Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling and Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reicosky, D.C.; Sauer, T.J.; Hatfield, J.L. Challenging balance between productivity and environmental quality: Tillage impacts. In Soil Management: Building a Stable Base for Agriculture; Hartfield, J.L., Sauer, T.J., Eds.; Agronomy Society of America: Madison, WI, USA, 2011; pp. 13–37. [Google Scholar]
- Kasper, T.C.; Singer, J.W. The use of cover crops to manage soil. In Soil Management: Building a Stable Base for Agriculture; Hartfield, J.L., Sauer, T.J., Eds.; Agronomy Society of America: Madison, WI, USA, 2011; pp. 321–337. [Google Scholar]
- Walker, S.; Stigter, E.; Ofori, E.; Kyei-Baffour, N. Intercropping and its implication for soil management. In Soil Management: Building a Stable Base for Agriculture; Hartfield, J.L., Sauer, T.J., Eds.; Agronomy Society of America: Madison, WI, USA, 2011; pp. 339–350. [Google Scholar]
- Omay, A.B.; Rice, C.W.; Maddux, L.D.; Gordon, W.B. Changes in Soil Microbial and Chemical Properties under Long-term Crop Rotation and Fertilization. Soil Sci. Soc. Am. J. 1997, 61, 1672–1678. [Google Scholar] [CrossRef]
- Martens, D.A. Nitrogen cycling under different soil management systems. Adv. Agron. 2001, 70, 143–192. [Google Scholar]
- Abreu, S.L.; Godsey, C.B.; Edwards, J.T.; Warren, J.G. Assessing carbon and nitrogen stocks of no-till systems in Oklahoma. Soil Till. Res. 2011, 117, 28–33. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M. Conservation tillage for carbon sequestration. Nutr. Cycl. Agroecosyst. 1997, 49, 243–253. [Google Scholar] [CrossRef]
- Allmaras, R.R.; Schomberg, H.H.; Douglas, C.L.; Dao, T.H. Soil organic carbon sequestration potential of adopting conservation tillage in U.S. croplands. J. Soil Water Conserv. 2000, 55, 365–373. [Google Scholar]
- Follett, R.F. Soil management concepts and carbon sequestration in cropland soils. Soil Till. Res. 2001, 61, 77–92. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Lal, R. Agricultural activities and the global carbon cycle. Nutr. Cycl. Agroecosyst. 2004, 70, 103–116. [Google Scholar] [CrossRef]
- Carter, M.R. Long-term tillage effects on cool-season soybean in rotation with barley, soil properties and carbon and nitrogen storage for fine sandy loams in the humid climate of Atlantic Canada. Soil Till. Res. 2005, 81, 109–120. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Basso, B.; Kravchenko, A.N.; Robertson, G.P. Contemporary Evidence of Soil Carbon Loss in the U.S. Corn Belt. Soil Sci. Soc. Am. J. 2009, 73, 2078–2086. [Google Scholar] [CrossRef]
- López-Bellido, L.; Fuentes, M.; Castillo, J.E.; López-Garrido, F.J.; Fernández, E.J. Long-Term Tillage, Crop Rotation, and Nitrogen Fertilizer Effects on Wheat Yield under Rainfed Mediterranean Conditions. Agron. J. 1996, 88, 783–791. [Google Scholar] [CrossRef]
- Campbell, C.A.; McConkey, B.G.; Zentner, R.P.; Selles, F.; Curtin, D. Long-term effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Can. J. Soil Sci. 1996, 76, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Potter, K.N.; Torbert, H.A.; Jones, O.R.; Matocha, J.E.; Morrison, J.E., Jr.; Unger, P.W. Distribution and amount of soil organic C in long-term management systems in Texas. Soil Till. Res. 1998, 47, 309–321. [Google Scholar] [CrossRef]
