Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches
Abstract
:1. Introduction
2. Data and Methods
2.1. Description of Agricultural Growing Areas
2.2. Components of Water Balance Equation
WB | water balance of the growing period [mm], |
r1 | reduction coefficient for adjusting α for the terrain slope > 10%, |
α | coefficient of precipitation exploitability depending on the soil type, |
PN | precipitation normal of the growing period [mm], |
r2 | reduction coefficient for adjusting ASWS depending on the soil type and terrain slope, |
ASWS | available soil water supply at the beginning of the growing period (after winter period) [mm], |
AARG | available amount of rising groundwater for the growing period [mm], |
CWR | crop water requirement [mm]. |
ASWS | available soil water supply [mm], |
FC | field capacity [vol.%], |
PDA | point of decreased availability [vol.%], |
MERD | maximum efficient rooting depth [dm]. |
PDA | was calculated according to Equation (3): |
PWP | permanent wilting point [vol.%], |
AWC | available water capacity derived as FC − PWP [vol.%], |
% | percentage of the AWC, which is easily available for crops, i.e., 40–60% of the AWC according to a particular crop and its phenological phase. |
2.3. Categories of Soil Water Availability
2.4. Other Data Sources
3. Results
3.1. Winter Wheat
3.2. Silage Maize
3.3. Oilseed Rape
3.4. Semi-Early Potatoes
4. Discussion
4.1. Crop Sensitivity to Water Deficit
4.2. The Possibility of Supplemental Irrigation
4.3. Comparison to Previous Crop Water Requirements and Crop Yields
4.4. Potential of Land Drainage Management for Water Balance Improvement
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGAs | agricultural growing areas |
WB | water balance |
AARG | available amount of rising groundwater for growing period |
ASWS | available soil water supply at the beginning of growing period |
BGA | beet-AGA |
CSS | Complex soil survey |
CTS = ČSN | Czech technical standard |
CWR | crop water requirement |
GWL | groundwater level |
MGA | maize-AGA |
MoGA | mountain-AGA |
PGA | potato-AGA |
PN | precipitation normal |
References
- Makowski, K.; Wild, M.; Ohmura, A. Diurnal temperature range over Europe between 1950 and 2005. Atmos. Chem. Phys. 2008, 8, 6483–6498. [Google Scholar] [Green Version]
- Supit, I.; van Diepen, C.A.; Boogaard, H.L.; Ludwig, F.; Baruth, B. Trend analysis of the water requirements, consumption and deficit of field crops in Europe. Agric. For. Meteorol. 2010, 150, 77–88. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E.; Wild, M.; Liang, S. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results. J. Geophys. Res. 2010, 115, D20113. [Google Scholar] [CrossRef]
- Yuan, Z.; Yan, D.; Yang, Z.; Yin, J.; Breach, P.; Wang, D. Impacts of climate change on winter wheat water requirement in Haihe River Basin. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 677–697. [Google Scholar]
- Svoboda, V.; Hanel, M.; Máca, P.; Kyselý, J. Projected changes of rainfall event characteristics for the Czech Republic. J. Hydrol. Hydromech. 2016, 64, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Lobanova, A.; Liersch, S.; Nunes, J.P.; Didovets, I.; Stagl, J.; Huang, S.; Koch, H.; Rivas López, M.D.R.; Maule, C.F.; Hattermann, F.; et al. Hydrological impacts of moderate and high-end climate change across European river basins. J. Hydrol. Reg. Stud. 2018, 18, 15–30. [Google Scholar] [CrossRef]
- Štěpánek, P.; Trnka, M.; Chuchma, F.; Zahradníček, P.; Skalák, P.; Farda, A.; Fiala, R.; Hlavinka, P.; Balek, J.; Semerádová, D.; et al. Drought Prediction System for Central Europe and its Validation. Geosciences 2018, 8, 104. [Google Scholar] [CrossRef]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Morison, J.I.L.; Lawlor, D.W. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ. 1999, 22, 659–682. [Google Scholar] [CrossRef]
