The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling Strategy and Physico-Chemical Analyses
2.3. EEM Fluorescence Spectroscopy
3. Results
3.1. Physico-Chemical Characteristics of Reservoir Water
3.2. FRI Components of DOM
3.3. Fluorescence Characteristic Parameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation−Emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Song, Y.; Tu, X.; Du, E.; Liu, R.; Peng, J. Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence. Bioresour. Technol. 2013, 144, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Song, Y.; Gao, H.; Liu, L.; Yao, L.; Peng, J. Applying fluorescence spectroscopy and multivariable analysis to characterize structural composition of dissolved organic matter and its correlation with water quality in an urban river. Environ. Earth Sci. 2015, 73, 5163–5171. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Feng, L.; Zhu, G.; Shi, Z.; Liu, X.; Zhang, Y. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Res. 2011, 45, 5110–5122. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Ren, Z.; Song, Y.; Yu, H.; Tang, X.; Gao, H. Impact of spring flooding on DOM characterization in a small watershed of the Hun River, China. Environ. Earth Sci. 2015, 73, 5131–5140. [Google Scholar] [CrossRef]
- Mostofa, K.M.; Yoshioka, T.; Konohira, E.; Tanoue, E. Dynamics and characteristics of fluorescent dissolved organic matter in the groundwater, river and lake water. Water Air Soil Pollut. 2007, 184, 157–176. [Google Scholar] [CrossRef]
- Herzsprung, P.; von Tümpling, W.; Hertkorn, N.; Harir, M.; Büttner, O.; Bravidor, J.; Friese, K.; Schmitt-Kopplin, P. Variations of DOM quality in inflows of a drinking water reservoir: Linking of van Krevelen diagrams with EEMF spectra by rank correlation. Environ. Sci. Technol. 2012, 46, 5511–5518. [Google Scholar] [CrossRef]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef]
- Goldman, J.H.; Rounds, S.A.; Needoba, J.A. Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream. Environ. Sci. Technol. 2012, 46, 4374–4381. [Google Scholar] [CrossRef]
- Mudarra, M.; Andreo, B.; Barberá, J.A.; Mudry, J. Hydrochemical dynamics of TOC and NO3− contents as natural tracers of infiltration in karst aquifers. Environ. Earth Sci. 2014, 71, 507–523. [Google Scholar] [CrossRef]
- Stepanauskas, R.; JØrgensen, N.O.; Eigaard, O.R.; Žvikas, A.; Tranvik, L.J.; Leonardson, L. Summer inputs of riverine nutrients to the Baltic Sea: Bioavailability and eutrophication relevance. Ecol. Monogr. 2002, 72, 579–597. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Q.; Zhang, Y.; Qin, B.; Zhu, G. Excitation-emission matrix fluorescence and parallel factor analyses of the effects of N and P nutrients on the extracellular polymeric substances of Microcystis aeruginosa. Limnologica 2017, 63, 18–26. [Google Scholar] [CrossRef]
- Hu, N.; Shi, X.; Liu, J.; Huang, P.; Liu, Y.; Liu, Y. Concentrations and possible sources of PAHs in sediments from Bohai Bay and adjacent shelf. Environ. Earth Sci. 2010, 60, 1771–1782. [Google Scholar] [CrossRef]
- Mladenov, N.; McKnight, D.M.; Macko, S.A.; Norris, M.; Cory, R.M.; Ramberg, L. Chemical characterization of DOM in channels of a seasonal wetland. Aquat. Sci. 2007, 69, 456–471. [Google Scholar] [CrossRef]
- Wilson, H.F.; Xenopoulos, M.A. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat. Geosci. 2009, 2, 37. [Google Scholar] [CrossRef]
- Williams, C.J.; Yamashita, Y.; Wilson, H.F.; Jaffé, R.; Xenopoulos, M.A. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol. Oceanogr. 2010, 55, 1159–1171. [Google Scholar] [CrossRef]
- Suen, J.P.; Eheart, J.W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, X.; Wang, D.; Liang, J.; Bai, W.; Zhang, C.; Wang, Q.; Wei, S. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species. J. Environ. Manag. 2018, 206, 418–429. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, E.; Yin, Y.; Van Dijk, M.A.; Feng, L.; Shi, Z.; Liu, M.; Qina, B. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnol. Oceanogr. 2010, 55, 2645–2659. [Google Scholar] [CrossRef]
- SanClements, M.D.; Oelsner, G.P.; McKnight, D.M.; Stoddard, J.L.; Nelson, S.J. New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern United States. Environ. Sci. Technol. 2012, 46, 3212–3219. [Google Scholar] [CrossRef]
- Korean Rural Community Corporation. Study on Setting environmental Goals and Taking Best Management Plans Through Classification of Agricultural Reservoirs [Final]; Korean Rural Community Corporation: Naju, Korea, 2017; p. 193. [Google Scholar]
