Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Field Survey and Sampling
2.3. Laboratory Test
3. Results and Discussion
3.1. Types of Soil Slope Failure in the Mud Forest Area
3.1.1. Soil Cave Piping Failure of Slope
3.1.2. Vertical Collapse of Slope
3.2. Factors Controlling Slope Failure
3.2.1. Geological Structure and Topography
3.2.2. Climatic Conditions
3.2.3. Soil Physicochemical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, B.-B.; Wu, J.; Anderies, J.M. Sustainable landscapes and landscape sustainability: A tale of two concepts. Landsc. Urban Plan. 2019, 189, 274–284. [Google Scholar] [CrossRef]
- García-Quintana, A.; García-Hidalgo, J.F.; Martin-Duque, J.F.; Pedraza, J.; González-Martin, J.A. Geological factors of the Guadalajara landscapes (Central Spain) and their relevance to landscape studies. Landsc. Urban Plan. 2004, 69, 417–435. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Fry, J. Developing Integrated Biodiersity Impact Assessment (IBIA): Data limitations on GIS Support. In Proceedings of the IAIA11 Conference Proceedings, Puebla, Mexico, 28 May–4 June 2011; pp. 1–7. [Google Scholar]
- Marchi, M.; Ferrara, C.; Biasi, R.; Salvia, R.; Salvati, L. Agro-Forest Management and Soil Degradation in Mediterranean Environments: Towards a Strategy for Sustainable Land Use in Vineyard and Olive Cropland. Sustainability 2018, 10, 2565. [Google Scholar] [CrossRef]
- Potschin, M.B.; Haines-Young, R.H. Landscapes and sustainability. Landsc. Urban Plan. 2006, 75, 155–161. [Google Scholar] [CrossRef]
- Wieland, R.; Lakes, T.; Yunfeng, H.; Nendel, C. Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Policy 2019, 83, 543–559. [Google Scholar]
- Vlami, V.; Zogaris, S.; Djuma, H.; Kokkoris, I.; Kehayias, G.; Dimopoulos, P. A Field Method for Landscape Conservation Surveying: The Landscape Assessment Protocol (LAP). Sustainability 2019, 11. [Google Scholar] [CrossRef]
- Jakab, G.; Madarász, B.; Szabó, J.; Tóth, A.; Zacháry, D.; Szalai, Z.; Kertész, Á.; Dyson, J. Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage. Sustainability 2017, 9, 1726. [Google Scholar] [CrossRef]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Chalise, D.; Kumar, L.; Kristiansen, P. Land Degradation by Soil Erosion in Nepal: A Review. Soil Syst. 2019, 3, 12. [Google Scholar] [CrossRef]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Bernatek-Jakiel, A.; Poesen, J. Subsurface erosion by soil piping: Significance and research needs. Earth-Sci. Rev. 2018, 185, 1107–1128. [Google Scholar] [CrossRef]
- Smetanova, A.; Follain, S.; David, M.; Ciampalini, R.; Raclot, D.; Crabit, A.; Le Bissonnais, Y. Landscaping compromises for land degradation neutrality: The case of soil erosion in a Mediterranean agricultural landscape. J. Environ. Manag. 2019, 235, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 648, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Nyamekye, C.; Thiel, M.; Schönbrodt-Stitt, S.; Zoungrana, B.; Amekudzi, L. Soil and Water Conservation in Burkina Faso, West Africa. Sustainability 2018, 10, 3182. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, G.; Xie, Y.; Gao, Y.; Liu, B.; Shen, B. Effects of soil conservation practices on soil losses from slope farmland in northeastern China using runoff plot data. Catena 2019, 174, 417–424. [Google Scholar] [CrossRef]
- Sterpi, D. Effects of the Erosion and Transport of Fine Particles due to Seepage Flow. Int. J. Geomech. 2003, 3, 111–122. [Google Scholar] [CrossRef]
