The Impact of Hospital Specialization on Congestion and Efficiency
Abstract
:1. Introduction
2. Congestion Model and Specialization Index
2.1. Congestion Analysis
- DMUj
- decision making unit. An entity converting inputs into outputs. (j = 1, …, n)
- efficiency score to be determined
- xij, yrj
- amounts of inputs (I = 1, …, m) and outputs (r = 1, …, s) for DMUj, respectively.
- xio, yro
- amounts of inputs (I = 1, …, m) and outputs (r = 1, …, s) for DMUj, respectively.
- λj
- intensity variable (j = 1, …, n).
- input slack (I = 1, …, m) and output slack (r = 1, …, s), respectively.
- amounts of inputs (i = 1, …, m) and outputs (r = 1, …, s) obtained from an optimal solution for DMUo, respectively.
- amount of inefficiency in the input i
- total amount of slack in the input i
- ε
- a non-Archimedean element
2.2. Hospital Specialization
3. Materials and Methods
4. Results
4.1. Congestion Analysis Results
4.2. Efficiency Analysis Results
4.3. The Impact between Hospital Specialization and Congestion
4.4. The Impact between Hospital Specialization and Efficiency
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lee, K.S.; Chun, K.H.; Lee, J.S. Reforming the hospital service structure to improve efficiency: Urban hospital specialization. Health Policy 2008, 87, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.M.; Kim, Y.H.; Kang, M.A. Impact of market competition on local public hospital performance: The two-stage DEA-Regression approach. Korean Assoc. Health Econ. Policy 2013, 19, 53–77. [Google Scholar]
- Grosskopf, S.; Valdmanis, V. Measuring Hospital Performance. J. Health Econ. 1987, 6, 89–107. [Google Scholar] [CrossRef]
- Kim, I. Service Production Type and Performance of Local Public Hospitals. Korean Assoc. Public Adm. 1999, 33, 382–402. [Google Scholar]
- Park, C.J. Measuring production efficiency using Data Envelopment Analysis: The case of public Corporation Medical Centers. Health Policy Manag. 1996, 6, 91–114. [Google Scholar]
- Shin, C.G. An Analysis on the Efficiency and Productivity Changes of the National University Hospitals in the Republic of Korea. Korean Soc. Secur. Stud. 2006, 22, 49–78. [Google Scholar]
- Yang, J.H.; Chang, D.M. A Study on Analyzing the Efficiency between National and Private University Hospitals. Korean Assoc. Health Econ. Policy 2009, 15, 94–122. [Google Scholar]
- Lee, H.J. Analysis of policy change through ACPS model: Focusing on the case of closing Jinju Medical Center. J. Gov. Stud. 2015, 21, 261–298. [Google Scholar]
- Park, S.H.; Kim, D.C. Congestion and Efficiency Analysis of Public Hospitals. Prod. Rev. 2015, 29, 61–92. [Google Scholar]
- Bloom, N.; Propper, C.; Seiler, S.; Reenen, J. The Impact of Competition on Management Quality: Evidence from Public Hospitals. Rev. Econ. Stud. 2010, 82. [Google Scholar] [CrossRef]
