Properties of Cement Mortar Using Limestone Sludge Powder Modified with Recycled Acetic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Characteristics of Modified LSSP
3.2. Mortar Application Characteristics
3.2.1. Setting Time
3.2.2. Compressive Strength
3.3. X-ray Diffraction Analysis
3.4. Thermogravimetric/Differential Thermal Analysis
3.5. Scanning Electron Microscopy Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual (Revised); Houghton, J.T., Meira Filho, L.G., Lim, B., Treanton, K., Mamaty, I., Bonduki, Y., Griggs, D.J., Callender, B.A., Eds.; IPCC/OECD/IEA: Paris, France, 1997; Volume 3, Available online: https://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html (accessed on 1 October 2018).
- Marland, G.; Boden, T.A.; Griffin, R.C.; Huang, S.F.; Kanciruk, P.; Nelson, T.R. Estimates of CO2 Emissions from Fossil Fuel Burning and Cement Manufacturing, based on the United Nationals Energy Statistics and the U.S. Bureau of Mines Cement Manufacturing Data; Report No. #ORNL/CDIAC-25; Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1989. Available online: https://cdiac.ess-dive.lbl.gov/epubs/ndp/ndp030/ndp0301.htm (accessed on 1 October 2018).
- Hooton, R.D.; Nkken, M.; Thomas, M.D.A. Portland Limestone Cement: State of the Art Report and Gap Analysis for CSA A 3000. Cem. Assoc. Canada 2007, 3053, 3–5. [Google Scholar]
- Hawkins, P.; Tennis, P.; Detwiler, R. The Use of Limestone in Portland Cement: A State-of-the-Art Review. Portland Cem. Assoc. 2003, 2052b, 27–29. [Google Scholar]
- Caldarone, M.A.; Zemajtis, J.Z. Effect of Use of Limestone on Various Properties of Portland Cement-Part. Portland Cem. Assoc. 2008, 2891a, 1–4. [Google Scholar]
- Paquien, J.N.; Galy, J.; Gerard, J.F.; Pouchelon, A. Rheological studies of fumed silica polydimethylsiloxane suspensions. Colloids Surf. A 2005, 260, 165–172. [Google Scholar] [CrossRef]
- Walberer, J.A.; McHugh, A.J. The linear viscoelastic behavior of highly filled polydimethylsiloxane measured in shear and compression. J. Rheol. 2001, 45, 187–201. [Google Scholar] [CrossRef]
- Khastgir, D.; Adachi, K. Rheological and dielectric studies of aggregation of barium titanate particles suspended in polydimethylsiloxane. Polymer 2000, 41, 6403–6413. [Google Scholar] [CrossRef]
- Aral, B.K.; Kalyon, D.M. Viscoelastic material functions of noncolloidal suspensions with spherical particles. J. Rheol. 1997, 41, 599. [Google Scholar] [CrossRef]
- Aranguren, M.I.; Mora, E.; DeGroot, J.V., Jr.; Macosko, C.W. Effect of reinforcing fillers on the rheology of polymer melts. J. Rheol. 1992, 36, 1165–1181. [Google Scholar] [CrossRef]
- Mishra, S.; Sonawane, S.H.; Singh, R.P. Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites. J. Polym. Sci. B 2005, 43, 107–113. [Google Scholar] [CrossRef]
- Demjn, Z.; Puknszky, B.; Fldes, E.; Nagy, J. Interaction of silane coupling agents with CaCO3. J. Colloid Interface Sci. 1997, 190, 427–436. [Google Scholar] [CrossRef]
- Na, A.L.; Dong, F.J.; Chen, W.Z. In situ synthesis and modification of calcium carbonate nanoparticles via a bobbling method. Sci. China Ser. B-Chem. 2009, 52, 924–929. [Google Scholar]