- Kong, W.; Yao, Y.; Zhao, Z.; Qin, X.; Zhu, H.; Wei, X.; Shao, M.; Wang, Z.; Bao, K.; Su, M. Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau. Catena 2019, 172, 753–763. [Google Scholar] [CrossRef]
- Zhuang, J.Q.; Peng, J.B. A coupled slope cutting—A prolonged rainfall-induced loess landslide: A 17 October 2011 case study. Bull. Eng. Geol. Environ. 2014, 73, 997–1011. [Google Scholar] [CrossRef]
- Conforti, M.; Pascale, S.; Sdao, F. Mass movements inventory map of the Rubbio stream catchment (Basilicata—South Italy). J. Maps 2014, 11, 454–463. [Google Scholar] [CrossRef]
- Xu, X.Z.; Guo, W.Z.; Liu, Y.K.; Ma, J.Z.; Wang, W.L.; Zhang, H.W.; Gao, H. Landslides on the Loess Plateau of China: A latest statistics together with a close look. Nat. Hazards 2017, 86, 1393–1403. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Wang, J.J.; Liang, Y.; Hui, P.Z.; Wu, Y.; Lin, X. A loess landslide induced by excavation and rainfall. Landslides 2014, 11, 141–152. [Google Scholar] [CrossRef]
- Hu, X.S.; Brierley, G.; Zhu, H.L.; Li, G.R.; Fu, J.T.; Mao, X.Q.; Yu, Q.Q.; Qiao, N. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, Northeast Qinghai-Tibet Plateau, China. J. Mt. Sci. 2013, 10, 668–686. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.Z.; Luo, L.; Wang, W.L.; Liu, Z.Y.; Chen, Z.X.; Kang, H.L.; Yang, B. Sensitivity of rainstorm-triggered shallow mass movements on gully slopes to topographical factors on the Chinese Loess Plateau. Geomorphology 2019, 337, 69–78. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope Movement Types and Processes; Landslide Analysis and Control. Transportation Research Board Special Report; National Academy of Sciences: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Guerra, A.J.T.; Fullen, M.A.; Jorge, M.D.C.O.; Bezerra, J.F.R.; Shokr, M.S. Slope Processes, Mass Movement and Soil Erosion: A Review. Pedosphere 2017, 27, 27–41. [Google Scholar] [CrossRef]
- Derbyshire, E. Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth-Sci. Rev. 2001, 54, 231–260. [Google Scholar] [CrossRef]
- Xu, L.; Dai, F.; Tu, X.; Tham, L.G.; Zhou, Y.; Iqbal, J. Landslides in a loess platform, North-West China. Landslides 2013, 11, 993–1005. [Google Scholar] [CrossRef]
- Abramson, L.; Lee, T.; Sharma, S. Slope Stability and Stabilization Methods; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Li, X.A.; Peng, J.B.; Ma, R.R.; Qiao, X.Y.; Kang, J.H.; Li, L. On the hazards and evolution processes of loess tunnels. J. Xi’an Univ. Sci. Technol. 2009, 29, 737–741. [Google Scholar]
- Li, X.A.; Song, Y.X.; Ye, W.J. Engineering Geological Research on Tunnel-Ersion in Loess; TONGJI UNIVERSITY PRESS: Shanghai, China, 2010; p. 151. (In Chinese) [Google Scholar]
- Zhou, X.C.; Wang, C.; Ren, G.; Cai, W.D.; Zhang, B.F. The genetic characteristics of the Dabusu mud forest, and its protection and development suggestions. Jilin Geol. 2003, 22, 62–67. (In Chinese) [Google Scholar]
- Chi, Y.; Wang, Q.; Yang, J. Formation of Qian’an “Mud Forest” in Jilin Province. J. Eng. Geol. 2006, 14, 174–178. (In Chinese) [Google Scholar]
- Zhu, Q.G.; Liang, X.J. A preliminary syudy on the origin of the “Wolf’s fang shaped” topography on the eastern bank of the Dabusu lake. Jilin Geol. 1991, 1, 75–78. [Google Scholar]
- The Jilin Dabusu National Nature Reserve Administration. 2013–2014 Project Design Report of Jilin Qian-an Mud Forest Geological Relics and Vertebrate Fossil Site Protection. (unpublished).
