Forest Management and Climate Change Mitigation: A Review on Carbon Cycle Flow Models for the Sustainability of Resources
Abstract
:1. Introduction
2. Forest Management and Climate Change
3. Forest Management and Carbon Flows
3.1. Forest Management for Carbon Conservation
3.2. Forest Management for Carbon Storage
3.3. Forest Management for Carbon Substitution
3.4. Carbon Flow Models Integration
4. Discussion
- The development of measures against desertification, deforestation, and forest destruction: this should aim at the appropriate stabilization of the forest area and should even increase stabilization;
- The promotion of the total health of ecosystems: this action especially includes actions that counter the detrimental effects caused by, for example, contaminants;
- The development of measures to counter the degradation and unsustainable management of ecosystems as well as measures that increase the potential of forests to act as sinks of greenhouse gases (storage densities, biomass amount, etc.);
- The promotion of scientific research on forests as sources, sinks, and reservoirs of carbon as well as their sustainable management.
- Economic characteristics: short-term evaluation vs. long-term evaluation;
- Technological characteristics: the supply and demand balance of wood;
- Forest characteristics: forest stability vs. yield and harvesting costs;
- Ecological characteristics: biodiversity vs. carbon capture;
- Social characteristics: production safety vs. short-term utility.
5. Conclusions
- Manage species to be as adapted as possible to the environment;
- Include pioneer species, which generally have a very wide environmental range;
- Reduce forest density from an early age to allow greater individual tree stability and less competition for water;
- Include non-native species with greater tolerance to changes in temperature and humidity;
- For natural forests, prioritize natural regeneration to maintain genetic variability. For artificial regeneration, prioritize high density planting or direct sowing, with improved regenerative material in both cases.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, D.J.; Noble, M.H.; Sisinni, S.M.; Dwyer, J.F. People and trees: Assessing the US urban forest resource. J. For. 2001, 99, 37–42. [Google Scholar]
- Mbow, H.-O.P.; Reisinger, A.; Canadell, J.; O’Brien, P. Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SR2); IPCC: Geneva, Switzerland, 2017. [Google Scholar]
- Grant, D.B.; Trautrims, A.; Wong, C.Y. Sustainable Logistics and Supply Chain Management: Principles and Practices for Sustainable Operations and Management; Kogan Page Publishers: London, UK, 2017. [Google Scholar]
- Pant, G.; Kumar, P.P.; Revadekar, J.V.; Singh, N. Climate Change and Uttarakhand: Policy Perspective. In Climate Change in the Himalayas; Springer: Berlin/Heidelberg, Germany, 2018; pp. 135–145. [Google Scholar]
- Kammann, C.; Ippolito, J.; Hagemann, N.; Borchard, N.; Cayuela, M.L.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Jeffery, S.; Kern, J.; Novak, J. Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs. J. Environ. Eng. Landsc. Manag. 2017, 25, 114–139. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017, 71, 112–126. [Google Scholar] [CrossRef]
- Sovacool, B.K. Contestation, contingency, and justice in the Nordic low-carbon energy transition. Energy Policy 2017, 102, 569–582. [Google Scholar] [CrossRef]
- Grubb, M.; Koch, M.; Thomson, K.; Sullivan, F.; Munson, A. The‘Earth Summit’Agreements: A Guide and Assessment: An Analysis the Rio’92 UN Conference on Environment and Development; Routledge: Abingdon, UK, 2019. [Google Scholar]
- Fee, E. Implementing the Paris Climate Agreement: Risks and Opportunities for Sustainable Land Use. In International Yearbook Soil Law and Policy 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 249–270. [Google Scholar]
- Moreira, D.; Pires, J.C. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresour. Technol. 2016, 215, 371–379. [Google Scholar] [CrossRef]
- Berndes, G.; Abt, B.; Asikainen, A.; Cowie, A.; Dale, V.; Egnell, G.; Lindner, M.; Marelli, L.; Paré, D.; Pingoud, K. Forest biomass, carbon neutrality and climate change mitigation. Sci. Policy 2016, 3, 3–27. [Google Scholar]
- Wang, C.; Chang, Y.; Zhang, L.; Pang, M.; Hao, Y. A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China. Energy 2017, 120, 374–384. [Google Scholar] [CrossRef]
