Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Research Method
2.3.1. Land-Use Change and Landscape Pattern Analysis
2.3.2. Habitat Quality Module in InVEST and Its Parameterization
2.3.3. Hotspots Analysis
3. Results
3.1. Land-Use Change in TLB from 1985 to 2015
3.1.1. Spatial-Temporal Characteristics of Land-Use Change
3.1.2. Land-Use Transition Matrix
3.1.3. Landscape Pattern Index Change
3.2. Habitat Quality
3.3. Hotspots Identification of Habitat Quality
4. Discussion
4.1. Habitat Degradation Change Associated with LUCC
4.2. Linking Habitat Quality, Land Use, and Human Well-Being
4.3. Policy Implication
4.4. Research Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, M.; Aschonitis, V.G.; Gissi, E.; Castaldelli, G.; Fano, E.A. Land use change effects on ecosystem services of river deltas and coastal wetlands: Case study in Volano–Mesola–Goro in Po river delta (Italy). Wetl. Ecol. Manag. 2017, 25, 67–86. [Google Scholar] [CrossRef]
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W.; et al. Biodiversity Conservation: Challenges Beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.-S.; Cao, Q.-W.; Shi, S.-Q.; Huang, X.-L.; Lu, Z.-Q. Spatio-temporal variability of habitat quality in Beijing-Tianjin-Hebei Area based on land use change. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2015, 26, 3457–3466. [Google Scholar] [CrossRef]
- Liu, D.; Liang, X.; Chen, H.; Zhang, H.; Mao, N. A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China. Sustainability 2018, 10, 3239. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, L.; Liu, J.X.; Zhuang, Z.Z.; Huang, Q.H.; Li, M.C. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Carvalho, R.; Mira, A.; Beja, P. Assessing landscape functional connectivity in a forest carnivore using path selection functions. Landsc. Ecol. 2016, 31, 1021–1036. [Google Scholar] [CrossRef]
- Fuller, T.; Sanchez-Cordero, V.; Illoldi-Rangel, P.; Linaje, M.; Sarkar, S. The cost of postponing biodiversity conservation in Mexico. Biol. Conserv. 2007, 134, 593–600. [Google Scholar] [CrossRef]
- Long, H.L.; Liu, Y.Q.; Hou, X.G.; Li, T.T.; Li, Y.R. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.7.0.post9+ug.h12fcefd18548 User’s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2018; Available online: http://releases.naturalcapitalproject.org/invest-userguide/latest/InVEST_3.7.0.post10+h2ce175de3cea_Documentation.pdf (accessed on 4 May 2019).
- McKinney, M.L. Urbanization, biodiversity, and conservation. Bioscience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Cotter, M.; Häuser, I.; Harich, F.K.; He, P.; Sauerborn, J.; Treydte, A.C.; Martin, K.; Cadisch, G. Biodiversity and ecosystem services−A case study for the assessment of multiple species and functional diversity levels in a cultural landscape. Ecol. Indic. 2017, 75, 111–117. [Google Scholar] [CrossRef]
- Parkes, M. Personal commentaries on “Ecosystems and human well-being: Health synthesis—A report of the Millennium Ecosystem Assessment”. Ecohealth 2006, 3, 136–140. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, J.; Kuang, W.; Ouyang, Z. Disturbance impacts of land use change on biodiversity conservation priority areas across China during 1990-2010. Acta Geogr. Sin. 2014, 69, 1640–1650. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area—A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, L.; Li, Y. Increased Dependence of Humans on Ecosystem Services and Biodiversity. PLoS ONE 2010, 5, e13113. [Google Scholar] [CrossRef] [PubMed]
- Petrosillo, I.; Zaccarelli, N.; Semeraro, T.; Zurlini, G. The effectiveness of different conservation policies on the security of natural capital. Landsc. Urban Plan. 2009, 89, 49–56. [Google Scholar] [CrossRef]
