Effects of Straw Returning and Residue Cleaner on the Soil Moisture Content, Soil Temperature, and Maize Emergence Rate in China’s Three Major Maize Producing Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Test Time
2.2. Experimental Design and Treatment Methods
2.3. Measurements
2.3.1. Soil Moisture Content (SMC)
2.3.2. Soil Temperature (ST)
2.3.3. Maize Emergence Rate (MER)
2.3.4. Other Indices
Residual Cover Thickness (RCT)
Soil Compactness (SC)
2.4. Statistical Analyses
3. Results
3.1. Effects of SRA and RC on SMC
3.2. Effects of SRA and RC on ST
3.3. Effects of SRA and RC on the MER
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lal, R. Tillage and agricultural sustainability. Soil Tillage Res. 1991, 20, 133–146. [Google Scholar] [CrossRef]
- Gao, W. Development trends and basic principles of conservation tillage. Sci. Agric. Sin. 2007, 40, 2702–2708. [Google Scholar]
- Zheng, L.; Wu, W.; Wei, Y.; Hu, K. Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of northern China. Soil Tillage Res. 2015, 145, 78–86. [Google Scholar]
- Horning, L.B.; Strtler, L.D.; Saxton, K.E. Surface residue and soil toughness for wind erosion protection. Trans. ASAE 1998, 41, 1061–1065. [Google Scholar] [CrossRef]
- Issaka, F.; Zhang, Z.; Zhao, Z.Q.; Asenso, E.; Li, J.H.; Li, Y.T.; Wang, J.J. Sustainable Conservation Tillage Improves Soil Nutrients and Reduces Nitrogen and Phosphorous Losses in Maize Farmland in Southern China. Sustainability 2019, 11, 2397. [Google Scholar] [CrossRef]
- Zhao, S.; Li, K.; Zhou, W.; Qiu, S.; Huang, S.; He, P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Fan, J.Z.; Yan, F.Y.; Shi, D.J. Effect of different tillage management on soil physical properties and maize yield. J. Maize Sci. 2016, 24, 96–101. [Google Scholar]
- Wang, Q.; Gao, Z.; Chang, B.; Liu, F. Deep tillage with organic materials returning to field improving soil physical characters of calcic chernozem. Trans. Chin. Soc. Agric. Eng. 2015, 31, 161–166. [Google Scholar]
- Zhang, J.; Liu, J.; Zhao, G. Study on soil temperature variation of no-till cultivation with different amounts of stalk mulch. Chin. Agric. Sci. Bull. 2015, 31, 224–228. [Google Scholar]
- Cheng, Z.S.; Yun, C.C.; Jiang, L.K.; Qiu, S.J.; Wei, Z.; Ping, H.E. Effects of long-term straw return on soil fertility, N pool fractions and crop yields on a fluvo-aquic soil in North China. J. Plant Nutr. Fertil. 2014, 20, 1441–1449. [Google Scholar]
- Li, J.; Li, C.; Li, L.; Ding, Z.; Zhao, M. Effect of straw mulching on soil temperature, soil moisture and spring maize yield under seedling strip subsoiling. Acta Agron. Sin. 2014, 40, 1787–1796. [Google Scholar] [CrossRef]
- Jiang, X. Effects of Returning Maize Stalks into Field on Soil Physical and Chemical Properties and Root and Development Function in Wheat Zhengzhou. Ph.D. Thesis, Henan Agricultural University, Zhengzhou, China, 2012. [Google Scholar]
- Li, H. Current status of small and medium sized no-till Seeder in North China; Asian Association for Agricultural Engineering: Shanghai, China, 2010. [Google Scholar]
- Dong, H.; Li, H.; Li, A.; Yan, X.; Zhao, C. Relations between delayed sowing date and growth, effective accumulated temperature of maize. Maize Sci. 2012, 20, 97–101. [Google Scholar]
- Li, Q.; Gao, L.; Shi, A. Relationships between soil temperature and emergence of maize. Crops 2011, 4, 89–92. [Google Scholar]
- Bin, H.; Zengjia, L.; Yun, W.; Tangyuan, N.; Yanhai, Z.; Zhongqiang, S. Effects of soil tillage and returning straw to soil on maize growth status and yield. Trans. CSAE 2007, 23, 48–53. [Google Scholar]
- Gao, Y.; Li, S. Cause and mechanism of crop yield reduction under straw mulch in dryland. Trans. CSAE 2005, 21, 15–19. [Google Scholar]
- Hu, C.; Chen, S.; Zhao, S.; Zhang, X. No–tillage seeding technique under the bestrow of the whole corn stalk. Trans. CSAE 2005, 21, 118–220. [Google Scholar]
- Ma., J. Projected of Future Changes of Heat Stress & Drought and Their Impacts on Maize Yield in Northeast China; Chinese Academy of Agriculture Sciences: Beijing, China, 2012. [Google Scholar]
- Xiong, W.; Lin, E.; Jiang, J.; Li, Y.; Xu, Y. An integrated analysis of impact factors in determining China’s future grain production. Acta Geogr. Sin. 2010, 65, 397–406. [Google Scholar]
- National Bureau of Statistics of China. Inner Mongolia Province National Bureau of Statistics; China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2018.