- Cooper, Z.; Gibbons, S.; Skellern, M. Does competition from private surgical centres improve public hospitals’ performance? Evidence from the English National Health Service. J. Public Econ. 2018, 166, 63–80. [Google Scholar] [CrossRef]
- Cooper, W.W.; Gu, B.; Li, S. Note: Alternative treatments of congestion–A response to the Cherchye, Kuosmanen and Post critique. Eur. J. Oper. Res. 2001, 132, 85–87. [Google Scholar] [CrossRef]
- Simões, P.; Marques, R.C. Performance and Congestion Analysis of the Portuguese Hospital Services. Cent. Eur. J. Oper. Res. 2009, 19, 39–63. [Google Scholar] [CrossRef]
- Sawik, B. Weighted-Sum Approach to Health Care Optimization. In Applications of Management Science (Applications of Management Science, Volume 17); Emerald Group Publishing Limited: Bradford, UK, 2015; pp. 163–180. [Google Scholar]
- Sawik, B. Lexicographic Approach to Health Care Optimization. Appl. Manag. Sci. 2015, 17, 181–201. [Google Scholar] [CrossRef]
- Eastaugh, S. Total Cost. Healthc. Financ. Manag. 2013, 67, 64–70. [Google Scholar]
- Finkler, S. The Hospital as a Sales Maximizing Entity. Health Serv. Res. 1999, 18, 130–139. [Google Scholar]
- Samiedaluie, S.; Verter, V. The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital. Health Care Manag. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Eastaugh, S.R. Hospital specialization and cost efficiency: Benefits of trimming product lines. J. Healthc. Manag. 1992, 37, 223. [Google Scholar]
- Zwanziger, J.; Melnick, G.A. Can managed care plans control health care costs? Health Aff. 1996, 15, 185–199. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S. Effects of the DRG-based prospective payment system operated by the voluntarily participating providers on the cesarean section rates in Korea. Health Policy 2007, 81, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Saljooghi, F.H.; Rayeni, M.M. Distinguishing Congestion and Technical Inefficiency in Presence Undesirable Output. Am. J. Appl. Sci. 2011, 8, 903–909. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Lovell, C.A.K. The Measurement of Efficiency of Production; Kluwer-Nijhoff Publishing: Boston, MA, USA, 1985. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. A unified additive model approach for evaluating efficiency and congestion. Socio-Econ. Plan. Sci. 2000, 34, 1–26. [Google Scholar] [CrossRef]
- Flegg, A.T.; Allen, D.O. Does Expansion Cause Congestion? The Case of the Older British Universities, 1994 to 2004. Educ. Econ. 2007, 15, 75–102. [Google Scholar]
- Kim, S.H. An Empirical Study on Efficiency of Tourist Hotel Industry Using Congestion Model. Master’s Thesis, Joongbu University, Geumsan County, Korea, 2016. [Google Scholar]