- Thaler, S.; Eitzinger, J.; Trnka, M.; Dubrovsky, M. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. J. Agric. Sci. 2012, 150, 537–555. [Google Scholar] [CrossRef]
- Kaur, H.; Jalota, S.K.; Kanwar, R.; Vashisht, B.B. Climate change impacts on yield, evapotranspiration and nitrogen uptake in irrigated maize (Zea mays)-wheat (Triticum aestivum) cropping system: A simulation analysis. Indian J. Agric. Sci. 2012, 82, 213–219. [Google Scholar]
- Wang, J.; Liu, X.; Cheng, K.; Zhang, X.; Li, L.; Pan, G. Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation. Agric. Water Manag. 2018, 197, 100–109. [Google Scholar] [CrossRef]
- Stricevic, R.J.; Stojakovic, N.; Vujadinovic-Mandic, M.; Todorovic, M. Impact of climate change on yield, irrigation requirements and water productivity of maize cultivated under the moderate continental climate of Bosnia and Herzegovina. J. Agric. Sci. 2018, 156, 618–627. [Google Scholar] [CrossRef]
- Karandish, F.; Kalanaki, M.; Saberali, S.F. Projected impacts of global warming on cropping calendar and water requirement of maize in a humid climate. Arch. Agron. Soil Sci. 2017, 63, 1–13. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Středová, H.; Rožnovský, J.; Středa, T. Predisposition of drought occurrence in selected arid areas of the Czech Republic. Contrib. Geophys. Geodesy 2013, 43, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Riediger, J.; Breckling, B.; Nuske, R.S.; Schröder, W. Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany. Environ. Sci. Eur. 2014, 26, 18. [Google Scholar] [CrossRef]
- Reidsma, P.; Ewert, F.; Lansink, A.O.; Leemans, R. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. Eur. J. Agron. 2010, 32, 91–102. [Google Scholar] [CrossRef]
- Seidel, S.; Werisch, S.; Barfus, K.; Wagner, M.; Schutze, N.; Laber, H. Field evaluation of irrigation scheduling strategies using a mechanistic crop growth model. Irrig. Drain. 2016, 65, 214–223. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements, 1st ed.; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Petropoulos, G.P.; Srivastava, P.K.; Piles, M.; Pearson, S. Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability 2018, 10, 181. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; Calera Belmonte, A.; Fraile Enguita, L.; Arellano Alcázar, I.; Belmonte Mancebo, M.; Campos Rodríguez, I.; Bravo Rubio, R. Remote sensing-based soil water balance for irrigation water accounting at the Spanish Iberian Peninsula. In Proceedings of the IAHS 380 Earth Observation for Integrated Water and Basin Management: New Possibilities and Challenges for Adaptation to a Changing Environment, Cordoba, Spain, 8–10 May 2018; González-Dugo, M.P., Neale, C., Andreu, A., Pimentel, R., Polo, M.J., Eds.; Copernicus Publications: Gottingen, Germany. [Google Scholar]
- Pozníková, G.; Fischer, M.; Pohanková, E.; Trnka, M. Analyses of spring barley evapotranspiration rates based on gradient measurements and dual crop coefficient model. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62, 1079–1086. [Google Scholar] [CrossRef]
- Spitz, P.; Zavadil, J.; Duffková, R.; Korsuň, S.; Nechvátal, M.; Hemerka, I. Guidelines for Managing Crops Irrigation Regime through IT Program IRRIPROG, 1st ed.; Research Institute for Soil and Water Conservation: Prague, Czech Republic, 2011; p. 41. [Google Scholar]
- Miháliková, M.; Matula, S.; Doležal, F. HYPRESCZ-Database of soil hydrophysical properties in the Czech Republic. Soil Water Res. 2013, 8, 34–41. [Google Scholar] [CrossRef]
- Czech Office for Standards. ČSN 75 0434. Amelioration–Water Requirement for Supplemental Irrigation of Field Crops. Czech Technical Standards. ICS 13.060.10; 65.020.20; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2017. [Google Scholar]
- Budňáková, M. (Ed.) Report on Soils; The Ministry of Agriculture of the Czech Republic–Department of Plant Production: Prague, Czech Republic, 2009; p. 91.
