Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-linolenic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
- mo—weight of oil (kg),
- ms—weight of seeds (kg),
- f—fat content in seeds (%)
2.2. Research Methods
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Bigliardi, B.; Galati, F. Innovation trends in the food industry: The case of functional foods. Trends Food Sci. Tech. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Ozen, A.E.; Pons, A.; Tur, J.A. Worldwide consumption of functional foods: A systematic review. Nutr. Rev. 2012, 70, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Norton, T.; Holden, N.M. Introduction. In Sustainable Food Processing; Tiwari, B.K., Norton, T., Holden, N.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–7. [Google Scholar]
- Obiedzińska, A.; Waszkiewicz-Robak, B. Oleje tłoczone na zimno jako żywność funkcjonalna. Zywn Nauk. Technol. Ja. 2012, 1, 27–44. [Google Scholar]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Gugała, M.; Zarzecka, K.; Sikorska, A. Prozdrowotne właściwości oleju rzepakowego. Postępy Fitoter. 2014, 2, 100–103. [Google Scholar]
- Wang, Y.; Meng, G.; Chen, S.; Chen, Y.; Jiang, J.; Wang, Y.-P. Correlation analysis of phenolic contents and antioxidation in yellow- and black-seeded Brassica Napus. Molecules 2018, 23, 1815. [Google Scholar] [CrossRef]
- Wroniak, M.; Łukasik, D.; Maszewska, M. Porównanie stabilności oksydatywnej wybranych olejów tłoczonych na zimno z olejami rafinowanymi. Zywn Nauk. Technol. Ja. 2006, 1, 214–221. [Google Scholar]
- Krajewska, M.; Ślaska-Grzywna, B.; Szmigielski, M. The effect of the oregano addition on the chemical properties of cold-pressed rapeseed oil. Przem. Chem. 2018, 97, 1953–1956. [Google Scholar]
- Starek, A.; Sagan, A.; Kiczorowska, B.; Szmigielski, M.; Ślaska-Grzywna, B.; Andrejko, D.; Kozłowicz, K.; Blicharz-Kania, B.; Krajewska, M. Effects of oleoresins on the chemical properties of cold-pressed rapeseed oil. Przem. Chem. 2018, 97, 771–773. [Google Scholar]
- Marciniak-Łukasiak, K.; Zbikowska, A.; Krygier, K. Wpływ stosowania azotu na stabilność oksydacyjna mieszanin oleju rzepakowego z olejem lnianym. Żywn Nauk Technol. Ja. 2006, 13, 206–215. [Google Scholar]
- Asif, M. Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Zia-Ul-Haq, M.; Ahmad, S.; Calani, L.; Mazzeo, T.; del Rio, D.; Pellegrini, N.; de Feo, V. Compositional study and antioxidant potential of ipomoea hederacea jacq. and lepidium sativum l. seeds. Molecules 2012, 17, 10306–10321. [Google Scholar] [CrossRef] [PubMed]
- Grimes, S.J.; Phillips, T.D.; Hahn, V.; Capezzone, F.; Graeff-Hönninger, S. Growth, yield performance and quality parameters of three early flowering chia (Salvia hispanica l.) genotypes cultivated in southwestern Germany. Agriculture 2018, 8, 154. [Google Scholar] [CrossRef]
- Guevara-Cruz, M.; Tovar, A.R.; Aguilar-Salinas, C.A.; Medina-Vera, I.; Gil-Zenteno, L.; Hernandez-Viveros, I.; Lopez-Romero, P.; Ordaz-Nava, G.; Canizales-Quinteros, S.; Guillen Pineda, L.E.; et al. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolilic syndrome. J. Nutr. 2012, 142, 64–69. [Google Scholar] [CrossRef]
- Nowak, K.; Majsterek, S.Z.; Ciesielska, N.; Sokołowski, R.; Klimkiewicz, K.; Zukow, W. The role of chia seeds in nutrition in geriatric patients. J. Educ. Health Sport 2016, 6, 35–40. [Google Scholar]
- Fan, Q.L.; Zhu, Y.D.; Huang, W.H.; Qi, Y.; Guo, B.L. Two new acylated flavonol glycosides from the seeds of Lepidium sativum. Molecules 2014, 19, 11341–11349. [Google Scholar] [CrossRef]