- Yang, L.; Shi, K.Q.; Zhang, B.B. Temporal and spatial distribution characteristics of evaporation volume in Jilin province in recent 40 years. In Proceedings of the 35th Annual Meeting of the Chinese Meteorological Society S6 on Climate Change, Low-Carbon Development and Ecological Civilization Construction, Hefei, China, 24–26 October 2018. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall: Upper Saddle River, NJ, USA, 1958. [Google Scholar]
- Franzini, M.; Leoni, L.; Saitta, M. A simple method to evaluate the matrix effects in X-Ray fluorescence analysis. X-Ray Spectrom. 1972, 1, 151–154. [Google Scholar] [CrossRef]
- Leoni, L.; Saitta, M. X-ray fluorescence analysis of 29 trace elements in rock and mineral standards. Rend. Soc. Ital. Mineral. Petrol. 1976, 32, 497–510. [Google Scholar]
- Tertian, R. Principles of Quantitative X-Ray Fluorescence Analysis; Heyden: Rhone-Poulenc Industries: Aubervilliers, France, 1982. [Google Scholar]
- Wobrauschek, P. Total reflection x-ray fluorescence analysis—A review. X-Ray Spectrom. 2007, 36, 289–300. [Google Scholar] [CrossRef]
- Battagliaa, S.; Leonib, L.; Sartorib, F. Mineralogical and grain size composition of clays developing calanchi and biancane erosional landforms. Geomorphology 2003, 49, 153–170. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, D.; Yan, B.; Lei, B.; Liu, G. Main types of soil mass failure and characteristics of their impact factors in the Yuanmou Valley, China. Catena 2015, 125, 82–90. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, K.; Kim, J.; Kim, Y. Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes. Sustainability 2017, 9, 1280. [Google Scholar] [CrossRef]
- Gonzalez-Hidalgo, J.C.; Batalla, R.J.; Cerda, A.; de Luis, M. A regional analysis of the effects of largest events on soil erosion. Catena 2012, 95, 85–90. [Google Scholar] [CrossRef]
- Wang, L.-L.; Tang, C.-S.; Shi, B.; Cui, Y.-J.; Zhang, G.-Q.; Hilary, I. Nucleation and propagation mechanisms of soil desiccation cracks. Eng. Geol. 2018, 238, 27–35. [Google Scholar] [CrossRef]
- Precipitation in Songyuan City, Jilin Province, China. Available online: http://weather.sina.com.cn/qianan. (accessed on 8 March 2019).
- Piccarreta, M.; Faulkner, H.; Bentivenga, M.; Capolongo, D. The influence of physico-chemical material properties on erosion processes in the badlands of Basilicata, Southern Italy. Geomorphology 2006, 81, 235–251. [Google Scholar] [CrossRef]
- Sun, J.Z. Loessology; HONG KONG ARCHAEOLOGICAL SOCIETY: Hong Kong, China, 2005; Volume 1, pp. 40–43. [Google Scholar]
- Tang, D.X.; Liu, Y.R.; Zhang, W.S.; Wang, Q. Engineering Geotechnical; Geological Publishing House: BeiJing, China, 1998; Volume 2, pp. 61–68. [Google Scholar]
- Mitchell, J.K. Fundamentals of Soil Behavior; Wiley: New York, NY, USA, 1976; p. 422. [Google Scholar]