- Monteith, J.L. Principles of environmental physics; Edward Arnold: London, UK, 1973. [Google Scholar]
- Plaut, Z. Sensitivity of crop plants to water stress at specific developmental stages: Re-evaluation of experimental findings. Isr. J. Plant Sci. 1995, 43, 99–111. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Łabȩdzki, L.; Kuźniar, A.; Kostuch, M. An assessment of crop water deficits of the plants growing on the Małopolska Upland. J. Water Land Dev. 2016, 29, 11–22. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Hess, L.; Meir, P.; Bingham, I.J. Comparative assessment of the sensitivity of oilseed rape and wheat to limited water supply. Ann. Appl. Biol. 2015, 167, 102–115. [Google Scholar] [CrossRef]
- Haberle, J.; Trčková, M.; Růžek, P. Causes of Adverse Drought Effect and Other Abiotic Factors on Intake and Utilization of Nutrients by Cereals and the Potential for Its Reduction, 1st ed.; Crop Research Institute: Prague, Czech Republic, 2008; p. 32. [Google Scholar]
- Wei, Y.; Jin, J.; Jiang, S.; Ning, S.; Cui, Y.; Zhou, Y. Simulated assessment of summer maize drought loss sensitivity in Huaibei Plain, China. Agronomy 2019, 9, 78. [Google Scholar] [CrossRef]
- Harris, P.M. Water. In The Potato Crop, 1st ed.; Harris, P.M., Ed.; Chapman & Hall: London, UK, 1978; pp. 244–277. [Google Scholar]
- Haberle, J.; Vlček, V.; Kohut, M.; Středa, T.; Dostál, J.; Svoboda, P. Balance and Determining Available Water Supplies in Root Zone of Crops, 1st ed.; Crop Research Institute: Prague, Czech Republic, 2015; p. 36. [Google Scholar]
- Fleisher, D.H.; Barnaby, J.; Sicher, R.; Resop, J.P.; Timlin, D.J.; Reddy, V.R. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agric. For. Meteorol. 2013, 171–172, 270–280. [Google Scholar] [CrossRef]
- Novák, P.; Kulhavý, Z.; Pelíšek, I.; Podhrázská, J.; Novotný, I.; Skokanová, E.; Batysta, M.; Marval, Š.; Podhrázský, A.; Berka, M.; et al. A survey of irrigation systems in Czechia: The state, use and perspectives. In A report for Czech Ministry of Agriculture, 1st ed.; Research Institute for Soil and Water Conservation: Prague, Czech Republic, 2016; p. 52. [Google Scholar]
- Trnka, M.; Drbal, K.; Dumbrovský, M.; Novotný, I.; Žalud, Z.; Vizina, A.; Chuchma, F.; Růžek, P.; Trantinová, M. Character of Landscape water Management in the Czech Republic, 1st ed.; The State Land Office: Prague, Czech Republic, 2017; p. 423. [Google Scholar]
- Cid, P.; Taghvaeian, S.; Hansen, N.C. Evaluation of the FAO-56 methodology for estimating maize water requirements under deficit and full irrigation regimes in semiarid North-eastern Colorado. Irrig. Drain. 2018, 67, 605–614. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Trans. Asabe 2013, 56, 373–393. [Google Scholar] [CrossRef]