- Fuss, S.; Jones, C.D.; Kraxner, F.; Peters, G.P.; Smith, P.; Tavoni, M.; van Vuuren, D.P.; Canadell, J.G.; Jackson, R.B.; Milne, J. Research priorities for negative emissions. Environ. Res. Lett. 2016, 11, 115007. [Google Scholar] [CrossRef] [Green Version]
- Tomaselli, M.; Hajjar, R.; Ramón-Hidalgo, A.; Vásquez-Fernández, A. The problematic old roots of the new green economy narrative: How far can it take us in re-imagining sustainability in forestry? Int. For. Rev. 2017, 19, 139–151. [Google Scholar] [CrossRef]
- Reilly, J.M. Economic Issues in Global Climate Change: Agriculture, Forestry, and Natural Resources; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Buijs, A. Active Citizens and Urban Forestry: Fostering the Diversy of Stewardship Through Mosaic Governance; Wageningen University & Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- Jónsson, J.Ö.G.; Davíðsdóttir, B. Classification and valuation of soil ecosystem services. Agric. Syst. 2016, 145, 24–38. [Google Scholar] [CrossRef]
- Baral, H.; Jaung, W.; Bhatta, L.D.; Phuntsho, S.; Sharma, S.; Paudyal, K.; Zarandian, A.; Sears, R.; Sharma, R.; Dorji, T. Approaches and Tools for Assessing Mountain Forest Ecosystem Services; Center for International Forestry Research: Bogor, Indonesia, 2017. [Google Scholar]
- Mallick, P.H.; Chakraborty, S.K. Forest, wetland and biodiversity: Revealing multi-faceted ecological services from ecorestoration of a degraded tropical landscape. Ecohydrol. Hydrobiol. 2018, 18, 278–296. [Google Scholar] [CrossRef]
- Müller, F.; Burkhard, B.; Hou, Y.; Kruse, M.; Ma, L.; Wangai, P. Indicators for ecosystem services. In Routledge Handbook Ecosystem Services; Routledge: Abingdon, UK, 2016; pp. 157–169. [Google Scholar]
- Zafirah, N.; Nurin, N.; Samsurijan, M.; Zuknik, M.; Rafatullah, M.; Syakir, M. Sustainable ecosystem services framework for tropical catchment management: A review. Sustainability 2017, 9, 546. [Google Scholar] [CrossRef]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
- Van Lierop, P.; Moore, P.F. International Relations for Reducing Wildfire Impacts–Some History and Some Thoughts; US Department Agriculture: Albany, CA, USA, 2019; pp. 1–15.
- Dow, K.; Downing, T.E. The Atlas Climate Change: Mapping the World’s Greatest Challenge; University of California Press: Berkeley, CA, USA, 2016. [Google Scholar]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Viñas, R.A.; Guerrero, N.H. Modelling forest carbon stock changes as affected by harvest and natural disturbances. I. Comparison with countries’ estimates for forest management. Carbon Balance Manag. 2016, 11, 5. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Delacote, P.; Ellison, D.; Hanewinkel, M.; Lindner, M.; Nesbit, M.; Ollikainen, M.; Savaresi, A. A New Role for Forests And The Forest Sector in The EU Post-2020 Climate Targets; European Forest Institute: Joensuu, Finland, 2015. [Google Scholar]
- Von Essen, M.; do Rosário, I.T.; Santos-Reis, M.; Nicholas, K.A. Valuing and mapping cork and carbon across land use scenarios in a Portuguese montado landscape. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Maxwell, S.; Lecture, C.A. Climate Compatible Development: Pathway or Pipe Dream; CDKN: London, UK, 2016. [Google Scholar]
- Roibás, L.; Cuevas, A.; Vázquez, M.E.; Vilas, M.; Hospido, A. Using water scarcity footprint to choose the most suitable location for forest carbon sinks: A case study. Sustain. Prod. Consum. 2018, 16, 1–12. [Google Scholar] [CrossRef]
- Romijn, E.; Coppus, R.; De Sy, V.; Herold, M.; Roman-Cuesta, R.M.; Verchot, L. Land Restoration in Latin America and the Caribbean: An Overview of Recent, Ongoing and Planned Restoration Initiatives and Their Potential for Climate Change Mitigation. Forests 2019, 10, 510. [Google Scholar] [CrossRef]
- Kellogg, W.W. Climate Change and Society: Consequences Increasing Atmospheric Carbon Dioxide; Routledge: Abingdon, UK, 2019. [Google Scholar]
- Goudie, A.S. Human Impact on the Natural Environment; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Blum, J. Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain. In Urban Forests; Apple Academic Press: Oakville, ON, Canada, 2017; pp. 21–54. [Google Scholar]
- Brown, S.; Sathaye, J.; Cannell, M.; Kauppi, P. Management Forests for Mitigation Greenhouse Gas Emissions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Brown, S. Bosques y Cambio Climático y la Función de Los Bosques Como Sumideros de Carbono. Available online: https://www.typsa.com/files/pdf/Bosques.pdf (accessed on 25 August 2019).
