Mapping and Characterizing Spatiotemporal Dynamics of Impervious Surfaces Using Landsat Images: A Case Study of Xuzhou, East China from 1995 to 2018
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Remote Sensing Images
3. Methods
3.1. Linear Spectral Mixture Analysis
3.2. Landscape Indices
3.3. Profile Line Analysis
3.4. Median Center and Standard Deviational Ellipse
3.5. Spatial Autocorrelation Analyses
4. Results
4.1. Impervious Surface Mapping
4.2. Spatiotemporal Dynamic Analysis of Impervious Surfaces
4.2.1. Based on Landscape Indices
4.2.2. Based on Profile Line Analysis
4.2.3. Based on Median Centers and Standard Deviational Ellipses
4.2.4. Based on Spatial Autocorrelation Analyses
5. Interpretation and Discussion
5.1. Overall Dynamics
5.2. Landscape Pattern
5.3. Expansion Direction
5.4. Expansion Rate
5.5. Innovation and Limitation
6. Conclusions
- Impervious surfaces increased obviously in the context of rapid urbanization, which changed urban landscape patterns. Impervious surfaces with high fractions were mainly concentrated in the downtown area, showing an expansion starting from the downtown area. Impervious surfaces were generally fragmented and irregular. Meanwhile, vegetation also flourished in recent years. Scientific urban planning promotes the balanced development of impervious surface expansion and ecological environmental protection, increasing the diversity of landscape.
- Significant differences in the expansion direction of impervious surfaces existed in the entire study area and each district. The expansion direction of the study area was not obvious, while the districts within the CUA shows clear expansion directions towards the east and southeast, which is consistent with the general urban planning. Therefore, more importance should be placed on the urban planning and policy guidance to stimulate and regulate the overall orderly urban development.
- Expansion rates of impervious surfaces showed a significant spatial agglomeration, which increased gradually and varied with the town. The urbanization of the downtown area started early and has gradually become saturated, while the non-CUA accelerated its development with the large internal differences. This suggests that resource distribution and government policies affect urban expansion rates.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maggiore, G.; Semeraro, T.; Aretano, R.; De Bellis, L.; Luvisi, A. GIS analysis of land-use change in threatened landscapes by Xylella fastidiosa. Sustainability 2019, 11, 253. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, B.; Li, Q.; Chen, J. A method characterizing urban expansion based on land cover map at 30 m resolution. Earth Sci. 2016, 59, 1738–1744. [Google Scholar] [CrossRef]
- Arribas-bel, D.; Nijkamp, P.; Scholten, H. Multidimensional urban sprawl in Europe: A self-organizing map approach. Comput. Environ. Urban Syst. 2011, 35, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Jiao, L.; Mao, L.; Liu, Y. Multi-order landscape expansion index: Characterizing urban expansion dynamics. Landsc. Urban Plan. 2015, 137, 30–39. [Google Scholar] [CrossRef]
- Torbick, N.; Corbiere, M. Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades. GISci. Remote Sens. 2015, 52, 746–764. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, H.; Li, J. Examining urban expansion using multi-temporal Landsat imagery: A case study of the Montreal census metropolitan area from 1975 to 2015, Canada. ISPRS J. Photogramm. Remote Sens. 2016, XLI-B8, 965–972. [Google Scholar]