- Žalud, Z.; Brotan, J.; Hlavinka, P.; Trnka, M. Trends in temperature and precipitation in the period of 1961–2010 in Žabčice locality. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 1521–1531. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water, 1st ed.; Food And Agriculture Organization Of The United Nations: Rome, Italy, 2012. [Google Scholar]
- Kunzová, E.; Hejcman, M. Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field Crops Res. 2009, 111, 226–234. [Google Scholar] [CrossRef]
- Kunzová, E.; Hejcman, M. Yield development of winter wheat over 50 years of nitrogen, phosphorus and potassium application on greyic Phaeozem in the Czech Republic. Eur. J. Agron. 2010, 33, 166–174. [Google Scholar] [CrossRef]
- Hejcman, M.; Kunzová, E. Sustainability of winter wheat production on sandy-loamy Cambisol in the Czech Republic: Results from a long-term fertilizer and crop rotation experiment. Field Crops Res. 2010, 115, 191–199. [Google Scholar] [CrossRef]
- Hejcman, M.; Kunzová, E.; Šrek, P. Sustainability of winter wheat production over 50 years of crop rotation and N, P and K fertilizer application on illimerized luvisol in the Czech Republic. Field Crops Res. 2012, 139, 30–38. [Google Scholar] [CrossRef]
- Trnka, M.; Dubrovský, M.; Žalud, Z. Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Clim. Chang. 2004, 64, 227–255. [Google Scholar] [CrossRef]
- Hao, B.; Xue, Q.; Marek, T.H.; Jessup, K.E.; Becker, J.D.; Hou, X.; Xu, W.; Bynum, E.D.; Bean, B.W.; Colaizzi, P.S.; et al. Grain yield, evapotranspiration, and water-use efficiency of maize hybrids differing in drought tolerance. Irrig. Sci. 2019, 37, 25–34. [Google Scholar] [CrossRef]
- Fučík, P.; Zajíček, A.; Duffková, R. Water quality of agricultural drainage systems in the Czech Republic—Options for its improvement. In Research and Practices in Water Quality, 1st ed.; Lee, T.S., Ed.; IntechOpen Limited: London, UK, 2015; pp. 239–262. [Google Scholar]
- Gramlich, A.; Stoll, S.; Stamm, C.; Walter, T.; Prasuhn, V. Effects of artificial land drainage on hydrology, nutrient and pesticide fluxed from Agricultural fields-A review. Agric. Ecosyst. Environ. 2018, 266, 84–99. [Google Scholar] [CrossRef]
- Kulhavý, Z.; Kvítek, T.; Březina, K.B.; Zajíček, A.; Pelíšek, I.; Lexa, M. A phenomenon of land drainage in catchment areas. In Retention and Water Quality in Catchments of the Dam Švihov on the Želivka River, 1st ed.; Kvítek, T., Ed.; The River Vltava Catchment Area, State Company: Prague, Czech Republic, 2017; pp. 63–68. [Google Scholar]