- Banker, R.D.; Morey, R.C. The use of categorical variables in data envelopment analysis. Manag. Sci. 1986, 32, 1613–1627. [Google Scholar] [CrossRef]
- Dayhoff, D.A.; Cromwell, J. Measuring differences and similarities in hospital caseloads: A conceptual and empirical analysis. Health Serv. Res. 1993, 28, 292. [Google Scholar]
- Zwanziger, J.; Melnick, G.A.; Rahman, A. Differentiation and Specialization in the California Hospital Industry 1983 to 1986. Med. Care 1996, 34, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.G.; Walker, H.D. Information theory and the analysis of hospital cost structure. Can. J. Econ./Revue canadienne d’Economique 1972, 5, 398–418. [Google Scholar] [CrossRef]
- Farley, D.E.; Hogan, C. Case-mix specialization in the market for hospital services. Health Serv. Res. 1990, 25, 757. [Google Scholar] [PubMed]
- Büchner, V.A.; Hinz, V. Schreyögg, Health systems: Changes in hospital efficiency and profitability. J. Health Care Manag. Sci. 2016, 19, 130. [Google Scholar] [CrossRef] [PubMed]
Division | Number | Ratio | |
---|---|---|---|
Hospital Size | Advanced General Hospital | 23 | 1.9 |
General Hospital | 296 | 25.0 | |
Hospital | 866 | 73.1 | |
Location | Urban area | 559 | 47.2 |
Rural area | 626 | 52.8 | |
Foundation Type | Private | 1147 | 96.8 |
Public | 38 | 3.2 | |
Advanced Medical Equipment (MRI/CT/PTE) | Possession | 904 | 76.3 |
Absent | 281 | 23.7 | |
Total | 1185 | 100 |
Variable | |
---|---|
Input Factor | Number of Doctors |
Number of Nurses | |
Number of Beds | |
Output Factor | Number of Hospitalized Patients |
Number of Operations | |
Medical Revenues |
Division | Input Factors | Output Factors | ||||||
---|---|---|---|---|---|---|---|---|
Doctor | Nurse | Bed | Inpatient | Operation | Revenue | |||
Size | Advanced General | Mean | 25.96 | 39.91 | 18.74 | 6325.43 | 2968.48 | 17359.6 |
SD | 6.64 | 9.17 | 2.63 | 3919.37 | 2002.58 | 12658.2 | ||
Min | 16 | 20 | 11 | 2649 | 1220 | 6276.4 | ||
Max | 46 | 61 | 21 | 17037 | 8842 | 56929.6 | ||
General | Mean | 8.71 | 21.92 | 8.08 | 1377.61 | 548.51 | 2875.1 | |
SD | 6.19 | 10.71 | 4.26 | 1166.74 | 585.79 | 3033.4 | ||
Min | 1 | 0 | 3 | 182 | 4 | 164.2 | ||
Max | 28 | 76 | 21 | 7395 | 3856 | 17990.8 | ||
Hospital | Mean | 4.82 | 10.84 | 2.66 | 304.58 | 141.07 | 386.4 | |
SD | 3.75 | 10.36 | 1.54 | 200.73 | 154.87 | 319.1 | ||
Min | 0 | 0 | 1 | 100 | 0 | 31.5 | ||
Max | 28 | 101 | 12 | 1519 | 1396 | 2715.2 | ||
Location | Urban | Mean | 7.30 | 15.73 | 4.48 | 790.88 | 374.74 | 1672.1 |
SD | 6.39 | 12.51 | 4.43 | 1541.79 | 745.62 | 4444.2 | ||
Min | 0 | 0 | 1 | 100 | 0 | 31.5 | ||
Max | 46 | 76 | 21 | 17037 | 8842 | 56929.6 | ||
Rural | Mean | 5.23 | 12.78 | 4.19 | 598.92 | 228.95 | 1038.6 | |
SD | 4.53 | 11.40 | 3.56 | 835.33 | 395.24 | 2030.1 | ||
Min | 0 | 0 | 1 | 100 | 0 | 36.5 | ||