- Lipiec, J.; Czyż, E.A.; Dexter, A.R.; Siczek, A. Effects of soil deformation on clay dispersion in loess soil. Soil Tillage Res. 2018, 184, 203–206. [Google Scholar] [CrossRef]
- Sherard, J.L.; Dunnigan, L.P.; Decker, R.S. Identification and nature of dispersive soils. ASCE J. Geotech. Eng. Div. 1976, 102, 287–301. [Google Scholar]
- Abdollahi, L.; Schjønning, P.; Elmholt, S.; Munkholm, L.J. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. Soil Tillage Res. 2014, 136, 28–37. [Google Scholar] [CrossRef]
- Turgut, A.; Isik, N.S.; Kasapoglu, K.E. Investigation of factors affecting the dispersibility of clays and estimation of dispersivity. Bull. Eng. Geol. Environ. 2016, 76, 1051–1073. [Google Scholar] [CrossRef]
- Farahani, E.; Emami, H.; Keller, T.; Fotovat, A.; Khorassani, R. Impact of monovalent cations on soil structure. Part I. Results of an Iranian soil. Int. Agrophysics 2018, 32, 57–67. [Google Scholar] [CrossRef]
- Farahani, E.; Emami, H.; Keller, T. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils. Int. Agrophysics 2018, 32, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Kjaergaard, C.; de Jonge, L.W.; Moldrup, P.; Schjønning, P. Water-dispersible colloids: Effects of measurement method, clay content, initial soil matric potential, and wetting rate. Vadose Zone J. 2004, 3, 403–412. [Google Scholar] [CrossRef]
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precipitation (mm) | 1.19 | 1.70 | 5.93 | 15.68 | 25.78 | 63.59 | 136.19 | 94.25 | 37.60 | 14.59 | 5.16 | 2.35 | 404.05 |
Evaporation (mm) | 18.8 | 32.5 | 91.1 | 233.9 | 344.0 | 287.9 | 242.1 | 198.8 | 162.2 | 125.0 | 51.3 | 22.1 | 1798.5 |
Sample | Depth (m) | Grain Size Composition (wt. %) | ||||||
---|---|---|---|---|---|---|---|---|
>2 mm | (2–1) mm | (1–0.5) mm | (0.5–0.25) mm | (0.25–0.075) mm | (0.075–0.005) mm | <0.005 mm | ||
C1 | 1 | - | - | - | 0.87 | 23.80 | 51.35 | 23.98 |
C2 | 3 | - | - | - | 0.44 | 25.00 | 47.95 | 26.60 |
C3 | 5 | - | - | - | 0.63 | 28.57 | 41.89 | 28.92 |
C4 | 7 | - | - | - | 1.77 | 24.60 | 46.66 | 26.97 |
C5 | 9 | - | - | - | 1.17 | 24.20 | 52.53 | 22.10 |
C6 | 11 | - | - | - | 0.12 | 30.23 | 45.68 | 23.97 |
C7 | 13 | - | - | - | 0.68 | 28.46 | 48.14 | 22.72 |
C8 | 15 | - | - | - | 1.73 | 29.83 | 40.45 | 27.98 |
Sample | Density (g/cm3) | Moisture Content (%) | Plastic Limit (%) | Liquid Limit (%) | Plastic Index | Liquidity Index | Porosity |
---|---|---|---|---|---|---|---|
C1 | 1.23 | 10 | 20.19 | 24.71 | 4.52 | −3.47 | 55.65 |
C2 | 1.30 | 10.15 | 19.46 | 22.19 | 2.73 | −2.25 | 57.60 |
C3 | 1.59 | 15.71 | 18.80 | 24.87 | 6.07 | −0.51 | 58.38 |
C4 | 1.35 | 15.71 | 18.30 | 26.17 | 7.87 | −0.33 | 53.21 |
C5 | 1.36 | 16.73 | 17.90 | 28.67 | 10.77 | −0.11 | 54.47 |
C6 | 1.51 | 17.22 | 18.90 | 24.80 | 5.90 | −0.28 | 50.48 |
C7 | 1.33 | 16.65 | 20.91 | 24.84 | 4.61 | −1.84 | 56.69 |
C8 | 1.26 | 16.65 | 20.91 | 24.84 | 3.93 | −1.08 | 56.43 |