- Romero-Calcerrada, R.; Luque, S. Habitat quality assessment using Weights-of-Evidence based GIS modelling: The case of Picoides tridactylus as species indicator of the biodiversity value of the Finnish forest. Ecol. Model. 2006, 196, 62–76. [Google Scholar] [CrossRef]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.F.; Su, Y.F.; Xu, J.C. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Chang. 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Donald, P.F.; Green, R.E.; Heath, M.F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.R.V.; Roth, C.L.; Carlson, B.L.; Smart, M.D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proc. Natl. Acad. Sci. USA 2016, 113, 10430–10435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Qiao, F.; Jiang, L. Effects of Land Use Pattern Change on Regional Scale Habitat Quality Based on InVEST Modela Case Study in Beijing. Acta Sci. Nat. Univ. Pekin. 2016, 52, 553–562. [Google Scholar] [CrossRef]
- He, J.; Huang, J.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Yan, S.; Wang, X.; Cai, Y.; Li, C.; Yan, R.; Cui, G.; Yang, Z. An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China. sustainability 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Ochoa, V.; Urbina-Cardona, N. Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges. Ecosyst. Serv. 2017, 26, 155–169. [Google Scholar] [CrossRef]
- Huang, L.; Liao, F.H.; Lohse, K.A.; Larson, D.M.; Fragkias, M.; Lybecker, D.L.; Baxter, C.V. Land conservation can mitigate freshwater ecosystem services degradation due to climate change in a semiarid catchment: The case of the Portneuf River catchment, Idaho, USA. Sci. Total Environ. 2019, 651, 1796–1809. [Google Scholar] [CrossRef]
- Meisch, C.; Schirpke, U.; Huber, L.; Rudisser, J.; Tappeiner, U. Assessing Freshwater Provision and Consumption in the Alpine Space Applying the Ecosystem Service Concept. Sustainability 2019, 11, 16. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Liu, J.; Hu, H. Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Sci. Total Environ. 2018, 634, 1601–1614. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecol. Indic. 2014, 36, 552–562. [Google Scholar] [CrossRef]
- Wu, C.F.; Lin, Y.P.; Chiang, L.C.; Huang, T. Assessing highway’s impacts on landscape patterns and ecosystem services: A case study in Puli Township, Taiwan. Landsc. Urban Plan. 2014, 128, 60–71. [Google Scholar] [CrossRef]
- Li, F.; Wang, L.; Chen, Z.; Clarke, K.C.; Li, M.; Jiang, P. Extending the SLEUTH model to integrate habitat quality into urban growth simulation. J. Environ. Manag. 2018, 217, 486–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleupner, C.; Link, P.M. Potential impacts on important bird habitats in Eiderstedt (Schleswig-Holstein) caused by agricultural land use changes. Appl. Geogr. 2008, 28, 237–247. [Google Scholar] [CrossRef]
- Wang, Y.T.; Li, X.; Sun, M.X.; Yu, H.J. Managing urban ecological land as properties: Conceptual model, public perceptions, and willingness to pay. Resour. Conserv. Recycl. 2018, 133, 21–29. [Google Scholar] [CrossRef]
- Ai, J.Y.; Sun, X.; Feng, L.; Li, Y.F.; Zhu, X.D. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China. Front. Earth Sci. 2015, 9, 531–545. [Google Scholar] [CrossRef]
- Xu, X.B.; Yang, G.S.; Tan, Y.; Tang, X.G.; Jiang, H.; Sun, X.X.; Zhuang, Q.L.; Li, H.P. Impacts of land use changes on net ecosystem production in the Taihu Lake Basin of China from 1985 to 2010. J. Geophys. Res. Biogeosci. 2017, 122, 690–707. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial–temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Sun, X.; Xiong, S.; Zhu, X.; Zhu, X.; Li, Y.; Li, B.L. A new indices system for evaluating ecological-economic-social performances of wetland restorations and its application to Taihu Lake Basin, China. Ecol. Model. 2015, 295, 216–226. [Google Scholar] [CrossRef]
- Guo, L. Doing battle with the green monster of Taihu Lake. Science 2007, 317, 1166. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.X.; Zhang, L.M.; Zhuang, Q.L.; Yu, D.S.; Shi, X.Z.; Xing, S.H.; Xiong, D.Z.; Liu, Y.L. Quantification of the soil organic carbon balance in the Tai-Lake paddy soils of China. Soil Tillage Res. 2016, 155, 95–106. [Google Scholar] [CrossRef]
- Yin, Y.X.; Xu, Y.P.; Chen, Y. Relationship between flood/drought disasters and ENSO from 1857 to 2003 in the Taihu Lake basin, China. Quat. Int. 2009, 208, 93–101. [Google Scholar] [CrossRef]
