Multidisciplinarity in Research of Extreme Solar Energy Influences on Natural Disasters
Abstract
:1. Introduction
2. Extreme Solar Radiation and Natural Disasters
- Charged particles. The most important increase of the charged particles is the consequence of a coronal mass ejection (CME). This process, connected with magnetic reconnection on the Sun, can produce a significant increase of the charged particles coming to Earth, where, consequently, solar radiation influence varies on different terrestrial layers. First of all, very intensive disturbances can occur in the magnetic field which, on the other side, has influence on the charged particles’ paths. Generally, their influence primarily depends on altitude and latitude due to interactions with the atmospheric particles and the geomagnetic field effects on charged particles. Although the particle impact is the most important in the polar areas, many investigations point out their significant role in locations with anomalies in geomagnetic fields [22,23].
- Electromagnetic radiation (X-rays, UV). The most important extreme electromagnetic radiation coming from the Sun is the consequence of solar flares and lies in the X domain of EM spectrum. As investigations show, very intensive perturbations which are induced by this astrophysical phenomenon occur in the low ionosphere [24,25,26] with possible significant effects on propagations of electromagnetic waves which propagate in the ionosphere [27]. Also, the radiation in the UV region reaching the Earth’s surface can sometimes be significantly increased. As a consequence, serious health problems can occur.
3. Observations
4. Modelling
- Modelling of the radiation characteristics before its impact on the Earth’s atmosphere.
- Modelling of radiation propagation in the atmosphere.
- Modelling of processes which induce natural disasters.
- Modelling of the connection between radiation characteristics and processes which induce natural disasters.
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bondur, V.G.; Pulinets, S.A.; Kim, G.A. Role of variations in galactic cosmic rays in tropical cyclogenesis: Evidence of Hurricane Katrina. Dokl. Earth Sci. 2008, 422, 1124–1128. [Google Scholar] [CrossRef]
- Artamonova, I.; Veretenenko, S. Effect of solar and galactic cosmic rays on the duration of macrosynoptic processes. Geomagn. Aeron. 2013, 53, 5–9. [Google Scholar] [CrossRef]
- Artamonova, I.; Veretenenko, S. Atmospheric pressure variations at extratropical latitudes associated with Forbush decreases of galactic cosmic rays. Adv. Space Res. 2014, 54, 2491–2498. [Google Scholar] [CrossRef]
- Veretenenko, S.; Ogurtsov, M. Regional and temporal variability of solar activity and galactic cosmic ray effects on the lower atmosphere circulation. Adv. Space Res. 2012, 49, 770–783. [Google Scholar] [CrossRef]
- Veretenenko, S.; Thejll, P. Influence of energetic Solar Proton Events on the development of cyclonic processes at extratropical latitudes. J. Phys. Conf. Ser. 2013, 409, 012237. [Google Scholar] [CrossRef] [Green Version]
- Rozhnoi, A.; Shalimov, S.; Solovieva, M.; Levin, B.; Hayakawa, M.; Walker, S. Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals. J. Geophys. Res. Space Phys. 2012, 117, 9313. [Google Scholar] [CrossRef]
- Inan, U.S.; Lehtinen, N.G.; Moore, R.C.; Hurley, K.; Boggs, S.; Smith, D.M.; Fishman, G.J. Massive disturbance of the daytime lower ionosphere by the giant γ-ray flare from magnetar SGR 1806-20. Geophys. Res. Lett. 2007, 34, 8103. [Google Scholar] [CrossRef]
- Nina, A.; Simić, S.; Srećković, V.A.; Popović, L.Č. Detection of short-term response of the low ionosphere on gamma ray bursts. Geophys. Res. Lett. 2015, 42, 8250–8261. [Google Scholar] [CrossRef] [Green Version]