- Ashraf, M.; Mahmood, T.; Azam, F.; Qureshi, R.M. Comparative effects of applying leguminous and non-leguminous green manures and inorganic N on biomass yield and nitrogen uptake in flooded rice (Oryza sativa L.). Biol. Fert. Soils 2004, 40, 147–152. [Google Scholar] [CrossRef]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Agricultural management practices to sustain crop yields and improve soil and environmental qualities. Sci. World J. 2003, 3, 768–789. [Google Scholar] [CrossRef]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Biculture legume–cereal cover crops for enhanced biomass yield and carbon and nitrogen. Agron. J. 2005, 97, 1403–1412. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Liang, B.C.; Ellert, B.H.; Drury, C.F. Fertilization effects on soil organic matter turnover and corn residue C storage. Soil Sci. Soc. Am. J. 1996, 60, 472. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Nkongolo, N.V.; Zaibon, S. Soil hydraulic properties: Influence of tillage and cover crops. Pedosphere 2018, 28, 430–442. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V.; Anderson, S.H.; Eivazi, F.; Zaibon, S. In situ infiltration influenced by cover crop and tillage management. J. Soil Water Conserv. 2018, 73, 164–172. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Nkongolo, N.V.; Reinbott, T.; Zaibon, S. Soil thermal properties influenced by perennial biofuel and cover crop management. Soil Sci. Soc. Am. J. 2017, 81, 1147–1156. [Google Scholar] [CrossRef]
- Hussain, I.; Olson, K.R.; Ebelhar, S.A. Long-term tillage effects on soil chemical properties and organic matter fractions. Soil Sci. Soc. Am. J. 1999, 63, 1335–1341. [Google Scholar] [CrossRef]
- Jokela, W.; Posner, J.; Hedtcke, J.; Balser, T.; Read, H. Midwest Cropping System Effects on Soil Properties and on a Soil Quality Index. Agron. J. 2011, 103, 1552–1562. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V. Effects of tillage, rotation and cover crop on the physical properties of a silt-loam soil. Int. Agrophys. 2015, 29, 137–145. [Google Scholar] [CrossRef]
- Dane, J.H.; Hopmans, J.W. Water retention and storage. In Methods of Soil Analysis; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 671–717. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of soil organic matter by weight Loss-On Ignition. In Soil Organic Matter: Analysis and Interpretation; Magdoff, F.R., Tabatabai, M.R., Hanlon, E.A., Jr., Eds.; Special publication Soil Science Society of America: Madison, WI, USA, 1996; pp. 21–32. [Google Scholar]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Reji, P.M.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, S.K. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012, 10, 1155–1165. [Google Scholar]
- Barak, P.; Jobe, B.O.; Krueger, A.R.; Peterson, L.A.; Laird, D.A. Effects of long-term soil acidification due to nitrogen inputs in Wisconsin. Plant Soil 1997, 197, 61–69. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Mikha, M.M.; Presley, D.R.; Claassen, M.M. Addition of cover crops enhances no-till potential for improving soil physical properties. Soil Sci. Soc. Am. J. 2011, 75, 1471–1478. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Kemper, W.D.; Langdale, G.W.; Douglas, C.L.; Rasmussen, P.E. Soil organic matter changes resulting from tillage and biomass production. J. Soil Water Conserv. 1995, 50, 253–261. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K. Aggregate and Soil Organic Matter Dynamics under Conventional and No-Tillage Systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till. Res. 2000, 53, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till. Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Joyce, B.A.; Wallender, W.W.; Mitchell, J.P.; Huyck, L.M.; Temple, S.R.; Brostrom, P.N.; Hsiao, T.C. Infiltration and soil water storage under winter cover cropping in California’s Sacramento Valley. Trans. ASAE 2002, 45, 315–326. [Google Scholar] [CrossRef]
