Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden
Abstract
:1. Introduction
2. Methodology
2.1. The Case Study: Vertical Hydroponic Farming in Stockholm
2.2. Life Cycle Assessment Method
2.3. Scenarios Reviewed
2.3.1. Baseline Production System
2.3.2. Scenario 2-New Packaging (Paper Pot)
2.3.3. Scenario 3-Growing Media
3. Results
4. Analysis and Data Sensitivity
4.1. Electricity Mix
4.2. Functional Unit Choice
4.3. Methodological Choices for Infrastructure
4.4. Data Choices
5. Discussion
5.1. Energy
5.2. Growing Medium and Packaging
5.3. Final Product
5.4. Urban Context
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fedoroff, N.V. Food in a future of 10 billion. Agri. Food Secur. 2015, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, G.; Shah, M.M.; van Velthuizen, H.T. Climate Change and Agricultural Vulnerability; IIASA: Laxenburg, Austria, 2002. [Google Scholar]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.I.; Jarvis, A.; Kristjanson, P.; et al. Options for support to agriculture and food security under climate change. Environ. Sci. Pol. 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Martin, M.; Brandão, M. Evaluating the Environmental Consequences of Swedish Food Consumption and Dietary Choices. Sustainability 2017, 9, 2227. [Google Scholar] [CrossRef]
- Baky, A.; Widerberg, A.; Landquist, B.; Norberg, I. Sveriges Primärproduktion och Försörjning av Livsmedel: Möjliga Konsekvenser vid en Brist på Fossil Energi; JTI: Uppsala, Sweden, 2013; Volume 2013, ISSN:14014963. [Google Scholar]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Prac. Pol. 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental Impacts of Urban Hydroponics in Europe: A Case Study in Lyon. Proc. CIRP 2018, 69, 540–545. [Google Scholar] [CrossRef]
- Despommier, D. The Rise of Vertical Farms. Sci. Am. 2009, 301, 80–87. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Opitz, I.; Freisinger, U.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agri. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G. Chapter 1-Introduction. In Plant Factory; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 3–5. [Google Scholar] [CrossRef]
- Kozai, T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proc. Jpn. Acad. 2013, 89, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Chance, E.; Ashton, W.; Pereira, J.; Mulrow, J.; Norberto, J.; Derrible, S.; Guilbert, S. The Plant—An experiment in urban food sustainability. Environ. Prog. Sustain. Energy 2018, 37, 82–90. [Google Scholar] [CrossRef]
- UFdeSchilde. UF De Schilde Urban Farm Approaches Completion. Available online: https://hortinext.com/uf-schilde-urban-farm-approaches-completion/ (accessed on 10 November 2018).
- AeroFarms. AeroFarms. Available online: www.aerofarms.com (accessed on 8 September 2018).
- Grönska. Grönska Stadsodling 365. Available online: http://www.gronska.se (accessed on 11 November 2018).
- UrbanOasis. Urban Oasis Homepage. Available online: www.urbanoasis.life/ (accessed on 10 June 2019).
- Eaves, J.; Eaves, S. Comparing the Profitability of a Greenhouse to a Vertical Farm in Quebec. Can. J. Agric. Econ. 2018, 66, 43–54. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (zfarming). Ren. Agric. Food Syst. 2014, 30, 43–54. [Google Scholar] [CrossRef]
- Kulak, M.; Graves, A.; Chatterton, J. Reducing greenhouse gas emissions with urban agriculture: A Life Cycle Assessment perspective. Land Urban Plan. 2013, 111, 68–78. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Land Ecol. 2018, 11, 35. [Google Scholar] [CrossRef]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; Koning, A.; de Oers, L.; van Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background; Kluwer Academic Publishers: Dordrecht, The Netherland, 2002; Volume 692, ISBN 1-4020-0228-9. [Google Scholar]
- Ecoinvent LCI Database v. 3.4; Ecoinvent: Zurich, Switzerland, 2018.