- Korean Rural Community Corporation. Development of Best Technologies for the Water Quality Management on the Classifying Agricultural Reservoirs [I]; Korean Rural Community Corporation: Naju, Korea, 2018; p. 20. [Google Scholar]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfraz, R.A.; Bajg, J.A.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotox. Environ. Safe 2009, 72, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Holm-Hansen, O.; Lorenzen, C.J.; Holmes, R.W.; Strickland, J.D. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 1965, 30, 3–15. [Google Scholar] [CrossRef]
- Hur, J.; Lee, D.H.; Shin, H.S. Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Org. Geochem. 2009, 40, 1091–1099. [Google Scholar] [CrossRef]
- Jamieson, T.; Sager, E.; Guéguen, C. Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere 2014, 103, 197–204. [Google Scholar] [CrossRef]
- Shafiquzzaman, M.; Ahmed, A.T.; Azam, M.S.; Razzak, A.; Askri, B.; Hassan, H.F.; Ravikumar, B.N.; Okuda, T. Identification and characterization of dissolved organic matter sources in Kushiro river impacted by a wetland. Ecol. Eng. 2014, 70, 459–464. [Google Scholar] [CrossRef]
- Zhu, G.; Yin, J.; Zhang, P.; Wang, X.; Fan, G.; Hua, B.; Ren, B.; Zheng, H.; Deng, B. DOM removal by flocculation process: Fluorescence excitation–emission matrix spectroscopy (EEMs) characterization. Desalination 2014, 346, 38–45. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Tang, S. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 2009, 43, 1533–1540. [Google Scholar] [CrossRef]
- Bilal, M.; Jaffrezic, A.; Dudal, Y.; Le Guillou, C.; Menasseri, S.; Walter, C. Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study. J. Agric. Food Chem. 2010, 58, 3093–3100. [Google Scholar] [CrossRef]
- Cory, R.M.; Miller, M.P.; McKnight, D.M.; Guerard, J.J.; Miller, P.L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Methods 2010, 8, 67–78. [Google Scholar]
- Ohno, T.; Fernandez, I.J.; Hiradate, S.; Sherman, J.F. Effects of soil acidification and forest type on water soluble soil organic matter properties. Geoderma 2007, 140, 176–187. [Google Scholar] [CrossRef]
- Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Parlanti, E.; Wörz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Engel, A.S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org Geochem 2010, 41, 270–280. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gaoa, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Abell, J.M.; Özkundakci, D.; Hamilton, D.P. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: Implications for eutrophication control. Ecosystems 2010, 13, 966–977. [Google Scholar] [CrossRef]
- Lv, J.; Wu, H.; Chen, M. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 2011, 41, 48–56. [Google Scholar] [CrossRef]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Bledsoe, E.L.; Phlips, E.J.; Jett, C.E.; Donnelly, K.A. The relationships among phytoplankton biomass, nutrient loading and hydrodynamics in an inner-shelf estuary. Ophelia 2004, 58, 29–47. [Google Scholar] [CrossRef]
- The Meteorological Administration. Available online: www.kma.go.kr (accessed on 31 May 2018).
- Wilson, H.F.; Xenopoulos, M.A. Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems 2008, 11, 555–568. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Wang, Q.; Shi, K.; Jin, X.; Wang, Y. Components optical property of CDOM in Lake Taihu based on three-dimensional excitation emission matrix fluorescence. J. Lake Sci. 2010, 22, 375–382. [Google Scholar]
- Xu, H.; Cai, H.; Yu, G.; Jiang, H. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res. 2013, 47, 2005–2014. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, A. Humic Substances in Terrestrial Ecosystems; Elsevier: Amsterdam, The Netherlands, 1996; pp. 101–160. [Google Scholar]
- Jiang, T.; Skyllberg, U.; Björn, E.; Green, N.W.; Tang, J.; Wang, D.; Gao, J.; Li, C. Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay estuary, Bohai Sea, China. Environ. Pollut. 2017, 223, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Catalán, N.; Obrador, B.; Felip, M.; Pretus, J.L. Higher reactivity of allochthonous vs. autochthonous DOC sources in a shallow lake. Aquat. Sci. 2013, 75, 581–593. [Google Scholar] [CrossRef]
- Kothawala, D.N.; von Wachenfeldt, E.; Koehler, B.; Tranvik, L.J. Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Sci. Total Environ. 2012, 433, 238–246. [Google Scholar] [CrossRef]
- Nguyen, H.V.M.; Hur, J. Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools. Chemosphere 2011, 85, 782–789. [Google Scholar] [CrossRef]
- Ghervase, L.; Ioja, C.; Cârstea, E.M.; Savastru, D.; Pavelescu, G.; Nita, M.; Niculita, L. Spectroscopic and Physico-chemical Evaluation of Lentic Ecosystems from Bucharest City. Environmental Problems and Development. 2010, pp. 272–277. Available online: www.wseas.us/e-library/conferences/2010/TimisoaraP/EELA/EELA-43.pdf (accessed on 15 December 2019).