- Adhikari, P.; Beurs, K.M. De Growth in urban extent and allometric analysis of West African cities. J. Land Use Sci. 2017, 12, 105–124. [Google Scholar] [CrossRef]
- Di Palma, F.; Amato, F.; Nolè, G.; Martellozzo, F.; Murgante, B. A SMAP supervised classification of Landsat images for urban sprawl evaluation. Int. J. Geo-Inf. 2016, 5, 109. [Google Scholar] [CrossRef]
- Shafizadeh-moghadam, H.; Tayyebi, A.; Helbich, M. Transition index maps for urban growth simulation: Application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environ. Monit. Assess. 2017, 189, 300. [Google Scholar] [CrossRef] [PubMed]
- Devendran, A.A.; Lakshmanan, G. Urban growth prediction using neural network coupled agents-based Cellular Automata model for Sriperumbudur Taluk, Tamil Nadu, India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 353–362. [Google Scholar]
- Wang, L.; Li, C.C.; Ying, Q.; Cheng, X.; Wang, X.Y.; Li, X.Y.; Hu, L.Y.; Liang, L.; Yu, L.; Huang, H.B.; et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chin. Sci. Bull. 2012, 57, 2802–2812. [Google Scholar] [CrossRef] [Green Version]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A comparative analysis of megacity expansions in China and the U.S.: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Shen, H.; Xie, P.; Hu, X.; Wang, Y. Using impervious surfaces to detect urban expansion in Beijing of China in 2000s. Chin. Geogr. Sci. 2016, 26, 229–243. [Google Scholar]
- Xu, H. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [Google Scholar] [CrossRef]
- Liu, C.; Shao, Z.; Chen, M.; Luo, H. MNDISI: A multi-source composition index for impervious surface area estimation at the individual city scale. Remote Sens. Lett. 2013, 4, 803–812. [Google Scholar] [CrossRef]
- Lu, D.; Hetrick, S.; Moran, E. Impervious surface mapping with Quickbird imagery. Int. J. Remote Sens. 2011, 32, 2519–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sens. Environ. 2004, 93, 480–492. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Anindita, S.C.; Prafull, S.; Rai, S.C. Assessment of impervious surface growth in urban environment through remote sensing estimates. Environ. Earth Sci. 2017, 76, 1–14. [Google Scholar]
- De Asis, A.M.; Omasa, K. Estimation of vegetation parameter for modeling soil erosion using linear spectral mixture analysis of Landsat ETM data. Photogramm. Remote Sen. 2007, 62, 309–324. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Qin, K.; Wang, Y. Remote sensing estimation of urban surface evapotranspiration based on a modified Penman–Monteith model. J. Appl. Remote Sens. 2018, 12, 046006. [Google Scholar] [CrossRef]
- Sun, D.; Liu, N. Coupling spectral unmixing and multiseasonal remote sensing for temperate dryland land-use/land-cover mapping in Minqin County, China. Int. J. Remote Sens. 2015, 36, 3636–3658. [Google Scholar] [CrossRef]
- Schmitt-harsh, M.; Sweeney, S.P.; Evans, T.P. Classification of coffee-forest landscapes using Landsat TM imagery and spectral mixture analysis. Photogramm. Eng. Remote Sens. 2013, 79, 457–468. [Google Scholar] [CrossRef]
- Siregar, V.P.; Prabowo, N.W. Linear spectral mixture analysis of SPOT-7 for tea yield estimation in Pagilaran Estate, Batang Central Java. Earth Environ. Sci. 2016, 47, 012034. [Google Scholar]