- National Bureau of Statistics of China. Heilongjiang Province National Bureau of Statistics; China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2018.
- National Bureau of Statistics of China. Jilin Province National Bureau of Statistics; China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2018.
- Zhao, S.; He, P.; Qiu, S.; Jia, L.; Liu, M.; Jin, J.; Johnston, A.M. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in North-Central China. Field Crops Res. 2014, 169, 116–122. [Google Scholar] [CrossRef]
- Qiu, H.; Zhang, S.; Yang, J. Development of China’s maize industry, challenges in the future and policy suggestions. J. Agric. Sci. Technol. 2013, 15, 20–24. [Google Scholar]
- Shu-tian, L.I.U.; Sen, D.O.U.; Yan-lin, H.O.U. Relationship between area of straw returning to the field and content of soil organic carbon in China. J. Jilin Agric. Univ. 2016, 38, 723–732, 738. [Google Scholar]
- Xiong, W.; Holman, I.P.; You, L.; Yang, J.; Wu, W. Impacts of observed growing-season warming trends since 1980 on crop yields in China. Reg. Environ. Chang. 2014, 14, 7–16. [Google Scholar] [CrossRef]
- Karayel, D. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean. Soil Tillage Res. 2009, 104, 121–125. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Li, B.; Qian, W.; Niu, J. Effect of ridge-till and no-till mulching modes in Northeast China on soil physical chemical properties. Trans. CSAE 2014, 30, 58–64. [Google Scholar]
- Lobell, D.B.; Asner, G.P. Climate and management contributions to recent trends in US agricultural yields. Science 2003, 299, 1032. [Google Scholar] [CrossRef] [PubMed]
- Magiera, T.; Zawadzki, J. Using of high-resolution topsoil magnetic screening for assessment of dust deposition: Comparison of forest and arable soil datasets. Environ. Monit. Assess. 2007, 125, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, T.; Wang, B. Effects of Long-term Uses of Chemical Fertilizers on Soil Quality. Chin. Agric. Sci. Bull. 2010, 26, 182–187. [Google Scholar]
- Lei, X.; Wang, F.; Zhou, B.; Yang, W.; Nie, S.; Xing, S. Effects of long-term fertilization on soil soluble organic nitrogen and free amino acid profile variations in paddy fields. J. Agro-Environ. Sci. 2019, 3, 1550–1559. [Google Scholar]
- Yang, F.; He, B.; Zhang, G.; Zhang, L.; Gao, Y. Impacts of different soil fertility improvement practices with film mulched ridge-furrow tillage on soil nutrient content, maize yield, and water use efficiency. Chin. J. Appl. Ecol. 2019, 30, 893–905. [Google Scholar]
- He, J.; Li, H.; Chen, H.; Lu, C.; Wang, Q. Research Progress of Conservation Tillage Technology and Machine. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1–19. [Google Scholar]
- Zhang, X.; Li, H.; Wang, Q.; He, J.; Zheng, Z. Research on Maize Stubble and Plastic Film Separation. J. Agric. Mech. Res. 2015, 37, 261–264, 268. [Google Scholar]