- Eckert, D.J. Chemical attributes of soils subjected to no-till cropping with rye cover crops. Soil Sci. Soc. Am. J. 1991, 55, 405–409. [Google Scholar] [CrossRef]
- Duiker, S.W.; Hartwig, N.L. Living mulches of legumes in imidazolinone-resistant corn. Agron. J. 2004, 96, 1021–1028. [Google Scholar] [CrossRef]
- Bayer, C.; Mielniczuk, J.; Amado, T.J.C.; Martin-Neto, L.; Fernandes, S.V. Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Till. Res. 2000, 54, 101–109. [Google Scholar] [CrossRef]
Treatment | pH | OM (%) | TC (%) | C/N | CEC (Cmol kg−1) | Base Saturation (%) | |||
Mg | Ca | Na | |||||||
Tillage (TL) | |||||||||
No-Till | 6.78 a | 1.69 a | 0.91 a | 8.95 b | 14.22 a | 22.90 a | 65.16 a | 0.95 a | |
Conventional Tillage | 6.79 a | 1.64 a | 1.02 a | 9.28 a | 14.81 a | 22.48 a | 65.81 a | 0.96 a | |
Depth of Sampling (DS) | |||||||||
0–10 cm | 6.71 a | 1.66 a | 0.93 a | 9.05 a | 14.57 a | 22.43 a | 64.06 c | 0.96 a | |
10–20 cm | 6.80 a | 1.66 a | 0.91 a | 9.07 a | 15.09 a | 22.81 a | 65.88 b | 0.90 a | |
20–40 cm | 6.79 a | 1.65 a | 0.93 a | 9.15 a | 13.88 a | 22.52 a | 65.49 b | 0.97 a | |
40–60 cm | 6.85 a | 1.68 a | 1.08 a | 9.18 a | 14.53 a | 22.99 a | 66.49 a | 0.94 a | |
Analysis of variance | Base Saturation (%) | ||||||||
Sources of variation | df | pH | OM | TC | C/N | CEC | Mg | Ca | Na |
Block | 2 | p-values | |||||||
TL | 1 | 0.830 | 0.368 | 0.202 | 0.001 | 0.109 | 0.337 | 0.258 | 0.834 |
DS | 3 | 0.288 | 0.982 | 0.456 | 0.722 | 0.137 | 0.788 | 0.023 | 0.326 |
Interactions | |||||||||
TL × DS | 3 | 0.732 | 0.633 | 0.593 | 0.097 | 0.685 | 0.823 | 0.398 | 0.837 |
Error (MS) | 182 | 0.136 | 0.129 | 0.352 | 0.412 | 6.328 | 9.078 | 15.84 | 12.93 |
Total | 191 |
Treatments | pH | OM (%) | TC (%) | C/N | CEC (Cmol kg−1) | Base Saturation (%) | |||
Mg | Ca | Na | |||||||
Tillage (TL) | |||||||||
No-Till | 6.76 b | 1.50 a | 0.90 a | 8.58 a | 13.66 a | 22.31 b | 64.80 a | 1.10 a | |
Conventional Tillage | 6.89 a | 1.47 a | 0.89 a | 8.87 a | 13.39 a | 23.65 a | 65.09 a | 1.25 a | |
Crop Rotation (CR) | |||||||||
Continuous Corn | 6.86 a | 1.56 ab | 0.96 a | 8.87 a | 13.59 a | 23.38 a b | 64.88 a | 1.22 a | |
Continuous Soybean | 6.84 a | 1.36 c | 0.84 b | 8.84 a | 13.23 a | 22.77 a b | 65.29 a | 1.31 a | |
Corn Soy rotation | 6.74 a | 1.41 bc | 0.84 b | 8.74 ab | 13.49 a | 22.25 b | 64.67 a | 1.11 a | |
Soybean-Corn rotation | 6.85 a | 1.62 a | 0.95 a | 8.28 b | 13.80 a | 23.50 a | 65.14 a | 1.06 a | |
Cover Crop (CC) | |||||||||
No-Rye | 6.83 a | 1.42 b | 0.87 a | 8.48 b | 13.10 b | 22.75 a | 65.21 a | 1.18 a | |
Rye | 6.81 a | 1.56 a | 0.93 a | 8.88 a | 13.95 a | 23.20 a | 64.68 a | 1.17 a | |
Depth of Sampling (DS) | |||||||||
0–10 cm | 6.34 b | 1.88 a | 1.10 a | 9.08 a | 13.62 b | 20.09 b | 60.15 b | 1.11 a | |
10–20 cm | 6.93 a | 1.20 c | 0.78 c | 9.04 a | 12.40 c | 23.24 a | 65.73 a | 1.15 a | |
20–40 cm | 7.04 a | 1.34 b | 0.77 c | 8.27 b | 12.74 c | 24.15 a | 67.08 a | 1.26 a | |
40–60 cm | 6.98 a | 1.54 b | 0.94 b | 8.34 b | 15.33 a | 24.42 a | 66.82 a | 1.19 a | |
Analysis of variance | Base Saturation (%) | ||||||||
Sources of variation | df | pH | OM | TC | C/N | CEC | Mg | Ca | Na |
Block | 2 | p-values | |||||||
TL | 1 | 0.0193 | 0.6674 | 0.7415 | 0.2478 | 0.4181 | 0.0022 | 0.5759 | 0.1708 |
CR | 3 | 0.409 | 0.0056 | 0.0163 | 0.0812 | 0.6691 | 0.1435 | 0.763 | 0.3732 |