- Liu, G.L.; Zhang, L.C.; Zhang, Q.; Musyimi, Z. The response of grain production to changes in quantity and quality of cropland in Yangtze River Delta, China. J. Sci. Food Agric. 2015, 95, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.B.; Yang, G.S.; Tan, Y.; Zhuang, Q.L.; Li, H.P.; Wan, R.R.; Su, W.Z.; Zhang, J. Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020. Sci. Total Environ. 2016, 554, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.N.; Gu, Y.Y.; Zou, C.X.; Xu, D.L.; Wang, L.; Ye, X.; Yang, Y.; Huang, X.F. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cai, Y.; Yu, M.; Gong, L.; An, S. Assessment of river habitat quality in Yixing district of Taihu Lake basin. Chin. J. Ecol. 2012, 31, 1288–1295. [Google Scholar] [CrossRef]
- Gaglio, M.; Lanzoni, M.; Nobili, G.; Viviani, D.; Castaldelli, G.; Fano, E.A. Ecosystem services approach for sustainable governance in a brackish water lagoon used for aquaculture. J. Environ. Plan. Manag. 2019, 1–24. [Google Scholar] [CrossRef]
- Adger, W.N.; Adams, H.; Kay, S.; Nicholls, R.J.; Hutton, C.W.; Hanson, S.E.; Rahman, M.M.; Salehin, M. Ecosystem Services, Well-Being and Deltas: Current Knowledge and Understanding. Ecosyst. Serv. Well-Being Deltas 2018, 1. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Su, C.H.; Forsius, M. Linking ecosystem processes and ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Wang, C.; Bi, J. TMDL development for the Taihu Lake’s influent rivers, China using variable daily load expressions. Stoch. Environ. Res. Risk Assess. 2016, 30, 1–11. [Google Scholar] [CrossRef]
- Qiao, X.M.; Gu, Y.Y.; Zou, C.X.; Wang, L.; Luo, J.H.; Huang, X.F. Trade-offs and Synergies of Ecosystem Services in the Taihu Lake Basin of China. Chin. Geogr. Sci. 2018, 28, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Taihu Basin Authority of Ministry of Water Resources. Taihu Basin and Southeast Rivers Water Resource Bulletin. Available online: http://www.tba.gov.cn/contents/44/14716.html (accessed on 4 May 2019).
- Su, W.Z.; Gu, C.L.; Yang, G.S.; Chen, S.; Zhen, F. Measuring the impact of urban sprawl on natural landscape pattern of the Western Taihu Lake watershed, China. Landsc. Urban Plan. 2010, 95, 61–67. [Google Scholar] [CrossRef]
- Zhou, S.; Du, A.; Bai, M. Application of the environmental Gini coefficient in allocating water governance responsibilities: A case study in Taihu Lake Basin, China. Water Sci. Technol. 2015, 71, 1047–1055. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, Z.X.; Xu, X.L.; Kuang, W.H.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Yu, D.S.; Wu, S.X.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Xu, X.L.; Pang, Z.G.; Wang, X.F. Spatial-Temporal Pattern Analysis of Land Use/Cover; Scientific and Technical Documentation Press: Beijing, China, 2014. [Google Scholar]
- Liu, J.Y.; Zhang, Z.X.; Zhuang, D.F.; Zhang, S.W.; Li, X.B. Remote Sensing Information Study of Land Use Change in China in 1990s; Sciences Press: Beijing, China, 2005. [Google Scholar]
- Ye, G.; Su, W.; Chen, W. The Elevation Characteristics Variation of Urban and Rural Construction Land Expansion in Taihu Lake Basin. J. Nat. Resour. 2015, 30, 938–950. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Wang, W.; Lu, J.; Chen, K. Urban expansion led to the degradation of habitat quality in the Beijing-Tianjin-Hebei Area. Acta Ecol. Sin. 2018, 38, 4516–4525. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Lin, W.-C.; Wang, Y.-C.; Lien, W.-Y.; Huang, T.; Hsu, C.-C.; Schmeller, D.S.; Crossman, N.D. Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environ. Model. Softw. 2017, 90, 126–146. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Lewis, B.J.; Wu, J.; Yu, D.; Zhou, W.; Zhou, L.; Wu, S. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2018, 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, L.; Qiu, Q.; Xiao, L.; Xu, T.; Yang, L. Temporal and spatial changes in habitat quality based on land-use change in Fujian Province. Acta Ecol. Sin. 2017, 37, 4538–4548. [Google Scholar] [CrossRef]
- Feng, Y.J.; Liu, Y.; Tong, X.H. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecol. Indic. 2018, 87, 22–32. [Google Scholar] [CrossRef]
- Szilassi, P.; Bata, T.; Szabo, S.; Czucz, B.; Molnar, Z.; Mezosi, G. The link between landscape pattern and vegetation naturalness on a regional scale. Ecol. Indic. 2017, 81, 252–259. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 4 May 2019).