Reservoir | Yidam (YD) | Bongrim (BR) | Hongjung (HJ) | Bongam (BA) | Nanjung (NJ) |
---|---|---|---|---|---|
Longitude and latitude | 36°51′21.6″ N | 36°43′49.7″ N | 37°24′01.7″ N | 37°55′03.7″ N | 37°47′03.0″ N |
127°52′46.9″ E | 126°39′19.4″ E | 126°44′26.9″ E | 126°59′49.6″ E | 126°13′40.8″ E | |
Pollution source | livestock | livestock | living | living | farmland |
Installation year | 1931 | 1944 | 1957 | 1979 | 2006 |
Basin area (ha) | 535 | 840 | 710 | 340 | 1884 |
Benefit area * (ha) | 133 | 230 | 127 | 112 | 889 |
Effective storage capacity (103 m3) | 644 | 1065 | 483 | 967 | 6214 |
Mean depth (m) | 2.37 | 9.33 | 3.23 | 10.72 | 2.70 |
Region | Ex (nm) | Em (nm) | Component Type |
---|---|---|---|
B | 225–290 | 300–320 | Tyrosine-like |
T | 225–290 | 320–370 | Tryptophan-like |
A | 225–290 | 370–460 | Fulvic acid-like |
D | 290–360 | 300–370 | Soluble microbial by product-like (SMB) |
C | 290–440 | 370–530 | Humic acid-like |
Reservoir | YD | BR | HJ | BA | NJ |
---|---|---|---|---|---|
Range | Range | Range | Range | Range | |
Mean (± SD) | Mean (± SD) | Mean (± SD) | Mean (± SD) | Mean (± SD) | |
Temp (°C) | 20.50–34.85 | 21.10–34.81 | 21.79–30.39 | 19.99–31.03 | 19.47–33.47 |
26.80 ± 5.63 | 28.03 ± 4.94 | 26.87 ± 3.61 | 26.35 ± 4.02 | 26.26 ± 5.89 | |
pH | 7.19–10.77 | 8.32–10.43 | 8.67–10.12 | 7.79–10.42 | 7.31–10.05 |
9.46 ± 1.57 | 9.74 ± 0.79 | 9.33 ± 0.56 | 9.43 ± 0.90 | 8.82 ± 1.12 | |
EC (mS/cm) | 0.11–0.25 | 0.14–0.16 | 0.22–0.28 | 0.18–0.23 | 0.35–0.54 |
0.18 ± 0.06 | 0.15 ± 0.01 | 0.25 ± 0.02 | 0.21 ± 0.02 | 0.45 ± 0.08 | |
TN (mg/L) | 0.46–3.40 | 1.62–2.90 | 1.59–3.15 | 0.74–1.37 | 0.85–2.29 |
2.18 ± 1.17 | 2.12 ± 0.53 | 2.53 ± 0.54 | 1.07 ± 0.27 | 1.42 ± 0.53 | |
TP (mg/L) | 0.07–0.39 | 0.04–0.06 | 0.04–0.09 | 0.03–0.07 | 0.03–0.10 |
0.16 ± 0.12 | 0.05 ± 0.01 | 0.06 ± 0.02 | 0.05 ± 0.02 | 0.05 ± 0.03 | |
Chl a (ug/L) | 16.30–188.30 | 20.50–132.70 | 16.10–116.50 | 11.40–98.90 | 6.30–175.50 |
63.02 ± 67.27 | 52.98 ± 41.15 | 37.63 ± 38.98 | 36.15 ± 33.82 | 58.68 ± 65.60 | |
DOC (mg/L) | 3.29–9.14 | 2.53–7.38 | 2.29–9.75 | 2.73–8.63 | 5.32–11.54 |
5.94 ± 2.55 | 4.90 ± 2.19 | 6.22 ± 2.84 | 5.63 ± 2.17 | 8.24 ± 2.05 |
YD | BR | ||||||||||
Fluorescence Components | B | T | A | D | C | Fluorescence Components | B | T | A | D | C |
B | 1.00 | B | 1.00 | ||||||||
T | 0.99 ** | 1.00 | T | 0.94 ** | 1.00 | ||||||
A | 0.69 | 0.70 | 1.00 | A | −0.18 | −0.20 | 1.00 | ||||
D | 0.90 * | 0.94 ** | 0.57 | 1.00 | D | 0.81 | 0.95 ** | −0.17 | 1.00 | ||
C | −0.06 | −0.04 | 0.68 | −0.13 | 1.00 | C | −0.66 | −0.68 | 0.83 * | −0.60 | 1.00 |
