | High | 0.70 | |
0.40–0.80 | Very high | 0.16 | |
The capability for hazard prevention and mitigation | 0.16–0.40 | Very low | 1.66 |
0.40–0.60 | Low | 3.21 | |
0.60–0.75 | Medium | 15.09 | |
0.75–0.85 | High | 39.91 | |
0.85–1.00 | Very high | 40.13 |
Typhoon Flood Risk Value Range | Level | Coverage (%) |
---|---|---|
0.17–0.32 | Very low | 16.63 |
0.32–0.40 | Low | 30.37 |
0.40–0.47 | Medium | 18.82 |
0.47–0.55 | High | 19.77 |
0.55–0.80 | Very high | 14.41 |
City | Very Low Risk (%) | Low Risk (%) | Medium Risk (%) | High Risk (%) | Very High Risk (%) | Main Level |
---|---|---|---|---|---|---|
Shantou | 0.00 | 0.00 | 0.00 | 2.55 | 97.45 | Very high |
Jieyang | 0.00 | 0.00 | 0.30 | 10.15 | 89.55 | Very high |
Zhanjiang | 0.00 | 0.00 | 0.00 | 13.66 | 86.34 | Very high |
Shanwei | 0.00 | 0.00 | 2.95 | 41.30 | 55.76 | Very high |
Zhuhai | 0.00 | 0.00 | 14.06 | 85.94 | 0.00 | High |
Zhongshan | 0.00 | 0.00 | 13.06 | 84.34 | 2.60 | High |
Dongguan | 0.00 | 0.00 | 16.59 | 82.32 | 1.09 | High |
Shenzhen | 0.00 | 0.00 | 11.83 | 68.56 | 19.61 | High |
Yangjiang | 0.00 | 1.97 | 20.19 | 65.54 | 12.30 | High |
Jiangmen | 0.00 | 0.00 | 8.49 | 59.84 | 31.66 | High |
Chaozhou | 0.00 | 4.69 | 26.12 | 49.20 | 19.99 | High |
Huizhou | 0.02 | 16.43 | 40.62 | 42.88 | 0.05 | High |
Maoming | 0.00 | 20.95 | 31.47 | 39.48 | 8.10 | High |
Foshan | 0.00 | 6.32 | 65.81 | 27.79 | 0.08 | Medium |
Meizhou | 0.00 | 39.64 | 49.31 | 10.04 | 1.02 | Medium |
Zhaoqing | 6.71 | 77.12 | 16.17 | 0.00 | 0.00 | Low |
Heyuan | 12.95 | 66.45 | 19.44 | 1.16 | 0.00 | Low |
Yunfu | 0.10 | 60.76 | 37.58 | 1.56 | 0.00 | Low |
Guangzhou | 4.49 | 58.59 | 26.81 | 10.11 | 0.00 | Low |
Qingyuan | 56.91 | 42.94 | 0.14 | 0.00 | 0.00 | Very low |
Shaoguan | 82.06 | 17.94 | 0.00 | 0.00 | 0.00 | Very low |
Four cities with more than 50% of very high risk | Percentage (%) |
Shantou | 97.45 |
Jieyang | 89.55 |
Zhanjiang | 86.34 |
Shanwei | 55.76 |
Six cities with more than 50% of high risk areas | Percentage (%) |
Zhuhai | 85.94 |
Zhongshan | 84.34 |
Dongguan | 82.32 |
Shenzhen | 68.56 |
Yangjiang | 65.54 |
Jiangmen | 59.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, Y. Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China. Sustainability 2019, 11, 2738. https://doi.org/10.3390/su11102738
Zhang J, Chen Y. Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China. Sustainability. 2019; 11(10):2738. https://doi.org/10.3390/su11102738
Chicago/Turabian StyleZhang, Jiayang, and Yangbo Chen. 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China" Sustainability 11, no. 10: 2738. https://doi.org/10.3390/su11102738