- Fučík, P.; Zajíček, A.; Kaplická, M.; Duffková, R.; Peterková, J.; Maxová, J.; Takáčová, Š. Incorporating rainfall-runoff events into nitrate-nitrogen and phosphorus load assessments for small tile-drained catchments. Water-SUI 2017, 9, 712. [Google Scholar] [CrossRef]
- Zajíček, A.; Fučík, P.; Kaplická, M.; Liška, M.; Maxová, J.; Dobiáš, J. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions–the role of runoff components. Water Sci. Technol. 2018, 77, 1879–1890. [Google Scholar] [CrossRef]
- Kulhavý, Z.; Čmelík, M.; Štibinger, J.; Macek, L.; Škripko, J. Reconstructing Land Drainage by Application of Methods for Drainage Runoff Regulation, 1st ed.; Research Institute for Soil and Water Conservation: Prague, Czech Republic, 2015; p. 58. [Google Scholar]
- Sojka, M.; Kozłowski, M.; Stasik, R.; Napierała, M.; Kesicka, B.; Wrózyński, R.; Jaskuła, J.; Liberacki, D.; Bykowski, J. Sustainable water management in agriculture-the impact of drainage water management on groundwater table dynamics and subsurface outflow. Sustainability 2019, 11, 4201. [Google Scholar] [CrossRef]
AGAs | Air Temperature Normal °C | Annual Sum of Precipitation mm | ET0 mm | AWC % | Altitude m a.s.l. | Slope % | Slope >10% km2 (%) |
---|---|---|---|---|---|---|---|
MGA | 9.7 | 523 | 732 | 19.7 | 204 | 3.9 | 88.5 (5.6) |
BGA | 9.0 | 588 | 666 | 20.0 | 272 | 4.4 | 483 (4.4) |
PGA | 8.0 | 659 | 633 | 18.4 | 468 | 6.1 | 823 (7.1) |
MoGA | 6.6 | 815 | 602 | 17.8 | 590 | 8.7 | 90.5 (28.4) |
AGAs | Category of Soil Water Availability | Area | Growing Period | Water Balance | Precipitation | CWR | AARG | |
---|---|---|---|---|---|---|---|---|
% | km2 | Days | Growing Period (mm) | |||||
MGA | 1 | none | none | none | none | none | none | none |
2 | 60.7 | 959.0 | 166.8 | −83.7 | 274.8 | 395.4 | 86.3 | |
3 | 28.4 | 448.2 | 166.8 | −135.6 | 274.0 | 395.8 | 51.3 | |
4 | 10.9 | 172.1 | 167.9 | −183.7 | 276.0 | 396.3 | 20.0 | |
Sum/weighted average | 100 | 1579.3 | 166.9 | −109.3 | 274.7 | 395.6 | 69.1 | |
BGA | 1 | 10.9 | 1213.8 | 164.3 | 14.8 | 338.9 | 363.5 | 100.0 |
2 | 70.4 | 7808.1 | 167.7 | −51.3 | 302.6 | 373.2 | 78.6 | |
3 | 15.0 | 1666.5 | 170.2 | −134.4 | 290.1 | 379.2 | 35.9 | |
4 | 3.6 | 399.3 | 174.2 | −181.8 | 289.5 | 385.4 | 8.9 | |
Sum/weighted average | 100 | 11,087.7 | 167.9 | −61.3 | 304.2 | 373.5 | 72.0 | |
PGA | 1 | 16.9 | 1957.0 | 161.8 | 18.6 | 357.2 | 364.3 | 98.1 |
2 | 64.4 | 7469.8 | 163.1 | −37.6 | 328.3 | 372.3 | 86.4 | |
3 | 16.3 | 1892.0 | 164.3 | −112.5 | 330.6 | 375.0 | 36.3 | |
4 | 2.5 | 288.6 | 167.6 | −168.4 | 323.9 | 391.2 | 20.3 | |
Sum/weighted average | 100 | 11607.4 | 163.2 | −43.6 | 333.4 | 371.9 | 78.6 | |
MoGA | 1 | 30.6 | 97.2 | 166.9 | 27.8 | 399.8 | 376.8 | 95.7 |
2 | 45.1 | 143.4 | 168.4 | −45.1 | 382.6 | 385.0 | 78.5 | |
3 | 19.8 | 63.1 | 167.2 | −116.5 | 370.1 | 385.2 | 34.3 | |