- Yan, E.; Lin, H.; Wang, G.; Sun, H. Improvement of forest carbon estimation by integration of regression modeling and spectral unmixing of Landsat data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2003–2007. [Google Scholar]
- Kawakubo, F.S.; Paul, R.; Machado, P. Mapping coffee crops in southeastern Brazil using spectral mixture analysis and data mining classification. Int. J. Remote Sens. 2016, 37, 3414–3436. [Google Scholar] [CrossRef]
- Li, L.; Canters, F.; Solana, C.; Ma, W.; Chen, L.; Kervyn, M. Discriminating lava flows of different age within Nyamuragira’s volcanic field using spectral mixture analysis. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Xu, H. Impervious surface information extraction based on hyperspectral remote sensing imagery. Remote Sens. 2017, 9, 550. [Google Scholar] [CrossRef]
- Voorde, T.V.D.; Roeck, T.D.; Canters, F. A comparison of two spectral mixture modelling approaches for impervious surface mapping in urban areas. Int. J. Remote Sens. 2009, 30, 4785–4806. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Deák, M.; Telbisz, T.; Árvai, M.; Mari, L.; Horváth, F.; Kohán, B.; Szabó, O.; Kovács, J. Heterogeneous forest classification by creating mixed vegetation classes using EO-1 Hyperion. Int. J. Remote Sens. 2017, 38, 5215–5231. [Google Scholar]
- Gao, F.; De Colstoun, E.B.; Ma, R.; Weng, Q.; Masek, J.G.; Chen, J.; Pan, Y.; Song, C. Mapping impervious surface expansion using medium-resolution satellite image time series: A case study in the Yangtze River Delta, China. Int. J. Remote Sens. 2012, 33, 7609–7628. [Google Scholar] [CrossRef]
- Zhang, L.; Weng, Q. Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 86–96. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M. Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landsc. Ecol. 2005, 20, 871–888. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Pickett, S.T.A.; Cadenasso, M.L. 90 Years of forest cover change in an urbanizing watershed: Spatial and temporal dynamics. Landsc. Ecol. 2011, 26, 645–659. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Zhong, K.; Zhang, F.; Liu, X.; Sun, C. Measuring spatio-temporal dynamics of impervious surface in Guangzhou, China, from 1988 to 2015, using time-series Landsat imagery. Sci. Total Environ. 2018, 627, 264–281. [Google Scholar] [CrossRef] [PubMed]
- Kowe, P.; Pedzisai, E.; Gumindoga, W.; Rwasoka, D.T. An analysis of changes in the urban landscape composition and configuration in the Sancaktepe District of Istanbul Metropolitan City, Turkey using landscape metrics and satellite data. Geocarto Int. 2015, 30, 506–519. [Google Scholar] [CrossRef]
- Hu, D.; Wu, Y.; Li, X. Research on the space linking up Changsha-Zhuzhou-Xiangtan under the background of environmental-friendly society. Appl. Mech. Mater. 2012, 174–177, 2529–2532. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Wang, Y.; Chen, L.; Yao, F.; Wu, P.; Wang, B.; Li, Y.; Zhou, T.; Zhang, T. Research on the contribution of urban land surface moisture to the alleviation effect of urban land surface heat based on Landsat 8 data. Remote Sens. 2015, 7, 10737–10762. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M.; Li, D. Automatic generation of seamline network using area voronoi diagrams with overlap. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1737–1744. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S. Assessment of urban growth in Guangzhou using multi-temporal, multi-sensor Landsat data to quantify and map impervious surfaces. Int. J. Remote Sens. 2016, 37, 5936–5952. [Google Scholar] [CrossRef]