Sample | Qz | Phf | Pe | Cc | Dol | Chl | Ism |
---|---|---|---|---|---|---|---|
C1 | 30 | 26 | 10 | 9 | - | 2 | 23 |
C2 | 28 | 29 | 7 | 9 | - | - | 27 |
C3 | 32 | 26 | 6 | 6 | - | - | 30 |
C4 | 30 | 26 | 8 | 8 | - | - | 28 |
C5 | 34 | 22 | 9 | 9 | - | - | 26 |
C6 | 30 | 33 | 8 | 7 | - | - | 22 |
C7 | 39 | 26 | 8 | 8 | - | - | 19 |
C8 | 38 | 28 | 9 | 5 | 4 | - | 16 |
SiO2 | Al2O3 | Fe2O3 | FeO | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO | LOI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 73.73 | 9.70 | 1.86 | 0.36 | 3.63 | 0.89 | 2.78 | 1.57 | 0.36 | 0.05 | 0.07 | 4.60 |
C2 | 70.25 | 11.36 | 1.88 | 0.23 | 3.85 | 0.95 | 2.66 | 1.99 | 0.44 | 0.05 | 0.07 | 5.77 |
C3 | 68.80 | 12.96 | 2.01 | 0.45 | 3.97 | 1.12 | 2.81 | 1.67 | 0.39 | 0.06 | 0.07 | 5.34 |
C4 | 71.23 | 11.95 | 2.66 | 0.47 | 4.04 | 1.08 | 2.95 | 1.86 | 0.55 | 0.07 | 0.08 | 3.01 |
C5 | 69.54 | 10.88 | 2.36 | 0.39 | 4.34 | 1.05 | 2.88 | 2.11 | 0.48 | 0.06 | 0.09 | 5.78 |
C6 | 65.60 | 12.56 | 2.89 | 0.54 | 5.27 | 1.36 | 2.87 | 2.01 | 0.57 | 0.07 | 0.09 | 6.16 |
C7 | 67.78 | 12.89 | 2.56 | 0.49 | 4.22 | 1.21 | 2.77 | 2.21 | 0.57 | 0.07 | 0.07 | 5.14 |
C8 | 68.48 | 12.02 | 2.48 | 0.49 | 4.29 | 1.16 | 2.96 | 2.24 | 0.58 | 0.07 | 0.07 | 4.74 |
Na+ | K+ | Ca2+ | Mg2+ | SO2–4 | Cl− | HCO-3 | TDS a | PS b | SAR c | PH | |
---|---|---|---|---|---|---|---|---|---|---|---|
Content | 7.844 | 0.014 | 1.896 | 0.301 | 1.623 | 4.011 | 4.865 | 10.055 | 78.011 | 7.484 | 8.2 |
Test Item | Value | Test Item | Value | Test Item | Value | Test Item | Value |
---|---|---|---|---|---|---|---|
Visible substances | White and turbid | Zn2+ | 0.002 | SO42− | 99.1 | NO2−(N) | 0.003 |
Water temperature | 15 | Cd+ | 0.00082 | Cl− | 589.9 | HCO3− | 696.1 |
PH | 7.01 | Cr3+/Cr6+ | 0.0001 | NO3−(N) | 0.30 | Na+ | 481.96 |
ORP | 127.1 | As3+/As5+ | 0.0085 | Fe2+/Fe3+ | 0.814 | K+ | 0.707 |
MnO4− | 4.10 | Hg2+ | 0.0049 | Mn2+/Mn4+ | 0.0001 | Ni2+ | 0.0047 |
NH3/NH4+ | 0.148 | Ca2+ | 272.1 | Cu2+ | 0.0204 | Mg2+ | 39.68 |
F- | 0.52 | Water hardness | 842.8 | Pb2+ | 0.00087 | Total dissolved solids | 2184 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rui, X.; Nie, L.; Xu, Y.; Wang, H. Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China. Sustainability 2019, 11, 4709. https://doi.org/10.3390/su11174709
Rui X, Nie L, Xu Y, Wang H. Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China. Sustainability. 2019; 11(17):4709. https://doi.org/10.3390/su11174709
Chicago/Turabian StyleRui, Xiangjian, Lei Nie, Yan Xu, and Hong Wang. 2019. "Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China" Sustainability 11, no. 17: 4709. https://doi.org/10.3390/su11174709
APA StyleRui, X., Nie, L., Xu, Y., & Wang, H. (2019). Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China. Sustainability, 11(17), 4709. https://doi.org/10.3390/su11174709