- Hou, Y.; Li, B.; Muller, F.; Chen, W.P. Ecosystem services of human-dominated watersheds and land use influences: A case study from the Dianchi Lake watershed in China. Environ. Monit. Assess. 2016, 188, 652. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.; Zhang, L.; Tao, Y.; Guo, J. A land-cover-based approach to assessing the spatio-temporal dynamics of ecosystem health in the Yangtze River Delta region. China Popul. Resour. Environ. 2018, 28, 84–92. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, X.; Yuan, X.; Liu, F.; Guo, H.; Xu, Y.; Li, B. Land use change and its impact on habitat quality in Lake Nansi Basin from 1980 to 2015. J. Lake Sci. 2018, 30, 349–357. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, L.W.; Yan, J.P.; Wang, P.T.; Hu, N.K.; Cheng, W.; Fu, B.J. Mapping the hotspots and coldspots of ecosystem services in conservation priority setting. J. Geogr. Sci. 2017, 27, 681–696. [Google Scholar] [CrossRef]
- Li, X.; Hou, X.; Song, Y.; Shan, K.; Zhu, S.; Yu, X.; Mo, X. Assessing Changes of Habitat Quality for Shorebirds in Stopover Sites: A Case Study in Yellow River Delta, China. Wetlands 2018, 39, 67–77. [Google Scholar] [CrossRef]
- Jie, G.; Feng, L.; Hui, G.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2015, 163, S148–S155. [Google Scholar] [CrossRef]
- Lu, X.L.; Zhou, Y.Y.; Liu, Y.L.; Le Page, Y. The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States. Glob. Chang. Biol. 2018, 24, 617–630. [Google Scholar] [CrossRef] [PubMed]
- John, J.; Chithra, N.R.; Thampi, S.G. Prediction of land use/cover change in the Bharathapuzha river basin, India using geospatial techniques. Environ. Monit. Assess. 2019, 191, 15. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.B.; Bo, J.; Li, X.Y.; Fang, F.; Cheng, W.J. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jin, Y.; Sun, T.; Yang, Z.; Cai, Y.; Yi, Y. Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities. Ecol. Indic. 2017, 92, 354–366. [Google Scholar] [CrossRef]
- Brumm, K.J.; Jonas, J.L.; Prichard, C.G.; Watson, N.M.; Pangle, K.L. Land cover influences on juvenile Rainbow Trout diet composition and condition in Lake Michigan tributaries. Ecol. Freshw. Fish 2019, 28, 11–19. [Google Scholar] [CrossRef]
- Su, S.; Rui, X.; Jiang, Z.; Yuan, Z. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Boswell, G.P.; Britton, N.F.; Franks, N.R. Habitat fragmentation, percolation theory and the conservation of a keystone species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1998, 265, 1921–1925. [Google Scholar] [CrossRef]
- Gao, J. How China will protect one-quarter of its land. Nature 2019, 569, 457. [Google Scholar] [CrossRef]
- Su, W.; Ru, J.; Yang, G. Modelling stormwater management based on infiltration capacity of land use in the watershed scale. Acta Geogr. Sin. 2019, 74, 948–961. [Google Scholar] [CrossRef]