4 | 4.5 | 14.4 | 171.5 | −169.0 | 365.4 | 396.5 | 20.3 | |
Sum/weighted average | 100 | 318.1 | 167.9 | −42.6 | 384.6 | 383.1 | 72.4 |
AGAs | Category of Soil Water Availability | Area | Growing Period | Water Balance | Precipitation | CWR | AARG | |
---|---|---|---|---|---|---|---|---|
% | km2 | Days | Growing Period (mm) | |||||
MGA | 1 | none | none | none | none | none | none | none |
2 | 0.1 | 1.1 | 132.9 | −94.6 | 274.6 | 390.6 | 50.5 | |
3 | 88.6 | 1398.7 | 133.0 | −140.0 | 266.2 | 401.3 | 38.6 | |
4 | 11.4 | 179.4 | 133.0 | −179.2 | 266.1 | 399.6 | 28.3 | |
Sum/weighted average | 100 | 1579.3 | 133.0 | −144.5 | 266.2 | 401.1 | 37.4 | |
BGA | 1 | 0.1 | 8.0 | 131.0 | 15.6 | 362.6 | 346.3 | 66.4 |
2 | 55.1 | 6110.7 | 132.7 | −69.3 | 306.7 | 371.6 | 41.8 | |
3 | 42.6 | 4726.3 | 132.8 | −118.4 | 287.6 | 381.6 | 38.6 | |
4 | 2.2 | 242.6 | 132.8 | −180.3 | 281.2 | 384.1 | 13.4 | |
Sum/weighted average | 100 | 11,087.7 | 132.7 | −92.6 | 298.1 | 376.1 | 39.9 | |
PGA | 1 | 1.5 | 170.2 | 129.1 | 14.0 | 375.2 | 347.0 | 49.0 |
2 | 71.5 | 8300.3 | 131.6 | −50.7 | 327.4 | 354.6 | 43.0 | |
3 | 26.1 | 3030.1 | 131.7 | −100.1 | 317.2 | 360.8 | 37.7 | |
4 | 0.9 | 106.8 | 132.0 | −157.8 | 302.4 | 379.0 | 21.1 | |
Sum/weighted average | 100 | 11,607.4 | 131.6 | −63.6 | 325.2 | 356.3 | 41.5 | |
MoGA | 1 | 17.0 | 54.1 | 122.8 | 17.9 | 363.5 | 322.5 | 47.5 |
2 | 63.7 | 202.6 | 124.5 | −41.4 | 341.9 | 328.5 | 40.4 | |
3 | 19.1 | 60.7 | 126.0 | −95.6 | 327.1 | 336.5 | 34.8 | |
4 | 0.2 | 0.7 | 126.5 | −131.1 | 322.2 | 344.3 | 13.6 | |
Sum/weighted average | 100 | 318.1 | 124.5 | −41.9 | 342.7 | 329.0 | 40.5 |
AGAs | Category of Soil Water Availability | Area | Growing Period | Water Balance | Precipitation | CWR | AARG | |
---|---|---|---|---|---|---|---|---|
% | km2 | Days | Growing Period (mm) | |||||
MGA | 1 | none | none | none | none | none | none | none |
2 | 65.5 | 1034.7 | 207.8 | −64.7 | 345.0 | 417.3 | 85.1 | |
3 | 27.5 | 434.0 | 207.9 | −126.0 | 344.3 | 418.4 | 47.7 | |
4 | 7.0 | 110.6 | 208.6 | −179.4 | 346.0 | 418.7 | 10.5 | |
Sum/weighted average | 100 | 1579.3 | 207.9 | −89.5 | 344.9 | 417.7 | 69.6 | |
BGA | 1 | 30.3 | 3359.0 | 208.0 | 28.0 | 410.8 | 387.1 | 94.5 |
2 | 54.8 | 6079.0 | 208.2 | −44.1 | 368.1 | 394.4 | 71.1 | |
3 | 12.4 | 1374.5 | 208.7 | −122.8 | 356.2 | 396.8 | 31.7 | |
4 | 2.5 | 275.2 | 212.1 | −171.0 | 353.7 | 403.1 | 6.0 | |
Sum/weighted average | 100 | 11,087.7 | 208.3 | -35.2 | 379.2 | 392.7 | 71.7 | |
PGA | 1 | 50.9 | 5912.2 | 201.3 | 31.9 | 417.9 | 378.4 | 94.8 |
2 | 37.6 | 4361.4 | 202.2 | −36.6 | 396.4 | 385.9 | 71.1 | |
3 | 10.4 | 1210.9 | 202.6 | −104.6 | 391.7 | 389.0 | 31.4 | |
4 | 1.1 | 123.0 | 205.3 | −158.4 | 389.2 | 400.4 | 11.4 | |