- Radovanović, M. Investigation of solar influence on the terrestrial processes: Activities in Serbia. J. Geogr. Inst. Cvijic 2018, 68, 149–155. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Menk, F.; Maurya, A.K.; Singh, R.; Veenadhari, B. Response of the low-latitude D region ionosphere to extreme space weather event of 14–16 December 2006. J. Geophys. Res. Space Phys. 2015, 120, 788–799. [Google Scholar] [CrossRef]
- Schmitter, E.D. Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site. Ann. Geophys. 2013, 31, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Boberg, F.; Lundstedt, H. Solar wind electric field modulation of the NAO: A correlation analysis in the lower atmosphere. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Gabis, I.; Troshichev, O. Influence of short-term changes in solar activity on baric field perturbations in the stratosphere and troposphere. J. Atmos. Sol.-Terr. Phys. 2000, 62, 725–735. [Google Scholar] [CrossRef]
- Georgieva, K.; Kirov, B.; Knížová, P.K.; Mošna, Z.; Kouba, D.; Asenovska, Y. Solar influences on atmospheric circulation. J. Atmos. Sol.-Terr. Phys. 2012, 90, 15–25. [Google Scholar] [CrossRef]
- Lockwood, M.; Bell, C.; Woollings, T.; Harrison, R.; Gray, L.; Haigh, J. Top-down solar modulation of climate: Evidence for centennial-scale change. Environ. Res. Lett. 2010, 5, 034008. [Google Scholar] [CrossRef]
- Pazos, M.; Mendoza, B.; Gimeno, L. Analysis of precursors of tropical cyclogenesis during different phases of the solar cycle and their correlation with the Dst geomagnetic index. J. Atmos. Sol.-Terr. Phys. 2015, 133, 54–61. [Google Scholar] [CrossRef]
- Todorović, N.; Vujović, D. Effect of solar activity on the repetitiveness of some meteorological phenomena. Adv. Space Res. 2014, 54, 2430–2440. [Google Scholar] [CrossRef]
- Voiculescu, M.; Usoskin, I.; Condurache-Bota, S. Clouds blown by the solar wind. Environ. Res. Lett. 2013, 8, 045032. [Google Scholar] [CrossRef] [Green Version]
- Nina, A.; Čadež, V.M.; Popović, L.Č.; Srećković, V.A. Diagnostics of plasma in the ionospheric D-region: Detection and study of different ionospheric disturbance types. Eur. Phys. J. D 2017, 71, 189. [Google Scholar] [CrossRef]
- Molchanov, O.; Hayakawa, M.; Oudoh, T.; Kawai, E. Precursory effects in the subionospheric VLF signals for the Kobe earthquake. Phys. Earth Planet. Inter. 1998, 105, 239–248. [Google Scholar] [CrossRef]
- Nina, A.; Radovanović, M.; Milovanović, B.; Kovačević, A.; Bajčetić, J.; Popović, L.Č. Low ionospheric reactions on tropical depressions prior hurricanes. Adv. Space Res. 2017, 60, 1866–1877. [Google Scholar] [CrossRef] [Green Version]
- Radovanović, M.M.; Vyklyuk, Y.; Milenković, M.; Vuković, D.B.; Matsiuk, N. Application of adaptive neuro-fuzzy interference system models for prediction of forest fires in the USA on the basis of solar activity. Therm. Sci. 2015, 19, 1649–1661. [Google Scholar] [CrossRef]
- Vyklyuk, Y.; Radovanović, M.; Milovanović, B.; Leko, T.; Milenković, M.; Milošević, Z.; Milanović Pešić, A.; Jakovljević, D. Hurricane genesis modelling based on the relationship between solar activity and hurricanes. Nat. Hazards 2017, 85, 1043–1062. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.; Singh, R.; Singh, R. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements. Astrophys. Space Sci. 2014, 350, 1–9. [Google Scholar] [CrossRef]
- Nina, A.; Čadež, V.; Bajčetić, J.; Andrić, M.; Jovanović, G. Responses of the ionospheric D-region to periodic and transient variations of the ionizing solar Lyα radiation. J. Geogr. Inst. Cvijic 2017, 67, 235–248. [Google Scholar] [CrossRef]
- Srećković, V.A.; Šulić, D.; Vujčić, V.; Jevremović, D.; Vyklyuk, Y. The Effects of Solar Activity: Electrons in the Terrestrial Lower Ionosphere. J. Geogr. Inst. Cvijic 2017, 67, 221–233. [Google Scholar] [CrossRef]