Max | 28 | 101 | 21 | 7395 | 3856 | 17990.8 | ||
Foundation | Private | Mean | 6.22 | 14.04 | 4.27 | 690.03 | 300.98 | 1399.1 |
SD | 5.65 | 12.14 | 4.01 | 1238.71 | 598.17 | 3449.8 | ||
Min | 0 | 0 | 1 | 100 | 0 | 31.5 | ||
Max | 46 | 101 | 21 | 17037 | 8842 | 56929.6 | ||
Public | Mean | 5.87 | 18.32 | 6.08 | 672.50 | 199.29 | 1288.9 | |
SD | 3.14 | 6.29 | 2.93 | 636.19 | 316.50 | 1440.2 | ||
Min | 3 | 8 | 2 | 127 | 1 | 352.7 | ||
Max | 20 | 36 | 16 | 4144 | 1993 | 9096.9 | ||
Medical Equipment | Possession | Mean | 6.07 | 14.47 | 5.07 | 829.17 | 342.27 | 1668.8 |
SD | 5.85 | 11.25 | 4.26 | 1369.42 | 665.46 | 3835.4 | ||
Min | 0 | 0 | 1 | 100 | 0 | 38.3 | ||
Max | 46 | 76 | 21 | 17037 | 8842 | 56929.6 | ||
Absent | Mean | 6.64 | 13.21 | 1.94 | 240.05 | 154.40 | 271.3 | |
SD | 4.60 | 14.20 | 1.21 | 141.58 | 154.40 | 214.0 | ||
Min | 0 | 0 | 1 | 100 | 0 | 31.5 | ||
Max | 19 | 101 | 11 | 798 | 764 | 1182.0 | ||
Total | Mean | 6.21 | 14.17 | 4.33 | 689.47 | 297.72 | 1337.4 | |
SD | 5.58 | 12.02 | 3.99 | 1223.85 | 597.41 | 3403.5 | ||
Min | 0 | 0 | 1 | 100 | 0 | 31.5 | ||
Max | 46 | 101 | 21 | 17037 | 8842 | 56929.6 |
Division | Hospital Specialization Index | |||
---|---|---|---|---|
ITI | IHI | |||
Size | Advanced General | Mean | 0.59535 | 0.00978 |
SD | 0.10661 | 0.00292 | ||
Min | 0.436 | 0.007 | ||
Max | 0.781 | 0.018 | ||
General | Mean | 0.94395 | 0.02103 | |
SD | 0.49949 | 0.02161 | ||
Min | 0.3585 | 0.005 | ||
Max | 5.070 | 0.196 | ||
Hospital | Mean | 2.1391 | 0.12160 | |
SD | 0.90371 | 0.13433 | ||
Min | 0.6530 | 0.012 | ||
Max | 6.587 | 0.992 | ||
Location | Urban | Mean | 1.99231 | 0.11639 |
SD | 1.06456 | 0.14496 | ||
Min | 0.358 | 0.005 | ||
Max | 6.587 | 0.992 | ||
Rural | Mean | 1.64831 | 0.07460 | |
SD | 0.86041 | 0.09719 | ||
Min | 0.368 | 0.006 | ||
Max | 6.553 | 0.949 | ||
Foundation | Private | Mean | 1.82345 | 0.09651 |
SD | 0.98289 | 0.12505 | ||
Min | 0.358 | 0.005 | ||
Max | 6.587 | 0.992 | ||
Public | Mean | 1.42226 | 0.02784 | |
SD | 0.67767 | 0.03762 | ||
Min | 0.362 | 0.006 | ||
Max | 4.888 | 0.244 | ||
Medical Equipment | Possession | Mean | 1.45755 | 0.05713 |
SD | 0.69618 | 0.07153 | ||
Min | 0.358 | 0.005 | ||
Max | 5.070 | 0.731 | ||
Absent | Mean | 2.94635 | 0.21394 | |
SD | 0.88077 | 0.17169 | ||
Min | 0.863 | 0.018 | ||
Max | 6.587 | 0.992 | ||
Total | Mean | 1.81059 | 0.09431 | |
SD | 0.97694 | 0.12380 | ||
Min | 0.358 | 0.005 | ||
Max | 6.587 | 0.992 |
Environmental Factor | Division | Congestion | ||||
---|---|---|---|---|---|---|
Total | Doctor | Nurse | Bed | |||
Size | Advanced General | mean | 37.26 | 8.72 | 27.52 | 1.02 |
frequency | 22 | 10 | 20 | 1 | ||
percent | 95.65 | 43.48 | 86.96 | 4.35 | ||
General | mean | 46.14 | 0.33 | 45.24 | 0.57 | |
frequency | 278 | 13 | 269 | 12 | ||
percent | 93.92 | 4.39 | 90.88 | 4.05 | ||