- Ren, C.F.; Li, Z.H.; Zhang, H.B. Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. J. Clean. Prod. 2019, 210, 12–24. [Google Scholar] [CrossRef]
- Singh, A. Optimal allocation of water and land resources for maximizing the farm income and minimizing the irrigation-induced environmental problems. Stoch. Environ. Res. Risk Assess. 2017, 31, 1147–1154. [Google Scholar] [CrossRef]
Metrics | Name and Ecological Meaning |
---|---|
LPI | Largest Patch Index is the proportion of the largest patches in a landscape type to the whole landscape area; it reflects the dominant species in the landscape. |
MPS | Mean of Patch Size represents an average condition; a plaque with a smaller value has more fragments than a plaque with a larger value. |
DIVISION | Landscape Division Index reflects the degree of separation of the landscape; the closer the value is to 1, the higher the degree of division of the landscape type. |
CONTAG | Contag Index means the degree of agglomeration of the landscape; the larger the value, the higher the degree of plaque agglomeration and better the connectivity. |
LSI | Landscape Shape Index indicates the complexity of the shape of the landscape; the larger the value, the more complex the shape. |
SHDI | Shannon’s Diversity Index shows the changes of the number and proportion of landscape types. In a landscape system, the richer the land use, the higher the degree of fragmentation, the greater the uncertainty of the information content, and the higher the SHDI value. |
Threat Factors | Maximum Distance of Influence/km | Weight | Type of Decay Over Space |
---|---|---|---|
Urban land | 10 | 1.00 | Exponential |
Rural land | 5 | 0.60 | Exponential |
Industrial and Mining land | 6 | 0.50 | Exponential |
Paddy field | 8 | 0.70 | Linear |
Dry land | 8 | 0.60 | Linear |
Unutilized land | 1 | 0.50 | Linear |
Railway | 5 | 0.70 | Linear |
Main roads | 3 | 0.60 | Linear |
Minor roads | 2 | 0.50 | Linear |
LULC | Habitat Suitability | Urban Land | Rural Land | Industrial and Mining Land | Unutilized Land | Paddy Fields | Dry Land | Railway | Main Roads | Minor Roads |
---|---|---|---|---|---|---|---|---|---|---|
PF | 0.60 | 0.50 | 0.35 | 0.20 | 0.30 | 0.00 | 0.10 | 0.70 | 0.60 | 0.50 |
DL | 0.40 | 0.50 | 0.35 | 0.20 | 0.30 | 0.20 | 0.00 | 0.60 | 0.55 | 0.45 |
FL | 1.00 | 1.00 | 0.85 | 0.60 | 0.50 | 0.80 | 0.70 | 0.70 | 0.70 | 0.70 |
SL | 0.95 | 0.60 | 0.45 | 0.40 | 0.40 | 0.50 | 0.40 | 0.70 | 0.70 | 0.70 |
OFL | 0.90 | 1.00 | 0.90 | 0.65 | 0.55 | 0.85 | 0.75 | 0.75 | 0.75 | 0.65 |
OWL | 0.85 | 1.00 | 0.95 | 0.70 | 0.50 | 0.90 | 0.80 | 0.75 | 0.75 | 0.65 |
HCG | 0.80 | 0.60 | 0.45 | 0.40 | 0.60 | 0.40 | 0.40 | 0.50 | 0.55 | 0.60 |
MCG | 0.75 | 0.65 | 0.50 | 0.45 | 0.60 | 0.45 | 0.45 | 0.55 | 0.60 | 0.70 |