- Brown, S. Los bosques y el cambio climático: El papel de los terrenos forestales como sumideros de carbono. In Proceedings of the Actas del XI Congreso Mundial Forestal: Recursos Forestales y Arboles, Antalya, Turkey, 13–22 October 1997; pp. 13–22. [Google Scholar]
- Schlamadinger, B.; Bird, N.; Johns, T.; Brown, S.; Canadell, J.; Ciccarese, L.; Dutschke, M.; Fiedler, J.; Fischlin, A.; Fearnside, P. A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto Protocol and Marrakech Accords. Environ. Sci. Policy 2007, 10, 271–282. [Google Scholar] [CrossRef]
- Hartley, M.J. Rationale and methods for conserving biodiversity in plantation forests. For. Ecol. Manag. 2002, 155, 81–95. [Google Scholar] [CrossRef]
- Brown, S.; Sathaye, J.; Cannell, M.; KAUPPI, P.E. Mitigation of carbon emissions to the atmosphere by forest management. Commonw. For. Rev. 1996, 75, 80–91. [Google Scholar]
- Ramachandran Nair, P.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Houghton, R. Aboveground forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Lasco, R.D.; Pulhin, F.B.; Sanchez, P.A.J.; Villamor, G.B.; Villegas, K.A.L. Climate change and forest ecosystems in the Philippines: Vulnerability, adaptation and mitigation. J. Environ. Sci. Manag. 2008, 11, 1–14. [Google Scholar]
- Kraxner, F.; Nordström, E.-M.; Havlík, P.; Gusti, M.; Mosnier, A.; Frank, S.; Valin, H.; Fritz, S.; Fuss, S.; Kindermann, G. Global bioenergy scenarios–Future forest development, land-use implications, and trade-offs. Biomass Bioenergy 2013, 57, 86–96. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B.; Scott, N.A.; Goulding, C.; Beets, P. Designing systems to monitor carbon stocks in forests and shrublands. For. Ecol. Manag. 2002, 164, 89–108. [Google Scholar] [CrossRef]
- Zenghelis, D. Stern Review: The Economics of Climate Change; HM Treasury: London, UK, 2006. [Google Scholar]
- Liverman, D.M. Conventions of climate change: Constructions of danger and the dispossession of the atmosphere. J. Hist. Geogr. 2009, 35, 279–296. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Friess, D.A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 2018, 8, 240. [Google Scholar] [CrossRef]
- Bradshaw, C.J.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Chang. 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Boegelsack, N.; Withey, J.; O’Sullivan, G.; McMartin, D. A Critical Examination of the Relationship between Wildfires and Climate Change with Consideration of the Human Impact. J. Environ. Prot. 2018, 9, 461. [Google Scholar] [CrossRef]
- Bodansky, D. The United Nations framework convention on climate change: A commentary. Yale J. Int. Law. 1993, 18, 451. [Google Scholar]
- Angst, G.; Mueller, K.E.; Eissenstat, D.M.; Trumbore, S.; Freeman, K.H.; Hobbie, S.E.; Chorover, J.; Oleksyn, J.; Reich, P.B.; Mueller, C.W. Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Glob. Chang. Biol. 2019, 25, 1529–1546. [Google Scholar] [CrossRef] [PubMed]
- Campeau, A.; Bishop, K.; Amvrosiadi, N.; Billett, M.F.; Garnett, M.H.; Laudon, H.; Öquist, M.; Wallin, M.B. Current forest carbon fixation fuels stream CO2 emissions. Nat. Commun. 2019, 10, 1876. [Google Scholar] [CrossRef]
- Kirschbaum, M.U. To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass Bioenergy 2003, 24, 297–310. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. Forest Management and Climate Change Mitigation: A Review on Carbon Cycle Flow Models for the Sustainability of Resources. Sustainability 2019, 11, 5276. https://doi.org/10.3390/su11195276
Nunes LJR, Meireles CIR, Pinto Gomes CJ, Almeida Ribeiro NMC. Forest Management and Climate Change Mitigation: A Review on Carbon Cycle Flow Models for the Sustainability of Resources. Sustainability. 2019; 11(19):5276. https://doi.org/10.3390/su11195276
Chicago/Turabian StyleNunes, Leonel J.R., Catarina I.R. Meireles, Carlos J. Pinto Gomes, and Nuno M.C. Almeida Ribeiro. 2019. "Forest Management and Climate Change Mitigation: A Review on Carbon Cycle Flow Models for the Sustainability of Resources" Sustainability 11, no. 19: 5276. https://doi.org/10.3390/su11195276
APA StyleNunes, L. J. R., Meireles, C. I. R., Pinto Gomes, C. J., & Almeida Ribeiro, N. M. C. (2019). Forest Management and Climate Change Mitigation: A Review on Carbon Cycle Flow Models for the Sustainability of Resources. Sustainability, 11(19), 5276. https://doi.org/10.3390/su11195276