CC | 1 | 0.7479 | 0.015 | 0.0949 | 0.0186 | 0.0103 | 0.2961 | 0.298 | 0.9729 |
DS | 3 | 0.0001 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.8147 |
Interactions | |||||||||
TL × CC | 1 | 0.6365 | 0.8491 | 0.3019 | 0.0223 | 0.9515 | 0.7127 | 0.4469 | 0.4579 |
CR × CC | 3 | 0.0013 | 0.2716 | 0.1600 | 0.5863 | 0.3058 | 0.0009 | 0.2509 | 0.7655 |
TL × CC × DS | 3 | 0.8129 | 0.0973 | 0.0076 | 0.3105 | 0.0730 | 0.8888 | 0.8115 | 0.6116 |
Lack of fit | 42 | ||||||||
Error (MS) | 135 | 0.1451 | 0.1672 | 0.0633 | 1.366 | 5.0535 | 8.847 | 12.41 | 0.581 |
Total | 191 |
Treatments | pH | OM (%) | TC (%) | C/N | CEC (Cmol kg−1) | Base Saturation (%) | |||
Mg | Ca | Na | |||||||
Tillage (TL) | |||||||||
No-Till | 7.00 a | 1.68 a | 0.92 a | 8.79 a | 11.68 a | 24.45 b | 66.30 a | 0.63 a | |
Conventional Tillage | 7.02 a | 1.61 b | 0.85 b | 8.48 b | 11.95 a | 25.44 a | 65.04 b | 0.60 a | |
Crop Rotation (CR) | |||||||||
Continuous Corn | 6.97 a | 1.64 ab | 0.90 a | 8.63 a | 11.80 ab | 24.61 a | 65.76 a | 0.63 a | |
Continuous Soybean | 7.03 a | 1.56 b | 0.83 b | 8.61 a | 11.29 b | 24.81 a | 66.18 a | 0.62 a | |
Corn Soy rotation | 6.99 a | 1.70 a | 0.92 a | 8.73 a | 12.04 a | 24.56 a | 66.04 a | 0.63 a | |
Soybean-Corn rotation | 7.04 a | 1.69 a | 0.89 a | 8.56 a | 12.13 a | 25.81 a | 65.10 a | 0.59 a | |
Cover Crop (CC) | |||||||||
No-Rye | 7.05 a | 1.57 b | 0.86 b | 8.64 a | 11.23 b | 24.69 a | 66.06 a | 0.65 a | |
Rye | 6.97 a | 1.72 a | 0.91 a | 8.63 a | 12.40 a | 25.20 a | 65.48 a | 0.58 b | |
Depth of Sampling (DS) | |||||||||
0–10 cm | 6.80 c | 1.78 a | 0.99 a | 9.03 a | 11.34 c | 23.60 b | 64.28 b | 0.59 a | |
10–20 cm | 7.10 ab | 1.47 c | 0.80 c | 8.77 a | 11.46 c | 25.30 a | 65.97 a | 0.64 a | |
20–40 cm | 7.13 a | 1.64 b | 0.88 b | 8.44 b | 11.95 b | 25.26 a | 66.85 a | 0.64 a | |
40–60 cm | 7.00 b | 1.69 ab | 0.88 b | 8.30 b | 12.83 a | 25.63 a | 65.98 a | 0.60 | |
Analysis of variance | Base Saturation (%) | ||||||||
Sources of variation | df | pH | OM | TC | C/N | CEC | Mg | Ca | Na |
Block | 2 | p-values | |||||||
TL | 1 | 0.7308 | 0.0483 | 0.0067 | 0.0041 | 0.1681 | 0.0108 | 0.0014 | 0.290 |
CR | 3 | 0.5717 | 0.0366 | 0.0307 | 0.7017 | 0.0115 | 0.0764 | 0.097 | 0.707 |
CC | 1 | 0.0634 | 0.0001 | 0.0278 | 0.9681 | 0.0001 | 0.1825 | 0.0771 | 0.006 |
DS | 3 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.001 | 0.0001 | 0.277 |
Interactions | |||||||||
TL × CR | 3 | 0.3434 | 0.1902 | 0.0304 | 0.3479 | 0.0078 | 0.1873 | 0.3443 | 0.126 |
CR × CC | 3 | 0.0028 | 0.5676 | 0.3786 | 0.6106 | 0.0038 | 0.0036 | 0.7357 | 0.009 |
TL × CR × CC | 3 | 0.0502 | 0.7325 | 0.9003 | 0.8452 | 0.1135 | 0.081 | 0.5155 | 0.0053 |
Lack of fit | 37 | ||||||||
Error (MS) | 135 | 0.0859 | 0.0670 | 0.0274 | 0.5458 | 1.802 | 6.985 | 5.147 | 0.0273 |
Total | 191 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haruna, S.I.; Nkongolo, N.V. Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties. Sustainability 2019, 11, 2770. https://doi.org/10.3390/su11102770
Haruna SI, Nkongolo NV. Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties. Sustainability. 2019; 11(10):2770. https://doi.org/10.3390/su11102770
Chicago/Turabian StyleHaruna, Samuel I., and Nsalambi V. Nkongolo. 2019. "Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties" Sustainability 11, no. 10: 2770. https://doi.org/10.3390/su11102770
APA StyleHaruna, S. I., & Nkongolo, N. V. (2019). Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties. Sustainability, 11(10), 2770. https://doi.org/10.3390/su11102770