LCG | 0.70 | 0.70 | 0.55 | 0.50 | 0.60 | 0.50 | 0.50 | 0.60 | 0.65 | 0.70 |
RC | 1.00 | 0.85 | 0.70 | 0.50 | 0.40 | 0.80 | 0.70 | 0.50 | 0.70 | 0.40 |
LK | 1.00 | 0.90 | 0.75 | 0.55 | 0.45 | 0.85 | 0.75 | 0.50 | 0.70 | 0.40 |
RP | 1.00 | 0.85 | 0.75 | 0.55 | 0.45 | 0.85 | 0.75 | 0.50 | 0.70 | 0.40 |
SH | 0.60 | 0.95 | 0.80 | 0.60 | 0.50 | 0.70 | 0.60 | 0.50 | 0.80 | 0.50 |
BL | 0.60 | 0.95 | 0.80 | 0.60 | 0.50 | 0.70 | 0.60 | 0.50 | 0.80 | 0.50 |
Years | LPI | MPS | LSI | CONTAG | DIVISION | SHDI |
---|---|---|---|---|---|---|
1985 | 60.20 | 116.02 | 102.09 | 59.28 | 0.63 | 1.07 |
1995 | 57.30 | 124.74 | 103.89 | 57.41 | 0.66 | 1.13 |
2005 | 47.54 | 144.60 | 108.92 | 54.45 | 0.76 | 1.21 |
2015 | 19.99 | 131.69 | 115.74 | 51.51 | 0.92 | 1.29 |
Grades | Value Range | 1985 | 1995 | 2005 | 2015 |
---|---|---|---|---|---|
Ratio/% | Ratio/% | Ratio/% | Ratio/% | ||
Poor | 0.00–0.20 | 9.71 | 12.60 | 17.58 | 26.42 |
Relatively poor | 0.20–0.40 | 4.95 | 4.25 | 3.75 | 3.34 |
Moderate | 0.40–0.60 | 56.87 | 54.50 | 48.85 | 41.24 |
Relatively good | 0.60–0.80 | 2.59 | 2.61 | 2.41 | 2.31 |
Good | 0.80–1.00 | 25.88 | 26.04 | 27.41 | 26.70 |
Mean value | 0.63 | 0.62 | 0.59 | 0.54 |
LUCC | Habitat type | 1985 | 1995 | 2005 | 2015 | 1985–2015 |
---|---|---|---|---|---|---|
HQ | HQ | HQ | HQ | Change | ||
Farmland | PF | 0.5995 | 0.5994 | 0.5994 | 0.5993 | −0.0002 |
DL | 0.3998 | 0.3998 | 0.3998 | 0.3998 | 0.0000 | |
Forestland | FL | 0.9995 | 0.9994 | 0.9994 | 0.9992 | −0.0003 |
SL | 0.9498 | 0.9498 | 0.9497 | 0.9497 | −0.0001 | |
OFL | 0.8985 | 0.8983 | 0.8986 | 0.8978 | −0.0007 | |
OWL | 0.8481 | 0.8477 | 0.8474 | 0.8471 | −0.0010 | |
Grassland | HCG | 0.7992 | 0.7993 | 0.7992 | 0.7987 | −0.0005 |
MCG | 0.7499 | 0.7499 | 0.7499 | 0.7499 | 0.0000 | |
LCG | 0.6996 | 0.6996 | 0.6995 | 0.6995 | −0.0001 | |
Water | RC | 0.9977 | 0.9973 | 0.9969 | 0.9957 | −0.0019 |
LK | 0.9997 | 0.9997 | 0.9997 | 0.9994 | −0.0004 | |
RP | 0.9982 | 0.9980 | 0.9980 | 0.9970 | −0.0012 | |
SH | 0.5995 | 0.5991 | 0.5996 | 0.5992 | −0.0002 | |
BL | 0.5990 | 0.5988 | 0.5985 | 0.5977 | −0.0013 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Chen, S.S.; Xu, Y.; Li, G.; Su, W. Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin. Sustainability 2019, 11, 3513. https://doi.org/10.3390/su11133513
Xu L, Chen SS, Xu Y, Li G, Su W. Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin. Sustainability. 2019; 11(13):3513. https://doi.org/10.3390/su11133513
Chicago/Turabian StyleXu, Liting, Sophia Shuang Chen, Yu Xu, Guangyu Li, and Weizhong Su. 2019. "Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin" Sustainability 11, no. 13: 3513. https://doi.org/10.3390/su11133513
APA StyleXu, L., Chen, S. S., Xu, Y., Li, G., & Su, W. (2019). Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin. Sustainability, 11(13), 3513. https://doi.org/10.3390/su11133513