- Balázs, B.; Bíró, T.; Dyke, G.; Singh, S.K.; Szabó, S. Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrol. Sci. J. 2018, 63, 269–284. [Google Scholar] [CrossRef]
- Szabó, S.; Gácsi, Z.; Balázs, B. Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Landsc. Environ. 2016, 10, 194–202. [Google Scholar] [CrossRef]
- Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 2004, 93, 1–17. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Li, L.; Solana, C.; Canters, F.; Kervyn, M. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image. J. Volcanol. Geotherm. Res. 2017, 345, 109–124. [Google Scholar] [CrossRef]
- Fan, F.; Fan, W.; Weng, Q. Improving urban impervious surface mapping by linear spectral mixture analysis and using spectral indices. Can J. Remote Sens. 2015, 41, 577–586. [Google Scholar] [CrossRef]
- Weng, Q.; Hu, X.; Liu, H. Estimating impervious surfaces using linear spectral mixture analysis with multitemporal ASTER images. Int. J. Remote Sens. 2009, 30, 4807–4830. [Google Scholar] [CrossRef]
- Cui, Y.; Li, L.; Chen, L.; Zhang, Y.; Cheng, L.; Zhou, X.; Yang, X. Land-use carbon emissions estimation for the Yangtze River Delta Urban Agglomeration using 1994-2016 Landsat image data. Remote Sens. 2018, 10, 1334. [Google Scholar] [CrossRef]
- Szabó, S.; Bertalan, L.; Kerekes, Á.; Novák, T.J. Possibilities of land use change analysis in a mountainous rural area: A methodological approach. Int. J. Geogr. Inf. Sci. 2016, 30, 708–726. [Google Scholar] [CrossRef]
- Fan, F.; Fan, W. Understanding spatial-temporal urban expansion pattern (1990–2009) using impervious surface data and landscape indexes: A case study in Guangzhou (China). J. Appl. Remote Sens. 2014, 8, 083609. [Google Scholar] [CrossRef]
- Szabó, S.; Csorba, P.; Szilassi, P. Tools for landscape ecological planning—Scale, and aggregation sensitivity of the contagion type landscape metric indices. Carpathian J. Earth Environ. Sci. 2012, 7, 127–136. [Google Scholar]
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Sha, M.; Tian, G. An analysis of spatiotemporal changes of urban landscape pattern in Phoenix metropolitan region. Procedia Environ. Sci. 2010, 2, 600–604. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. Fragstats: Spatial Pattern Analysis Program for Categorical Maps. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 26 January 2019).
- Jia, Y.; Tang, L.; Wang, L. Influence of ecological factors on estimation of impervious surface area using Landsat 8 imagery. Remote Sens. 2017, 9, 751. [Google Scholar] [CrossRef]
- Yi, F.; Li, R.; Chang, B.; Qiu, J. Spatial-temporal features of construction land expansion in Changzhutan (Changsha-Zhuzhou-Xiangtan) area based on remote sensing. Remote Sens. Land Resour. 2015, 27, 160–166. (In Chinese) [Google Scholar]
- Shahtahmassebi, A.R.; Song, J.; Zheng, Q.; Blackburn, G.A.; Wang, K.; Huang, L.; Pan, Y.; Moore, N.; Shahtahmassebi, G.; Haghighi, R.S.; et al. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 94–112. [Google Scholar] [CrossRef] [Green Version]