- Bajčetić, J.; Nina, A.; Čadež, V.M.; Todorović, B.M. Ionospheric D-Region Temperature Relaxation and Its Influences on Radio Signal Propagation After Solar X-Flares Occurrence. Therm. Sci. 2015, 19, S299–S309. [Google Scholar] [CrossRef]
- Gomes, J.; Radovanovic, M. Solar activity as a possible cause of large forest fires—A case study: Analysis of the Portuguese forest fires. Sci. Total Environ. 2008, 394, 197–205. [Google Scholar] [CrossRef]
- Vyklyuk, Y.; Radovanović, M.M.; Stanojević, G.B.; Milovanović, B.; Leko, T.; Milenković, M.; Petrović, M.; Yamashkin, A.A.; Pešić, A.M.; Jakovljević, D.; et al. Hurricane genesis modelling based on the relationship between solar activity and hurricanes II. J. Atmos. Sol.-Terr. Phys. 2018, 180, 159–164. [Google Scholar] [CrossRef]
- Horne, R.B.; Glauert, S.A.; Meredith, N.P.; Boscher, D.; Maget, V.; Heynderickx, D.; Pitchford, D. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 2013, 11, 169–186. [Google Scholar] [CrossRef]
- Stankov, S.; Warnant, R.; Stegen, K. Trans-ionospheric GPS signal delay gradients observed over mid-latitude Europe during the geomagnetic storms of October–November 2003. Adv. Space Res. 2009, 43, 1314–1324. [Google Scholar] [CrossRef] [Green Version]
- Pirazzini, R.; Leppänen, L.; Picard, G.; Lopez-Moreno, J.I.; Marty, C.; Macelloni, G.; Kontu, A.; Von Lerber, A.; Tanis, C.M.; Schneebeli, M.; et al. European In-Situ Snow Measurements: Practices and Purposes. Sensors 2018, 18, 2016. [Google Scholar] [CrossRef] [PubMed]
- Dell’Acqua, F.; Iannelli, G.C.; Torres, M.A.; Martina, M.L. A Novel Strategy for Very-Large-Scale Cash-Crop Mapping in the Context of Weather-Related Risk Assessment, Combining Global Satellite Multispectral Datasets, Environmental Constraints, and In Situ Acquisition of Geospatial Data. Sensors 2018, 18, 591. [Google Scholar] [CrossRef] [PubMed]
- Benevides, P.; Nico, G.; Catalão, J.; Miranda, P.M.A. Bridging InSAR and GPS Tomography: A New Differential Geometrical Constraint. IEEE Trans. Geosci. Remote Sens. 2016, 54, 697–702. [Google Scholar] [CrossRef]
- Mateus, P.; Catalão, J.; Nico, G. Sentinel-1 Interferometric SAR Mapping of Precipitable Water Vapor Over a Country-Spanning Area. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2993–2999. [Google Scholar] [CrossRef]
- Dere, K.P.; Landi, E.; Young, P.R.; Del Zanna, G.; Landini, M.; Mason, H.E. CHIANTI—An atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. Astron. Astrophys. 2009, 498, 915–929. [Google Scholar] [CrossRef]
- Del Zanna, G.; Dere, K.P.; Young, P.R.; Landi, E.; Mason, H.E. CHIANTI—An atomic database for emission lines. Version 8. Astron. Astrophys. 2015, 582, A56. [Google Scholar] [CrossRef]
- Mani, A.; Chacko, O. Attenuation of solar radiation in the atmosphere. Sol. Energy 1980, 24, 347–349. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nina, A.; Srećković, V.A.; Radovanović, M. Multidisciplinarity in Research of Extreme Solar Energy Influences on Natural Disasters. Sustainability 2019, 11, 974. https://doi.org/10.3390/su11040974
Nina A, Srećković VA, Radovanović M. Multidisciplinarity in Research of Extreme Solar Energy Influences on Natural Disasters. Sustainability. 2019; 11(4):974. https://doi.org/10.3390/su11040974
Chicago/Turabian StyleNina, Aleksandra, Vladimir A. Srećković, and Milan Radovanović. 2019. "Multidisciplinarity in Research of Extreme Solar Energy Influences on Natural Disasters" Sustainability 11, no. 4: 974. https://doi.org/10.3390/su11040974
APA StyleNina, A., Srećković, V. A., & Radovanović, M. (2019). Multidisciplinarity in Research of Extreme Solar Energy Influences on Natural Disasters. Sustainability, 11(4), 974. https://doi.org/10.3390/su11040974