- Mishra, S.; Shimpi, N.G.; Mali, A.D. Investigation of photo-oxidative effect on morphology and degradation of mechanical and physical properties of nano CaCO3 silicone rubber composites. Polym. Adv. Technol. 2012, 23, 236–246. [Google Scholar] [CrossRef]
- Mishra, S.; Shimpi, N.G.; Mali, A.D. Influence of stearic acid treated nano-CaCO3 on the properties of silicone nanocomposites. J. Polym. Res. 2011, 18, 1715–1724. [Google Scholar] [CrossRef]
- Hoshino, S.; Ohba, Y.; Sakai, E.; Daimon, M. Relation between the Properties of Inorganic Powders and the Fluidity of Cement Pastes. JCA Pro. Cem. Concr. 1996, 50, 186–191. [Google Scholar]
- Sakai, E.; Ichikawa, M.; Daimon, M. Limestone Powder Application. J. Concr. 1998, 36, 3–9. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- ACI. Accelerated curing of concrete at atmospheric pressure—state of the art; ACI Committee 517.2R-87; American Concrete Institute: Farmington Hills, MI, USA, 1992. [Google Scholar]
- Lothenbach, B.; Saout, G.L.; Gallucci, E.; Scrivener, K. Influence of Limestone on the Hydration of Portland Cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Heikal, M.; El-Didamony, H.; Morcy, M.S. Limestone Filled Pozzolanic Cement. Cem. Concr. Res. 2000, 30, 1827–1834. [Google Scholar] [CrossRef]
- Bonavetti, V.L.; Rahhal, V.F.; Irassar, E.F. Studies on the Carboaluminate Formation in Limestone Filler-Blended Cements. Cem. Concr. Res. 2001, 31, 853–859. [Google Scholar] [CrossRef]
- ACI. Building Code Requirements for Structural Concrete; ACI Committee 318, ACI 318-08 edition; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Aggoun, S.; Cheikh-Zouaoui, M.; Chikh, N.; Duval, R. Effect of some admixtures on the setting time and strength evolution of cement pastes at early ages. Constr. Build. Mater. 2008, 22, 106–110. [Google Scholar] [CrossRef]
- Hoang, K.; Justnes, H.; Geiker, M. Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture. Cem. Concr. Res. 2016, 81, 59–69. [Google Scholar] [CrossRef]
- Messina, F.; Ferone, C.; Colangelo, F.; Cioffi, R. Low temperature alkaline activation of weathered fly ash: Influence of mineral admixtures on early age performance. Constr. Build. Mater. 2015, 86, 169–177. [Google Scholar] [CrossRef]
- C¸ etin, C.; Erdo˘gan, S.T.; Tokyay, M. Effect of particle size and slag content on the early hydration of interground blended cements. Cem. Concr. Comp. 2016, 67, 39–49. [Google Scholar]
- Le Saoˆut, G.; Lothenbach, B.; Hori, A.; Higuchi, T.; Winnefeld, F. Hydration of Portland cement with additions of calcium sulfoaluminates. Cem. Concr. Res. 2013, 43, 81–94. [Google Scholar] [CrossRef]
- Huang, H.; Shen, X.-D. Interaction effect of triisopropanolamine and glucose on the hydration of Portland cement. Constr. Build. Mater. 2014, 65, 360–366. [Google Scholar] [CrossRef]
- Min, T.-B.; Cho, I.-S.; Park, W.-J.; Choi, H.-K.; Lee, H.-S. Experimental study on the development of compressive strength of early concrete age using calcium-based hardening accelerator and high early strength cement. Constr. Build. Mater. 2014, 64, 208–214. [Google Scholar] [CrossRef]
- ISO. Cement—Test methods—Determination of strength. ISO 679. 2009. Available online: https://www.iso.org/standard/45568.html (accessed on 1 October 2018).