- Gao, H.; Li, H.; Li, W. Development of Conservation Tillage. Trans. Chin. Soc. Agric. Mach. 2008, 9, 43–48. [Google Scholar]
- Lin, J.; Qian, W.; Niu, J. Design and Experiment of Stubble-cutting and Anti-blocking Mechanism for Ridge-till and No-till Planter. J. Shenyang Agric. Univ. 2015, 46, 691–698. [Google Scholar]
- Zhou, C.; Li, Y.; Yin, M.; Guo, X.; Zhao, X. Ridge-furrow planting with biodegradable film mulching over ridges for rainharvesting improving root growth and yield of maize. Trans. CSAE 2015, 31, 109–117. [Google Scholar]
- Sun, X. Edaphology; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Li, R.; Jia, Z. Effects of soil water-temperature effect under dual-mulching of ridge and furrow on growth of maize. Ningxia J. Agric. For. Sci. Technol. 2015, 56, 26–30. [Google Scholar]
- Ye, X.; Wang, B.; Liu, S.; Ma, C.; Li, J.; Chai, R.; Xiong, Q.; Li, H.; Gao, H. Influence of tillage and straw retention on soil carbon pool and maize-wheat yield in Shajiang black soil. Trans. CSAE 2019, 35, 112–118, (In Chinese with English abstract). [Google Scholar]
- Ma, S.Q.; Wang, Q.; Chen, F.T. Impact of spring maize seeding growth on yield and assessment models of production cut under background of spring drought. Trans. CSAE 2015, 31, 171–179. [Google Scholar]
- Zhou, L.M.; Jin, S.L.; Liu, C.A.; Xiong, Y.C.; Si, J.T.; Li, X.G. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions opportunities and challenges in a semiarid agroecosystem. Field Crops Res. 2012, 126, 181–188. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, Z.; Wang, F.; Zhao, H.; Zhang, H. Design and Experiment of Soil Moisture Content and Firmness Collecting Instrument for Farmland. Trans. Chin. Soc. Agric. Mach. 2010, 41, 75–79. [Google Scholar]
- Zhiqing, Z. Current situation and countermeasures of Hulunbeier straw mechanization returning to the field. Agric. Mach. Technol. Promot. 2018, 2, 34–36. [Google Scholar]
- Zhao, H.; He, J.; Li, H.; Wang, Q.; Li, W.; Liu, W. Effect of Straw Returning Manners on Seedbed Soil Physical Properties and Winter Wheat Growth. Trans. Chin. Soc. Agric. Mach. 2018, 49, 60–67. [Google Scholar]
- Zhao, Y.; Xiao, D.; Qi, Y.; Bai, H. Crop yield and water consumption of different cropping patterns under different precipitation years in North China Plain. Trans. CSAE 2018, 34, 108–116, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.; Wu, K.; Zhang, J.; Nong, K.; Li, J.; Li, W. Relationship between Corn Lodging Resistance and Mechanical Parameters. Trans. Chin. Soc. Agric. Mach. 2011, 42, 89–92. [Google Scholar]
- Wang, Q.; Li, H.; He, J.; Li, W.; Liu, A. Effects of no-tillage on the soil moisture and maize yield in large ridges and narrow rows. Trans. Chin. Soc. Agric. Eng. 2010, 26, 39–43. [Google Scholar]
- Wang, Q.; Li, H.; He, J. Effect of ridge culture and no-tillage on soil moisture and maize yield. Trans. CSAE 2012, 28, 146–150. [Google Scholar]