Hospital | mean | 30.79 | 0.49 | 29.82 | 0.48 | |
frequency | 552 | 21 | 533 | 23 | ||
percent | 63.74 | 2.42 | 61.55 | 2.66 | ||
Location | Urban | mean | 35.41 | 1.12 | 33.88 | 0.41 |
frequency | 407 | 34 | 389 | 17 | ||
percent | 72.81 | 6.08 | 69.59 | 3.04 | ||
Rural | mean | 34.15 | 0.16 | 33.39 | 0.60 | |
frequency | 445 | 10 | 433 | 19 | ||
percent | 71.09 | 1.60 | 69.17 | 3.04 | ||
Foundation | Private | mean | 34.31 | 0.63 | 33.18 | 0.50 |
frequency | 817 | 44 | 787 | 33 | ||
percent | 71.23 | 3.84 | 68.61 | 2.88 | ||
Public | mean | 48.18 | 0.00 | 47.17 | 1.01 | |
frequency | 35 | 0 | 35 | 3 | ||
percent | 92.11 | 0.00 | 92.11 | 7.89 | ||
Medical Equipment | Possession | mean | 36.62 | 0.45 | 35.58 | 0.59 |
frequency | 684 | 29 | 666 | 30 | ||
percent | 75.66 | 3.21 | 73.67 | 3.32 | ||
Absent | mean | 28.74 | 1.13 | 27.35 | 0.26 | |
frequency | 168 | 15 | 156 | 6 | ||
percent | 59.79 | 5.34 | 55.52 | 2.14 | ||
Total | mean | 34.74 | 0.61 | 33.62 | 0.51 | |
frequency | 852 | 44 | 822 | 36 | ||
percent | 71.90 | 3.71 | 69.37 | 3.04 |
Environmental Factor | Division | Efficiency | |||||||
---|---|---|---|---|---|---|---|---|---|
TE | PTE | SE | Cause of Inefficiency (%) | Returns to Scale (%) | |||||
Size | Advanced General | mean | 0.43 | 0.43 | 0.99 | PTE SE | 95.7 4.3 | CRS DRS IRS | 21.7 47.8 30.4 |
SD | 0.21 | 0.21 | 0.01 | ||||||
Min | 0.23 | 0.23 | 0.97 | ||||||
Max | 1.00 | 1.00 | 1.00 | ||||||
General | mean | 0.27 | 0.28 | 0.95 | PTE SE | 99.0 1.0 | CRS DRS IRS | 0.7 53.4 45.9 | |
SD | 0.12 | 0.12 | 0.06 | ||||||
Min | 0.07 | 0.08 | 0.63 | ||||||
Max | 1.00 | 1.00 | 1.00 | ||||||
Hospital | mean | 0.26 | 0.35 | 0.78 | PTE SE | 88.0 12.0 | CRS DRS IRS | 2.2 85.7 12.1 | |
SD | 0.18 | 0.23 | 0.18 | ||||||
Min | 0.05 | 0.05 | 0.18 | ||||||
Max | 1.00 | 1.00 | 1.00 | ||||||
Location | Urban | mean | 0.28 | 0.35 | 0.83 | PTE SE | 88.7 11.3 | CRS DRS IRS | 3.2 79.2 17.5 |
SD | 0.18 | 0.23 | 0.17 | ||||||
Min | 0.05 | 0.05 | 0.24 | ||||||
Max | 1.00 | 1.00 | 1.00 | ||||||
Rural | mean | 0.26 | 0.32 | 0.82 | PTE SE | 92.8 7.2 | CRS DRS IRS | 1.3 74.8 24.0 | |
SD | 0.15 | 0.19 | 0.17 | ||||||
Min | 0.05 | 0.06 | 0.18 | ||||||
Max | 1.00 | 1.00 | 1.00 | ||||||
Foundation | Private | mean | 0.27 | 0.34 | 0.82 | PTE SE | 90.6 9.4 | CRS DRS IRS | 2.3 77.8 20.0 |
SD | 0.17 | 0.21 | 0.17 | ||||||
Min | 0.05 | 0.05 | 0.18 | ||||||
Max | 1.00 | 1.00 | 1.00 | ||||||
Public | mean | 0.19 | 0.21 | 0.93 | PTE SE | 100.0 0.0 | CRS DRS IRS | 0.0 50.0 50.0 | |
SD | 0.09 | 0.10 | 0.10 | ||||||
Min | 0.05 | 0.06 | 0.76 | ||||||
Max | 0.49 | 0.51 | 1.00 | ||||||
Medical Equipment | Possession | mean | 0.26 | 0.31 | 0.85 | PTE SE | 94.5 5.5 | CRS DRS IRS | 1.9 72.7 25.4 |
SD | 0.16 | 0.18 | 0.16 | ||||||
Min | 0.05 | 0.06 | 0.25 | ||||||