- Hollar, M.K. Central cities and susurbs: Economic rivals or allies? J. Reg. Sci. 2011, 51, 231–252. [Google Scholar] [CrossRef]
- André, S. Land readjustment and metropolitan growth: An examination of suburban land development and urban sprawl in the Tokyo metropolitan area. Prog. Plan. 2000, 53, 217–330. [Google Scholar]
- Yin, J.; Yin, Z.; Zhong, H.; Xu, S.; Hu, X.; Wang, J.; Wu, J. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environ. Monit. Assess. 2011, 177, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, B. Spatiotemporal analysis of land use/cover changes in Nanchang area, China. Int. J. Digit. Earth 2015, 8, 312–333. [Google Scholar] [CrossRef]
- Hu, Z.; Fu, Y.; Xiao, W.; Zhao, Y.; Wei, T. Ecological restoration plan for abandoned underground coal mine site in Eastern China. Int. J. Min. Reclam. Environ. 2015, 29, 316–330. [Google Scholar] [CrossRef]
- Hüse, B.; Szabó, S.; Deák, B.; Tóthmérész, B. Mapping an ecological network of green habitat patches and their role in maintaining urban biodiversity in and around Debrecen city (Eastern Hungary). Land Use Policy 2016, 57, 574–581. [Google Scholar] [CrossRef]
- Takács, D.; Varró, D.K.; Bakay, E. Comparison of different space indexing methods for ecological evaluation of urban open spaces. Appl. Ecol. Environ. Res. 2014, 12, 1027–1048. [Google Scholar] [CrossRef]
- Wu, C.; Pei, F.; Zhou, Y.; Wang, K.; Xu, L. Delineating urban growth boundary from perspective of “negative planning”: A case study of the central urban district in Xuzhou. Geogr. Geo-Inf. Sci. 2017, 33, 92–98. (In Chinese) [Google Scholar]
- Cao, S.; Hu, D.; Hu, Z.; Zhao, W.; Chen, S.; Yu, C. Comparison of spatial structures of urban agglomerations between the Beijing-Tianjin-Hebei and Boswash based on the subpixel-level impervious surface coverage product. J. Geogr. Sci. 2018, 28, 306–322. [Google Scholar] [CrossRef]
- Crutzen, B.S.Y.; Holton, S. The more the merrier? Natural resource fragmentation and the wealth of nations. Kyklos 2011, 64, 500–515. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.P.; Huang, C.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban growth of the Washington, D.C.-Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens. Environ. 2013, 129, 42–53. [Google Scholar] [CrossRef]
- Mu, J. The study on evaluating urban development level and regional difference based on a competitiveness model. J. Appl. Remote Sens. 2013, 13, 5527–5532. [Google Scholar]
- Liu, J.; Zhang, Q.; Hu, Y. Regional differences of China’s urban expansion from late 20th to early 21st century based on remote sensing information. Chin. Geogr. Sci. 2012, 22, 1–14. [Google Scholar] [CrossRef]
- Rafiee, R.; Mahiny, A.S.; Khorasani, N.; Darvishsefat, A.A.; Danekar, A. Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities 2009, 26, 19–26. [Google Scholar] [CrossRef]
District | Town |
---|---|
Yunlong | Cuipingshan (CPS), Daguozhuang (DGZ), Dalonghu (DLH), Huaihaishipincheng (HHa), Huangshan (HS), Luotuoshan (LTS), Pengcheng (PC), Pantang (PT), Zifang (ZF), |
Quanshan | Duanzhuang (DZ), Hubin (HB), Huohua (HHb), Heping (HP), Jinshan (JS), Kuishan (KS), Pangzhuang (PZ), Qiligou (QLG), Sushan (SS), Taishan (TSa), Taoyuan (TY), Yong’an (YA), Wangling (WL), Zhaishan (ZS), |
Gulou | Donghuan (DH), Dahuangshan (DHS), Damiao (DM), Fengcai (FCa), Huancheng (HC), Huanglou (HL), Jiuli (JL), Jinshanqiao (JSQ), Pailou (PL), Pipa (PP), Tongpei (TP), |