Sum/weighted average | 100 | 11,607.4 | 201.8 | −10.1 | 406.8 | 382.6 | 78.4 | |
MoGA | 1 | 53.3 | 169.4 | 195.5 | 51.0 | 459.1 | 374.4 | 92.4 |
2 | 32.1 | 102.1 | 196.2 | −37.1 | 441.0 | 379.1 | 60.3 | |
3 | 13.4 | 42.6 | 196.7 | −108.0 | 426.6 | 383.5 | 29.0 | |
4 | 1.2 | 4.0 | 201.6 | −157.0 | 421.9 | 399.7 | 10.8 | |
Sum/weighted average | 100 | 318.1 | 196.0 | −1.1 | 448.5 | 377.4 | 72.6 |
AGAs | Category of Soil Water Availability | Area | Growing Period | Water Balance | Precipitation | CWR | AARG | |
---|---|---|---|---|---|---|---|---|
% | km2 | Days | Growing Period (mm) | |||||
MGA | 1 | none | none | none | none | none | none | none |
2 | 6.6 | 104.7 | 111.0 | −89.6 | 221.2 | 343.4 | 60.5 | |
3 | 82.0 | 1295.1 | 111.0 | −136.4 | 216.1 | 349.2 | 37.8 | |
4 | 11.4 | 179.4 | 111.0 | −181.1 | 216.6 | 347.6 | 12.1 | |
Sum/weighted average | 1579.3 | 111.0 | −138.4 | 216.5 | 348.6 | 36.4 | ||
BGA | 1 | 0.5 | 51.3 | 113.2 | 6.4 | 313.5 | 338.6 | 86.4 |
2 | 52.4 | 5809.1 | 111.6 | −60.2 | 250.9 | 327.3 | 58.4 | |
3 | 43.9 | 4865.6 | 111.5 | −123.9 | 234.0 | 331.3 | 27.0 | |
4 | 3.3 | 361.7 | 111.5 | −173.2 | 225.4 | 334.0 | 6.3 | |
Sum/weighted average | 11,087.7 | 111.6 | −91.5 | 243.0 | 329.3 | 43.0 | ||
PGA | 1 | 8.6 | 994.8 | 123.6 | 13.0 | 329.0 | 353.4 | 103.0 |
2 | 63.2 | 7333.7 | 120.1 | −40.6 | 294.9 | 347.6 | 82.9 | |
3 | 25.9 | 3011.0 | 121.9 | −108.4 | 296.7 | 353.0 | 38.9 | |
4 | 2.3 | 267.9 | 125.4 | −165.4 | 294.3 | 373.7 | 23.0 | |
Sum/weighted average | 11,607.4 | 121.0 | −56.5 | 298.3 | 350.1 | 71.8 | ||
MoGA | 1 | 26.2 | 83.4 | 134.1 | 23.2 | 377.4 | 372.5 | 110.0 |
2 | 43.4 | 138.1 | 132.1 | −39.2 | 354.7 | 368.4 | 86.4 | |
3 | 27.1 | 86.4 | 134.2 | −109.1 | 351.4 | 375.1 | 41.9 | |
4 | 3.2 | 10.3 | 136.2 | −166.7 | 343.5 | 384.1 | 22.1 | |
Sum/weighted average | 318.1 | 133.3 | −45.9 | 359.4 | 371.8 | 78.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duffková, R.; Holub, J.; Fučík, P.; Rožnovský, J.; Novotný, I. Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches. Sustainability 2019, 11, 5243. https://doi.org/10.3390/su11195243
Duffková R, Holub J, Fučík P, Rožnovský J, Novotný I. Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches. Sustainability. 2019; 11(19):5243. https://doi.org/10.3390/su11195243
Chicago/Turabian StyleDuffková, Renata, Jiří Holub, Petr Fučík, Jaroslav Rožnovský, and Ivan Novotný. 2019. "Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches" Sustainability 11, no. 19: 5243. https://doi.org/10.3390/su11195243
APA StyleDuffková, R., Holub, J., Fučík, P., Rožnovský, J., & Novotný, I. (2019). Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches. Sustainability, 11(19), 5243. https://doi.org/10.3390/su11195243