- Sakran, M.; Selim, Y.; Zidan, N. A new isoflavonoid from seeds of Lepidium sativum L. and its protective effect on hepatotoxicity induced by paracetamol in male rats. Molecules 2014, 19, 15440–15451. [Google Scholar] [CrossRef]
- PN-EN ISO 665:2004. Nasiona Oleiste. Oznaczanie Wilgotności i Zawartości Substancji Lotnych; Polski Komitet Normalizacyjny: Warsaw, Poland, 2004. [Google Scholar]
- PN-EN ISO 659:2010. Nasiona Oleiste. Oznaczanie Zawartości Oleju (Metoda Odwoławcza); Polski Komitet Normalizacyjny: Warsaw, Poland, 2010. [Google Scholar]
- PN-EN ISO 660:2010. Oleje i Tłuszcze Roślinne oraz Zwierzęce—Oznaczanie Liczby Kwasowej i Kwasowości; Polski Komitet Normalizacyjny: Warsaw, Poland, 2010. [Google Scholar]
- PN-EN ISO 3960:2012. Oleje i Tłuszcze Roślinne oraz Zwierzęce—Oznaczanie Liczby Nadtlenkowej—Jodometryczne (Wizualne) Oznaczanie Punktu Końcowego; Polski Komitet Normalizacyjny: Warsaw, Poland, 2012. [Google Scholar]
- Mathäus, B. Determination of the oxidative stability of vegetable oils by rancimat and conductivity and chemiluminescence measurements. J. Am. Oil Chem. Soc. 1996, 73, 1039–1043. [Google Scholar]
- PN-EN ISO 5508:1996. Oleje i Tłuszcze Roślinne oraz Zwierzęce—Analiza Estrów Metylowych Kwasów Tłuszczowych Metodą Chromatografii Gazowej; Polski Komitet Normalizacyjny: Warsaw, Poland, 1996. [Google Scholar]
- PN-EN ISO 5509:2001. Oleje i Tłuszcze Roślinne oraz Zwierzęce—Przygotowanie Estrów Metylowych Kwasów tłuszczowych; Polski Komitet Normalizacyjny: Warsaw, Poland, 2001. [Google Scholar]
- FAO/WHO. Codex Standard for Named Vegetable Oils. In Codex Alimentarius; ALINORM: Santa Croce, Italy, 2009. [Google Scholar]
- Krygier, K.; Wroniak, M.; Grześkiewicz, S.; Obiedziński, M. Badanie wpływu zawartości nasion uszkodzonych na jakość oleju rzepakowego tłoczonego na zimno. Oilseed Crops 2000, 41, 587–596. [Google Scholar]
- Cichosz, G.; Czeczot, H. Stabilność oksydacyjna tłuszczów jadalnych—Konsekwencje zdrowotne. Bromatol. Chem. Toksyk. 2011, 44, 50–60. [Google Scholar]
- Krajewska, M.; Zdybel, B.; Andrejko, D.; Ślaska-Grzywna, B.; Tańska, M. Właściwości chemiczne wybranych olejów tłoczonych na zimno. Acta Agroph. 2017, 24, 579–590. [Google Scholar]
- Segura-Campos, M.R.; Ciau-Solis, N.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Physicochemical characterization of chia (Salvia hispanica) seed oil from Yucatán, México. Agric. Sci. 2014, 5, 220–226. [Google Scholar]
- Gokavi, S.S.; Malleshi, N.G.; Guo, M. Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient. Plant Food Hum. Nutr. 2004, 59, 105–111. [Google Scholar] [CrossRef]
- Moser, B.R.; Shah, S.N.; Winkler-Moser, J.K.; Vaughn, S.F.; Evangelista, R.L. Composition and physical properties of cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils. Ind. Crop. Prod. 2009, 30, 199–205. [Google Scholar] [CrossRef]
- Kruszewski, B.; Fąfara, P.; Ratusz, K.; Obiedziński, M. Ocena pojemności przeciwutleniającej i stabilności oksydacyjnej wybranych olejów roślinnych. Zesz. Probl. Post. Nauk Roln. 2013, 572, 43–52. [Google Scholar]
- Marciniak-Łukasik, K. Rola i znaczenie kwasów tłuszczowych omega-3. Zywn Nauk. Technol. Ja. 2011, 6, 24–35. [Google Scholar]
- Sawada, N.; Inoue, M.; Iwasaki, M.; Sasazuki, S.; Shimazu, T.; Yamaji, T.; Takachi, R.; Tanaka, Y.; Mizokami, M.; Tsugane, S. Consumption of n-3 fatty acids and fish reduces risk of hepatocellular carcinoma. Gastroenterology 2012, 142, 1468–1475. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 696/2014 of 24 June 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of erucic acid in vegetable oils and fats and foods containing vegetable oils and fats. Off. J. EU 2014, L184, 1–2.