Jiawang | Biantang (BT), Daquan (DQ), Dawu (DW), Gongyeyuanqu (GY), Jiangzhuang (JZ), Laokuang (LK), Pan’anhu (PAH), Qingshanquan (QSQ), Tashan (TSb), Zizhuang (ZZ), |
Tongshan | Tongshan North: Dapeng (DP), Huangji (HJ), Heqiao (HQ), Hanwang (HW), Liguo (LG), Liuji (LJ), Liuquan (LQ), Liuxin (LX), Maocun (MC), Mapo (MP), Sanhejian (SHJ), Shitun (ST), Yanhu (YH), Zhengji (ZJa), Tongshan South: Daxu (DX), Fangcun (FCb), Sanbao (SB), Shanji (SJ), Tongshan (TSc), Tangzhang (TZ), Xinqu (XQ), Xuzhuang (XZ), Yizhuang (YZ), Zhangji (ZJb). |
Year | Sensor | Acquisition Date (Path/Row) |
---|---|---|
1995 | TM | 1995-03-10 (121/36), 1995-03-17 (122/36) |
2003 | ETM+ | 2003-04-09 (121/36), 2003-04-16 (122/36) |
2010 | TM | 2010-03-19 (121/36), 2010-03-26 (122/36) |
2018 | OLI | 2018-03-09 (121/36), 2018-03-16 (122/36) |
Level | Landscape Index | Description |
---|---|---|
Class metrics | Patch density (PD) | It expresses number of patches on a per unit area basis. It is a simple measure of the extent of subdivision or fragmentation of the patch type |
Landscape shape index (LSI) | It provides a standardized measure of total edge or edge density that adjusts for the size of the landscape | |
Aggregation index (AI) | It equals the number of like adjacencies involving the corresponding class, divided by the maximum possible number of like adjacencies involving the corresponding class | |
Patch cohesion index (COHESION) | It measures the physical connectedness of the corresponding patch type | |
Largest patch index (LPI) | It quantifies the percentage of total landscape area comprised of the largest patch. It is a simple measure of dominance | |
Landscape metrics | Shannon’s diversity index (SHDI) | It is a popular measure of diversity in community ecology, applied here to landscapes |
Shannon’s evenness index (SHEI) | It is expressed such that an even distribution of area among patch types results in maximum evenness. Evenness is the complement of dominance |
Year | Longitude | Latitude | Direction | Distance (m) | Rate (m/Year) | |
---|---|---|---|---|---|---|
Entire study area | 1995 | 117.309 | 34.312 | |||
2003 | 117.264 | 34.311 | South by West 87.614° | 4142.326 | 517.791 | |
2010 | 117.319 | 34.316 | North by East 83.962° | 5052.360 | 721.766 | |
2018 | 117.288 | 34.315 | South by West 89.203° | 2810.981 | 351.373 | |
Yunlong | 1995 | 117.252 | 34.227 | |||
2003 | 117.259 | 34.219 | South by East 34.917° | 1139.959 | 142.495 | |
2010 | 117.269 | 34.211 | South by East 46.503° | 1309.504 | 187.072 | |
2018 | 117.270 | 34.208 | South by East 12.693° | 345.311 | 43.164 | |
Quanshan | 1995 | 117.144 | 34.261 | |||
2003 | 117.128 | 34.274 | North by West 46.015° | 2018.026 | 252.253 | |
2010 | 117.128 | 34.271 | South by West 13.069° | 311.475 | 44.496 | |
2018 | 117.127 | 34.272 | North by West 16.858° | 124.548 | 15.569 | |
Gulou | 1995 | 117.264 | 34.299 | |||
2003 | 117.285 | 34.298 | South by East 84.954° | 1929.492 | 241.187 | |
2010 | 117.294 | 34.296 | South by East 77.417° | 846.692 | 120.956 | |
2018 | 117.290 | 34.296 | South by West 82.108° | 376.160 | 47.020 | |
Jiawang | 1995 | 117.487 | 34.377 | |||
2003 | 117.445 | 34.384 | North by West 79.222° | 3930.147 | 491.268 | |
2010 | 117.522 | 34.386 | North by East 87.636° | 7069.117 | 1009.874 | |
2018 | 117.481 | 34.388 | North by West 86.840° | 3760.815 | 470.102 | |