- Xu, Y.; Li, M.; Li, H. Effects of drought at different developmental stages on growth and yield of Summer Maize in North China. J. Meteorol. Environ. 2017, 33, 108–112. [Google Scholar]
- Zhang, W.; Jia, S.; Zhang, Y.; Guo, Y.; Zhang, S.; Qi, H. Long—Term conservation tillage effects on soil respiration and soil water content. Soils Crops 2019, 8, 23–31. [Google Scholar]
- Yu, X.; Wang, X. Effects of Different Tillage Methods on Soil Physical-chemical Properties and Crop Yield in Loess Plateau. J. Anhui Agric. Sci. 2018, 46, 144–146, 156. [Google Scholar]
- Zhang, D.; Lu, Z.; Zhang, X.; Jing, Z.; Yao, Z.; Cheng, Y.; Wang, Y.; Zhang, J.; Bai, H.; Xian, F. Effects of Different Tillage Methods on Maize Yield and Soil Physical and Chemical Characters of Maize Field. Chin. Agric. Sci. Bull. 2014, 30, 209–213. [Google Scholar]
Area | Annual Sunshine Hours (h) | Annual Precipitation (mm) | Sowing Temperature (℃) | Soil Type | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | |||
Inner Mongolia Maize Production Area | 2500 | 2350 | 2550 | 582 | 601 | 559 | 8.2 | 9.0 | 7.8 | black clay | |
Heilongjiang Maize Production Area | 2500 | 2400 | 2600 | 594 | 612 | 568 | 10.1 | 10.8 | 9.5 | black clay | |
Jilin Maize Production Area | 2550 | 2500 | 2700 | 576 | 605 | 561 | 13.8 | 14.2 | 13.2 | black clay |
Geographic Information of Test Site | Annual Sunshine Hours (h) | Annual Precipitation (mm) | Sowing Temperature (℃) | Soil Type |
---|---|---|---|---|
N: Inner Mongolia Okun River farm (49.79 °N, 124.81°E, altitude 387 mm) | 2500 | 584 | 8.0 | black clay |
M: Xiangfang farm (45.71°N, 126.66 °E, altitude 152 m) | 2500 | 591 | 10.1 | black clay |
S: Experimental field of agricultural machinery (43.84 °N, 125.33 °E, altitude 152 m) | 2550 | 578 | 14.1 | black clay |
Parameter | Values (Test site N) | Values (Test site M) | Values (Test site S) |
---|---|---|---|
Soil type | Black clay | Black clay | Black clay |
Soil compactness (MPa) | 0.99 | 0.98 | 0.98 |
Soil Temperature (℃) | 9.0 | 10.1 | 10.9 |
Soil moisture content (% d. b.) | 20.7 | 19.6 | 18.8 |
pH | 7.08 | 7.12 | 7.06 |
Organic Matter (%) | 3.75 | 3.78 | 3.77 |
Total nitrogen content (%) | 0.13 | 0.11 | 0.12 |
Olsen-K (K2O, mg/kg) | 173.2 | 173.5 | 173.1 |
Olsen-P (P2O5, mg/kg) | 16.5 | 16.3 | 16.5 |
Test site S | |||||
Factors | Variables | ||||
SMC (%) | ST (℃) | MER (%) | RCT (mm) | SC (MPa) | |
straw returning amount (F1) | |||||
30% | 12.3a | 15.3d | 76.3c | 9.6a | 0.65a |
50% | 13.9b | 14.2c | 86.8a | 27.0b | 0.62a |
70% | 16.8c | 12.6b | 81.9b | 38.4c | 0.62a |
100% | 16.8c | 11.6a | 73.3d | 89.6d | 0.64a |
residue-cleaner (F2) | |||||
CD | 16.0c | 12.2b | 79.9b | 49.2c | 0.63b |
PRC | 15.2b | 13.1a | 84.8c | 41.0b | 0.71c |
RB | 13.6a | 14.6c | 75.1a | 33.3a | 0.53a |
F-test | |||||
F1 | 181.451 * | 388.356 * | 362.397 * | 1024.665 * | 0.081 ns |
F2 | 337.534 * | 485.583 * | 442.178 * | 685.784 * | 450.716 * |
F1×F2 | 124.653 * | 321.834 * | 357.962 * | 578.627 * | 1.566 ns |