- Żmija, D. Zrównoważony rozwój rolnictwa i obszarów wiejskich w Polsce. Studia Ekonomiczne 2014, 166, 149–158. [Google Scholar]
Seeds | Humidity (%) | Fat Content (%) | Pressing Yield (%) |
---|---|---|---|
Rape | 6.97 a ± 0.01 | 38.40 b ± 0.06 | 79.0 |
Spanish sage | 7.11 b ± 0.01 | 36.59 a ± 0.31 | 60.7 |
Garden cress | 7.61 c ± 0.03 | 20.53 c ± 0.01 | 41.9 |
Oil | Proportions of the Individual Oils in the Mixtures (%) | ||||||
---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | |
Rapeseed oil | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
Spanish sage seed oil | - | 5 | 10 | 15 | 20 | 25 | 30 |
Cress seed oil | 30 | 25 | 20 | 15 | 10 | 5 | - |
Oil | Acid Number (mg KOH∙g−1) | Peroxide Number (mmol O2∙kg−1) | Induction Time (h) |
---|---|---|---|
Rapeseed oil | 0.66 a ± 0.02 | 1.85 a ± 0.25 | 4.40 a ± 0.09 |
Spanish sage seed oil | 4.77 b ± 0.02 | 1.00 b ± 0.01 | 0.65 c ± 0.07 |
Cress seed oil | 0.64 a ± 0.03 | 1.24 ab ± 0.07 | 2.67 b ± 0.04 |
Fatty Acids | Rapeseed Oil | Spanish Sage Seed Oil | Cress Seed Oil |
---|---|---|---|
Myristic acid 14:0 | 0.25 ± 0.01 | - | - |
Palmitic acid 16:0 | 6.06 ± 0.18 | 7.46 ± 0.02 | 9.02 ± 0.17 |
Palmitoleic acid16:1 | 0.28 ± 0.01 | 0.15 ± 0.01 | 0.18 ± 0.01 |
Stearic acid 18:0 | 2.08 ± 0.09 | 2.79 ± 0.01 | 3.06 ± 0.05 |
Oleic acid 18:1 | 55.22 ± 0.85 | 4.71 ± 0.02 | 20.68 ± 0.02 |
Linoleic acid18:2 | 24.24 ± 1.13 | 20.80 ± 0.03 | 9.08 ± 0.01 |
α- linolenic acid 18:3 (n-3) | 10.34 ± 0.91 | 63.40 ± 0.02 | 30.03 ± 0.25 |
γ- linolenic acid18-3 (n-6) | - | 0.19 ± 0.01 | - |
Arachidic acid 20:0 | 0.27 ± 0.01 | 0.32 ± 0.01 | 3.64 ± 0.01 |
Eicosaenoic acid 20:1 | 1.00 ± 0.03 | 0.18 ± 0.01 | 13.83± 0.11 |
Eicosadienoic acid 20:2 | - | - | 0.54 ± 0.01 |
Eicosatrienoic acid 20:3 | - | - | 0.75 ± 0.01 |
Behenic acid 22:0 | 0.23 ± 0.01 | - | 1.11 ± 0.03 |
Erucic acid 22:1 | 0.03 ± 0.01 | - | 5.98 ± 0.12 |
Lignoceric acid 24:0 | - | - | 0.58 ± 0.01 |
Nervonic acid 24:1 | - | - | 1.52 ± 0.08 |
ΣSFA 1 | 8.89 | 10.57 | 17.41 |
ΣMUFA 2 | 56.53 | 5.04 | 42.19 |
ΣPUFA 3 | 34.58 | 84.39 | 40.40 |
n-6/n-3 | 2.3 | 0.3 | 0.3 |
Fatty Acids | Oil Mixtures | ||||||
---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M 4 | M5 | M6 | M7 | |
Myristic acid 14:0 | 0.13 | 0.18 | 0.18 | 0.18 | 0.18 | 0.16 | 0.18 |
Palmitic acid 16:0 | 7.01 | 6.73 | 6.62 | 6.85 | 6.68 | 6.60 | 6.45 |