Tongshan North | 1995 | 117.127 | 34.406 | |||
2003 | 117.117 | 34.404 | South by West 77.015° | 935.967 | 116.996 | |
2010 | 117.129 | 34.410 | North by East 61.813° | 1282.801 | 183.257 | |
2018 | 117.103 | 34.416 | North by West 72.782° | 2511.314 | 313.914 | |
Tongshan South | 1995 | 117.440 | 34.176 | |||
2003 | 117.386 | 34.157 | South by West 66.463° | 5426.369 | 678.296 | |
2010 | 117.416 | 34.175 | North by East 54.034° | 3481.849 | 497.407 | |
2018 | 117.422 | 34.173 | South by East 74.055° | 555.488 | 69.436 |
Year | Long Axis (m) | Short Axis (m) | Rotation Angle (°) | Long–Short Axis Ratio | |
---|---|---|---|---|---|
Entire study area | 1995 | 49,554.821 | 35,044.991 | 96.881 | 1.414 |
2003 | 48,531.016 | 36,450.925 | 109.964 | 1.331 | |
2010 | 52,697.685 | 38,485.566 | 96.539 | 1.369 | |
2018 | 54,209.752 | 37,594.564 | 108.895 | 1.442 | |
Yunlong | 1995 | 13,017.390 | 5793.510 | 138.022 | 2.247 |
2003 | 12,887.834 | 6033.898 | 138.903 | 2.136 | |
2010 | 12,320.285 | 6322.815 | 146.077 | 1.949 | |
2018 | 12,066.116 | 6579.798 | 147.634 | 1.834 | |
Quanshan | 1995 | 15,301.653 | 5207.599 | 142.609 | 2.938 |
2003 | 16,360.322 | 5451.560 | 143.717 | 3.001 | |
2010 | 17,252.284 | 5450.035 | 146.524 | 3.166 | |
2018 | 16,248.859 | 5422.818 | 144.478 | 2.996 | |
Gulou | 1995 | 19,318.182 | 7949.150 | 94.287 | 2.430 |
2003 | 19,881.054 | 8537.040 | 100.230 | 2.329 | |
2010 | 19,591.029 | 9552.415 | 101.992 | 2.051 | |
2018 | 19,955.805 | 9482.594 | 101.522 | 2.104 | |
Jiawang | 1995 | 26,553.175 | 12,181.719 | 85.191 | 2.180 |
2003 | 26,829.005 | 12,848.135 | 89.737 | 2.088 | |
2010 | 29,754.558 | 14,083.920 | 94.854 | 2.113 | |
2018 | 27,960.891 | 14,735.358 | 92.248 | 1.900 | |
Tongshan North | 1995 | 33,932.906 | 22,492.496 | 45.089 | 1.509 |
2003 | 34,789.711 | 23,312.088 | 43.967 | 1.492 | |
2010 | 37,540.409 | 24,377.139 | 48.524 | 1.540 | |
2018 | 34,285.429 | 25,266.912 | 54.840 | 1.357 | |
Tongshan South | 1995 | 40,803.393 | 21,606.868 | 71.195 | 1.880 |
2003 | 40,314.726 | 20,182.057 | 74.447 | 1.998 | |
2010 | 44,295.083 | 20,182.057 | 69.779 | 2.137 | |
2018 | 41,993.619 | 20,489.428 | 69.395 | 2.050 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, L.; Chen, L.; Zhou, X.; Cui, Y.; Liu, Y.; Liu, W. Mapping and Characterizing Spatiotemporal Dynamics of Impervious Surfaces Using Landsat Images: A Case Study of Xuzhou, East China from 1995 to 2018. Sustainability 2019, 11, 1224. https://doi.org/10.3390/su11051224
Li H, Li L, Chen L, Zhou X, Cui Y, Liu Y, Liu W. Mapping and Characterizing Spatiotemporal Dynamics of Impervious Surfaces Using Landsat Images: A Case Study of Xuzhou, East China from 1995 to 2018. Sustainability. 2019; 11(5):1224. https://doi.org/10.3390/su11051224
Chicago/Turabian StyleLi, Han, Long Li, Longqian Chen, Xisheng Zhou, Yifan Cui, Yunqiang Liu, and Weiqiang Liu. 2019. "Mapping and Characterizing Spatiotemporal Dynamics of Impervious Surfaces Using Landsat Images: A Case Study of Xuzhou, East China from 1995 to 2018" Sustainability 11, no. 5: 1224. https://doi.org/10.3390/su11051224
APA StyleLi, H., Li, L., Chen, L., Zhou, X., Cui, Y., Liu, Y., & Liu, W. (2019). Mapping and Characterizing Spatiotemporal Dynamics of Impervious Surfaces Using Landsat Images: A Case Study of Xuzhou, East China from 1995 to 2018. Sustainability, 11(5), 1224. https://doi.org/10.3390/su11051224