- Martin, M. Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis. J. Ind. Ecol. 2019. accepted for publication. [Google Scholar]
- Shiina, T.; Hosokawa, D.; Roy, P.; Nakamura, N.; Thammawong, M.; Orikasa, T. Life Cycle Inventory Analysis of Leafy Vegetables Grown in Two Types of Plant Factories. Act. Hortic. 2011, 919, 115–122. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef]
- Dias, G.M.; Ayer, N.W.; Khosla, S.; Van Acker, R.; Young, S.B.; Whitney, S.; Hendricks, P. Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities. J. Clean. Prod. 2017, 140, 831–839. [Google Scholar] [CrossRef]
- Avfall Sverige. Swedish Waste Management 2018; Swedish Waste Management Association: Stockholm, Sweden, 2018. [Google Scholar]
- Sanjuan-Delmás, D.; Llorach-Massana, P.; Nadal, A.; Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Josa, A.; Gabarrell, X.; Rieradevall, J. Environmental assessment of an integrated rooftop greenhouse for food production in cities. J. Clean. Prod. 2018, 177, 326–337. [Google Scholar] [CrossRef]
- Nambuthiri, S.; Fulcher, A.; Koeser, A.K.; Geneve, R.; Niu, G. Moving Toward Sustainability with Alternative Containers for Greenhouse and Nursery Crop Production: A Review and Research Update. Hort. Tech. 2015, 25, 8. [Google Scholar] [CrossRef]
- Behe, B.K.; Campbell, B.L.; Hall, C.R.; Khachatryan, H.; Dennis, J.H.; Yue, C. Consumer Preferences for Local and Sustainable Plant Production Characteristics. Hort. Sci. 2013, 48, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, H.; Campbell, B.; Hall, C.; Behe, B.; Yue, C.; Dennis, J. The Effects of Individual Environmental Concerns on Willingness to Pay for Sustainable Plant Attributes. Hort. Sci. 2014, 49, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the environmental performance of urban agriculture as a food supply in northern climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Edwards-Jones, G.; Milà i Canals, L.; Hounsome, N.; Truninger, M.; Koerber, G.; Hounsome, B.; Cross, P.; York, E.H.; Hospido, A.; Plassmann, K.; et al. Testing the assertion that ‘local food is best’: the challenges of an evidence-based approach. Trends Food Sci. Technol. 2008, 19, 265–274. [Google Scholar] [CrossRef]
- Edwards-Jones, G. Does eating local food reduce the environmental impact of food production and enhance consumer health? Proc. Nutr. Soc. 2010, 69, 582–591. [Google Scholar] [CrossRef] [Green Version]
- Coley, D.; Howard, M.; Winter, M. Local food, food miles and carbon emissions: A comparison of farm shop and mass distribution approaches. Food Pol. 2009, 34, 150–155. [Google Scholar] [CrossRef]
- Gentry, M. Local heat, local food: Integrating vertical hydroponic farming with district heating in Sweden. Energy 2019, 174, 191–197. [Google Scholar] [CrossRef]
Main Category | Process/Flow | Amount | Unit | Transport (km) | Lifetime (Years) |
---|---|---|---|---|---|
Infrastructure | Steel Structure | 242 | kg | 100 | 30 |
LEDs | 8640 | units | 100 | 15 | |
Trays (PET) | 36 | kg | 100 | 15 | |
Tubing/Other Plastics | 10 | kg | 100 | 5 | |
Pumps | 2 | units | 100 | 10 | |
Heater and Other Electronics | 3 | units | 100 | 10 | |
Raw materials | Pot | 240 | kg | 100 | - |
Seed | 6 | kg | 100 | - | |
Growing Medium (Soil) | 12,350 | kg | 50 | - | |
Nitrogen (N) | 10 | kg | 100 | - | |
Phosphate (P) | 12 | kg | 100 | - | |
Potasium (K) | 14 | kg | 100 | - | |
Paper | 449 | kg | 100 | - | |
Wrapping Paper | 38 | kg | 50 | - | |
Label | 480 | m2 | 50 | - | |
Water | 144,890 | liters | - | - | |
Energy Inputs | Lighting | 26,490 | kWh | - | - |
Ventilation | 490 | kWh | - | - | |
Heating and Electronics | 3290 | kWh | - | - | |
Pumps | 2190 | kWh | - | - | |
Outputs | Plants | 60,000 | plants | - | - |
Distribution | 1390 | km | - | - |
Impact Category | Unit | Baseline (Plastic Pot-Soil) | Paper Pot-Soil | Plastic Pot-Coir | Paper Pot-Coir |
---|---|---|---|---|---|
GHG | kg CO2-eq./year | 6105 | 5387 | 2954 | 2236 |
Acidification | kg SO2-eq./year | 44.5 | 15.0 | 43.1 | 12.9 |
Eutrophication | kg PO4-eq./year | 7.5 | 7.6 | 7.0 | 7.2 |
Human Toxicity | kg 1,4-DCB eq. /year | 4111 | 4 105 | 3 989 | 3 920 |
Abiotic Resource Depletion | MJ-eq./year | 48,093 | 31,758 | 44,952 | 28,616 |
Baseline (Plastic Pot-Soil) | Paper Pot-Soil | Plastic Pot-Coir | Paper Pot-Coir | |
---|---|---|---|---|
Annual Impact (kg CO2 eq/plant /year) | 6105 | 5387 | 2954 | 2236 |
Impact per plant (kg CO2 eq/plant) | 0.10 | 0.09 | 0.05 | 0.04 |
impact per kg (kg CO2 eq/kg plant) | 0.35 | 0.31 | 0.17 | 0.13 |
Impact per edible portion (kg CO2 eq/edible kg plant) | 0.74 | 0.65 | 0.36 | 0.27 |
Materials and Inputs | Infrastructure | Infrastructure-50% Lifetime | Infrastructure (Triple LEDs) | Infrastructure (Greenhouse) |
---|---|---|---|---|
LEDs | 61 | 122 | 183 | 61 |
Steel | 38 | 77 | 38 | 38 |
Plastic Trays | 7 | 14 | 7 | 7 |
Pump | 2 | 3 | 2 | 2 |
Tubing and other Plastics | 4 | 8 | 4 | 4 |
Heater, Controls and other Electronics | 12 | 25 | 12 | 12 |
Other (Greenhouse) | - | - | - | 333 |
Total | 125 | 249 | 247 | 458 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. https://doi.org/10.3390/su11154124
Martin M, Molin E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability. 2019; 11(15):4124. https://doi.org/10.3390/su11154124
Chicago/Turabian StyleMartin, Michael, and Elvira Molin. 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden" Sustainability 11, no. 15: 4124. https://doi.org/10.3390/su11154124
APA StyleMartin, M., & Molin, E. (2019). Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability, 11(15), 4124. https://doi.org/10.3390/su11154124