Max | 1.00 | 1.00 | 1.00 | ||||||
Absent | mean | 0.30 | 0.43 | 0.73 | PTE SE | 79.4 20.6 | CRS DRS IRS | 3.2 90.4 6.4 | |
SD | 0.19 | 0.25 | 0.19 | ||||||
Min | 0.05 | 0.05 | 0.18 | ||||||
Max | 1.00 | 1.00 | 1.00 | ||||||
Total | mean | 0.27 | 0.34 | 0.82 | PTE SE | 90.9 9.1 | CRS DRS IRS | 2.2 76.9 20.9 | |
SD | 0.17 | 0.21 | 0.17 | ||||||
Min | 0.05 | 0.05 | 0.18 | ||||||
Max | 1.00 | 1.00 | 1.00 |
Independent Variable | Dependent Variable | Std. Error | β | t | Sig | Statistic |
---|---|---|---|---|---|---|
Specialization | Congestion | |||||
ITI | (Constant) | 1.764 | 22.876 | 0.000 | R2 = 0.013 Adjusted R2 = 0.012 F = 15.386 | |
Total | 0.858 | −0.113 | −3.922 | 0.000 | ||
(Constant) | 0.242 | 0.773 | 0.440 | R2 = 0.003 Adjusted R2 = 0.003 F = 3.968 | ||
Doctor | 0.118 | 0.058 | 1.992 | 0.047 | ||
(Constant) | 1.769 | 22.635 | 0.000 | R2 = 0.014 Adjusted R2 = 0.013 F = 16.948 | ||
Nurse | 0.860 | −0.119 | −4.117 | 0.000 | ||
(Constant) | 0.209 | 2.560 | 0.011 | R2 = 0.000 Adjusted R2 = −0.001 F = 0.015 | ||
Bed | 0.102 | −0.004 | −0.121 | 0.904 |
Independent Variable | Dependent Variable | Std. Error | β | t | Sig. | Statistic |
---|---|---|---|---|---|---|
Specialization | Congestion | |||||
IHI | (Constant) | 1.052 | 35.098 | 0.000 | R2 = 0.014 Adjusted R2 = 0.014 F = 17.392 | |
Total | 6.762 | −0.120 | −4.170 | 0.000 | ||
(Constant) | 0.143 | 1.176 | 0.240 | R2 = 0.022 Adjusted R2 = 0.021 F = 26.065 | ||
Doctor | 0.921 | 0.147 | 5.105 | 0.000 | ||
(Constant) | 1.054 | 34.722 | 0.000 | R2 = 0.018 Adjusted R2 = 0.017 F = 21.474 | ||
Nurse | 6.772 | −0.134 | −4.634 | 0.000 | ||
(Constant) | 0.125 | 5.051 | 0.000 | R2 = 0.002 Adjusted R2 = 0.001 F = 2.382 | ||
Bed | 0.802 | −0.045 | −1.543 | 0.123 |
Independent Variable | Dependent Variable | Std. Error | β | t | Sig. | Statistic |
---|---|---|---|---|---|---|
Specialization | Efficiency | |||||
ITI | (Constant) | 0.012 | 19.749 | 0.000 | R2 = 0.060 Adjusted R2 = 0.060 F = 76.058 | |
PTE | 0.006 | 0.246 | 8.721 | 0.000 | ||
IHI | (Constant) | 0.007 | 40.119 | 0.000 | R2 = 0.091 Adjusted R2 = 0.090 F = 118.465 | |
PTE | 0.046 | 0.302 | 10.884 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-h.; Ko, J.H.; Bae, E.-s.; Chang, M.; Kim, D. The Impact of Hospital Specialization on Congestion and Efficiency. Sustainability 2019, 11, 1475. https://doi.org/10.3390/su11051475
Park S-h, Ko JH, Bae E-s, Chang M, Kim D. The Impact of Hospital Specialization on Congestion and Efficiency. Sustainability. 2019; 11(5):1475. https://doi.org/10.3390/su11051475
Chicago/Turabian StylePark, Sung-hun, Joong Hoon Ko, Eun-song Bae, Meehyang Chang, and Daecheol Kim. 2019. "The Impact of Hospital Specialization on Congestion and Efficiency" Sustainability 11, no. 5: 1475. https://doi.org/10.3390/su11051475