HJ | BA | ||||||||||
Fluorescence Components | B | T | A | D | C | Fluorescence Components | B | T | A | D | C |
B | 1.00 | B | 1.00 | ||||||||
T | 0.80 | 1.00 | T | 0.96 ** | 1.00 | ||||||
A | 0.96 ** | 0.68 | 1.00 | A | 0.61 | 0.61 | 1.00 | ||||
D | 0.67 | 0.98 ** | 0.54 | 1.00 | D | 0.95 ** | 0.99 ** | 0.57 | 1.00 | ||
C | 0.93 ** | 0.62 | 0.96** | 0.47 | 1.00 | C | 0.52 | 0.50 | 0.98 ** | 0.44 | 1.00 |
NJ | |||||||||||
Fluorescence Components | B | T | A | D | C | ||||||
B | 1.00 | ||||||||||
T | 0.85 * | 1.00 | |||||||||
A | 0.35 | 0.48 | 1.00 | ||||||||
D | 0.80 | 0.99 ** | 0.37 | 1.00 | |||||||
C | 0.22 | 0.35 | 0.99 ** | 0.25 | 1.00 |
Reservoir and Lake | FI | BIX | HIX | β:α ratio | Pollution Source | Reference |
---|---|---|---|---|---|---|
Yidam (YD) | 1.68 ~ 1.94 | 0.74 ~ 1.16 | 2.16 ~ 7.54 | 0.73 ~ 1.09 | livestock | This study |
Bongrim (BR) | 1.72 ~ 1.95 | 0.98 ~ 1.35 | 1.61 ~ 3.51 | 0.94 ~ 1.23 | livestock | ``* |
Hongjung (HJ) | 1.78 ~ 1.90 | 0.95 ~ 2.65 | 0.87 ~ 3.34 | 0.91 ~ 2.48 | living | `` |
Bongam (BA) | 1.77 ~ 1.89 | 0.91 ~ 2.26 | 1.15 ~ 3.92 | 0.87 ~ 2.15 | living | `` |
Nanjung (NJ) | 1.82 ~ 1.98 | 0.96 ~ 1.46 | 1.91 ~ 3.43 | 0.94 ~ 1.39 | farmland | `` |
Albufera des Grau | 1.39 | 0.63 | 8.93 | - | farmland and forest | [49] |
Lumpen | 1.28 | - | 0.97 | 0.41 | forest | [50] |
Paldang | 1.9 | - | 3.50 | - | farmland | [51] |
Valloxen | 1.40 | - | 0.90 | 0.62 | farmland | `` |
Morii | 1.25 | 1.10 | 2.21 | - | living | [52] |
Moghioros | 1.29 | 1.11 | 0.64 | - | living | `` |
Circului | 1.25 | 0.96 | 1.87 | - | living | `` |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.-Y.; Lee, J.-J.; Oh, H.-J.; Nam, G.-S.; Jeong, K.-S.; Oh, J.-M.; Chang, K.-H. The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence. Sustainability 2019, 11, 7207. https://doi.org/10.3390/su11247207
Jin M-Y, Lee J-J, Oh H-J, Nam G-S, Jeong K-S, Oh J-M, Chang K-H. The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence. Sustainability. 2019; 11(24):7207. https://doi.org/10.3390/su11247207
Chicago/Turabian StyleJin, Mei-Yan, Jong-Jun Lee, Hye-Ji Oh, Gui-Sook Nam, Kwang-Seuk Jeong, Jong-Min Oh, and Kwang-Hyeon Chang. 2019. "The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence" Sustainability 11, no. 24: 7207. https://doi.org/10.3390/su11247207
APA StyleJin, M.-Y., Lee, J.-J., Oh, H.-J., Nam, G.-S., Jeong, K.-S., Oh, J.-M., & Chang, K.-H. (2019). The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence. Sustainability, 11(24), 7207. https://doi.org/10.3390/su11247207