Test site M | |||||
Factors | Variables | ||||
SMC (%) | ST (℃) | MER (%) | RCT (mm) | SC (MPa) | |
straw returning amount (F1) | |||||
30% | 13.0a | 12.3a | 77.1c | 10.1a | 0.63a |
50% | 14.6b | 14.9b | 82.4b | 28.2b | 0.63a |
70% | 17.4c | 16.0c | 88.8a | 40.3c | 0.65a |
100% | 17.6c | 16.8d | 72.8d | 94.5d | 0.61a |
residue cleaner (F2) | |||||
CD | 16.7c | 14.0b | 84.8c | 49.8c | 0.65b |
PRC | 16.0b | 13.1a | 81.2b | 40.3b | 0.76c |
RB | 14.2a | 14.9c | 77.5a | 32.4a | 0.51a |
F-test | |||||
F1 | 202.632 * | 507.623 * | 583.284 * | 944.732 * | 0.079 ns |
F2 | 370.483 * | 424.334 * | 683.942 * | 547.847 * | 401.223 * |
F1×F2 | 178.314 * | 401.502 * | 558.134 * | 455.968 * | 1.182 ns |
Test site N | |||||
Factors | Variables | ||||
SMC (%) | ST (℃) | MER (%) | RCT (mm) | SC (MPa) | |
straw returning amount (F1) | |||||
30% | 12.4a | 10.5a | 74.5c | 11.6a | 0.75a |
50% | 14.4b | 12.9b | 79.7b | 30.5b | 0.72a |
70% | 18.1c | 14.5c | 86.2a | 43.8c | 0.73a |
100% | 18.4c | 15.4d | 70.2d | 101.2d | 0.78a |
residue cleaner (F2) | |||||
CD | 16.9c | 13.1b | 81.6c | 50.3c | 0.71b |
PRC | 16.2b | 12.6a | 79.0b | 41.5b | 0.82c |
RB | 14.5a | 14.3c | 74.9a | 34.7a | 0.58a |
F-test | |||||
F1 | 192.334 * | 410.658* | 407.972 * | 1243.792 * | 0.092 ns |
F2 | 312.429 * | 538.473 * | 527.375 * | 873.361 * | 502.332 * |
F1×F2 | 163.942 * | 396.828 * | 312.451 * | 664.382 * | 1.378ns |
Model | MERS-RB | MERS-CD | MERS-PRC | MERM-RB | MERM-CD | MERM-PRC | MERN-RB | MERN-CD | MERN-PRC |
---|---|---|---|---|---|---|---|---|---|
R2 | 0.9836 | 0.9914 | 0.9802 | 0.9935 | 0.9847 | 0.9821 | 0.9982 | 0.9831 | 0.9423 |
F | 59.88 ** | 95.52 ** | 63.61 ** | 92.47 ** | 85.23 ** | 69.41 ** | 75.68 ** | 56.19 ** | 60.23 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Lu, Y.; Tian, H.; Jia, H.; Guo, M. Effects of Straw Returning and Residue Cleaner on the Soil Moisture Content, Soil Temperature, and Maize Emergence Rate in China’s Three Major Maize Producing Areas. Sustainability 2019, 11, 5796. https://doi.org/10.3390/su11205796
Zhao J, Lu Y, Tian H, Jia H, Guo M. Effects of Straw Returning and Residue Cleaner on the Soil Moisture Content, Soil Temperature, and Maize Emergence Rate in China’s Three Major Maize Producing Areas. Sustainability. 2019; 11(20):5796. https://doi.org/10.3390/su11205796
Chicago/Turabian StyleZhao, Jiale, Yun Lu, Hongli Tian, Honglei Jia, and Mingzhuo Guo. 2019. "Effects of Straw Returning and Residue Cleaner on the Soil Moisture Content, Soil Temperature, and Maize Emergence Rate in China’s Three Major Maize Producing Areas" Sustainability 11, no. 20: 5796. https://doi.org/10.3390/su11205796
APA StyleZhao, J., Lu, Y., Tian, H., Jia, H., & Guo, M. (2019). Effects of Straw Returning and Residue Cleaner on the Soil Moisture Content, Soil Temperature, and Maize Emergence Rate in China’s Three Major Maize Producing Areas. Sustainability, 11(20), 5796. https://doi.org/10.3390/su11205796