- Farouk, B.; Mohamed, H.; Mostafa, K. Effect of a Carboxylic Acid on Rheological Properties of a High Alumina Cement Mortar. Iran. J. Chem. Chem. Eng. 2013, 32, 49–57. [Google Scholar]
- Choi, W.-H.; Park, C.-W.; Jung, W.-K.; Jeon, B.-J.; Kim, G.-S. Durability Characteristics of Limestone Powder added Concrete for Environment-Friendly Concrete. J. Korea Inst. Struct. Maint. Insp. 2012, 16, 59–67. [Google Scholar] [Green Version]
- Currell, B.R.; Grzeskowlak, R.; Mldgley, H.G.; Parsonage, J.R. The Acceleration and Retardation of Set High Alumina Cement by Additives. Cem. Concr. Res. 1987, 17, 420–432. [Google Scholar] [CrossRef]
- Elakneswaran, Y.; Nawa, T.; Kurumisawa, K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides. Cem. Concr. Res. 2009, 39, 340–344. [Google Scholar] [CrossRef]
- Balonis, M.; Glasser, F.P. Calcium nitrite corrosion inhibitor in Portland cement: influence of nitrite on chloride binding and mineralogy. J. Am. Ceram. Soc. 2011, 94, 2230–2241. [Google Scholar] [CrossRef]
CaO | SiO2 | MgO | Al2O3 | SO3 | Fe2O3 | K2O | Na2O | LOI | |
---|---|---|---|---|---|---|---|---|---|
OPC | 63.35 | 21.09 | 3.32 | 4.34 | 3.09 | 2.39 | 1.13 | 0.29 | 1.0 |
CaCO3 | 52.53 | 1.18 | 2.47 | 0.47 | 0.02 | 0.43 | 0.13 | 0 | 42.77 |
LSSP | 53.16 | 3.96 | 1.09 | 2.13 | 0.08 | 1.4 | 0.46 | 0.05 | 37.7 |
Sample | OPC (Ordinary Portland Cement) | LSSP (Limestone Sludge Powder) | Modified LSSP | Silica sand | Water |
---|---|---|---|---|---|
OPC | 1000 | - | - | 2000 | 340 |
OPC-L5 | 950 | 50 | |||
OPC-L10 | 900 | 100 | |||
OPC-L15 | 850 | 150 | |||
OPC-L20 | 800 | 200 | |||
OPC-ML5 | 950 | 50 | |||
OPC-ML10 | 900 | 100 | |||
OPC-ML15 | 850 | 150 | |||
OPC-ML 20 | 800 | 200 |
Sample | OPC (Plain) | OPC-L5 | OPC-L10 | OPC-ML5 | OPC-ML10 |
---|---|---|---|---|---|
Ca(OH)2 Weight content (%) | 2.33 | 1.01 | 0.985 | 1.771 | 1.876 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, H.-S.; Kim, D.-M.; Shin, S.-H.; Kim, W.-K.; Lim, S.-M.; Park, W.-J. Properties of Cement Mortar Using Limestone Sludge Powder Modified with Recycled Acetic Acid. Sustainability 2019, 11, 879. https://doi.org/10.3390/su11030879
Ryu H-S, Kim D-M, Shin S-H, Kim W-K, Lim S-M, Park W-J. Properties of Cement Mortar Using Limestone Sludge Powder Modified with Recycled Acetic Acid. Sustainability. 2019; 11(3):879. https://doi.org/10.3390/su11030879
Chicago/Turabian StyleRyu, Hwa-Sung, Deuck-Mo Kim, Sang-Heon Shin, Wan-Ki Kim, Seung-Min Lim, and Won-Jun Park. 2019. "Properties of Cement Mortar Using Limestone Sludge Powder Modified with Recycled Acetic Acid" Sustainability 11, no. 3: 879. https://doi.org/10.3390/su11030879
APA StyleRyu, H. -S., Kim, D. -M., Shin, S. -H., Kim, W. -K., Lim, S. -M., & Park, W. -J. (2019). Properties of Cement Mortar Using Limestone Sludge Powder Modified with Recycled Acetic Acid. Sustainability, 11(3), 879. https://doi.org/10.3390/su11030879