Palmitoleic acid16:1 | 0.28 | 0.28 | 0.27 | 0.26 | 0.26 | 0.26 | 0.27 |
Stearic acid 18:0 | 2.27 | 2.18 | 2.23 | 2.35 | 2.34 | 2.12 | 2.33 |
Oleic acid 18:1 | 44.94 | 44.05 | 43.37 | 42.36 | 41.59 | 40.93 | 40.15 |
Linoleic acid 18:2 | 19.83 | 20.31 | 20.74 | 21.40 | 22.07 | 22.65 | 23.02 |
α- linolenic acid 18:3 (n-3) | 16.18 | 17.82 | 19.72 | 21.26 | 22.92 | 24.61 | 26.30 |
γ- linolenic acid 18-3 (n-6) | - | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 |
Arachidic acid 20:0 | 1.29 | 1.11 | 1.02 | 0.75 | 0.61 | 0.45 | 0.29 |
Eicosaenoic acid 20:1 | 4.62 | 4.30 | 3.52 | 2.80 | 2.09 | 1.44 | 0.77 |
Eicosadienoic acid 20:2 | 0.16 | 0.14 | 0.11 | 0.08 | 0.05 | 0.03 | - |
Eicosatrienoic acid 20:3 | 0.23 | 0.19 | 0.15 | 0.12 | 0.09 | 0.04 | - |
Behenic acid 22:0 | 0.52 | 0.46 | 0.36 | 0.32 | 0.25 | 0.22 | 0.16 |
Erucic acid 22:1 | 1.81 | 1.69 | 1.25 | 0.92 | 0.62 | 0.33 | 0.02 |
Lignoceric acid 24:0 | 0.18 | 0.15 | 0.12 | 0.09 | 0.07 | 0.03 | - |
Nervonic acid 24:1 | 0.55 | 0.40 | 0.32 | 0.23 | 0.14 | 0.08 | - |
ΣSFA 1 | 11.40 | 10.81 | 10.53 | 10.54 | 10.13 | 9.58 | 9.41 |
ΣMUFA 2 | 52.20 | 50.72 | 48.73 | 46.57 | 44.70 | 43.04 | 41.21 |
ΣPUFA 3 | 36.40 | 38.47 | 40.74 | 42.89 | 45.17 | 47.38 | 49.38 |
n-6/n-3 | 1.2 | 1.1 | 1.1 | 1.0 | 1.0 | 0.9 | 0.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagan, A.; Blicharz-Kania, A.; Szmigielski, M.; Andrejko, D.; Sobczak, P.; Zawiślak, K.; Starek, A. Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-linolenic Acid. Sustainability 2019, 11, 5638. https://doi.org/10.3390/su11205638
Sagan A, Blicharz-Kania A, Szmigielski M, Andrejko D, Sobczak P, Zawiślak K, Starek A. Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-linolenic Acid. Sustainability. 2019; 11(20):5638. https://doi.org/10.3390/su11205638
Chicago/Turabian StyleSagan, Agnieszka, Agata Blicharz-Kania, Marek Szmigielski, Dariusz Andrejko, Paweł Sobczak, Kazimierz Zawiślak, and Agnieszka Starek. 2019. "Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-linolenic Acid" Sustainability 11, no. 20: 5638. https://doi.org/10.3390/su11205638
APA StyleSagan, A., Blicharz-Kania, A., Szmigielski, M., Andrejko, D., Sobczak, P., Zawiślak, K., & Starek, A. (2019). Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-linolenic Acid. Sustainability, 11(20), 5638. https://doi.org/10.3390/su11205638