Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments
Abstract
:1. Introduction
2. Future Food Demands
3. Environmental Concerns
4. The Concept of Agricultural Sustainability
5. Soil Management for Sustainable Agriculture
6. Strategies for Optimizing Crop Yield within Sustainable Environments
6.1. Crop Management and Breeding Strategies
6.2. Soil and Crop Management Strategies (SCMS)
7. Successful Demonstration
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Godfray, H.; Beddington, J.; Crute, I.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ma, B.L.; Whalen, J.K. Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: Perspectives for stress adaptation from root system architecture. Adv. Agron. 2018, 151, 87–159. [Google Scholar]
- Lobell, D.; Schlenker, W.; Costa–Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616. [Google Scholar] [CrossRef] [PubMed]
- Uphoff, N.; Ball, A.; Fernandes, E.C.M.; Herren, H.; Husson, O.; Laing, M.; Palm, C.A.; Pretty, J.; Sanchez, P.A.; Sanginga, N.; et al. Understanding the Functioning and Management of Soil Systems. In Biological Approaches to Sustainable Soil Systems; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–6. [Google Scholar]
- Koohafkan, P.; Altieri, M.A.; Gimenez, E.H. Green Agriculture: Foundations for biodiverse, resilient and productive agricultural systems. Int. J. Agric. Sustain. 2012, 10, 61–75. [Google Scholar] [CrossRef]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.J.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Pollock, C.; Pretty, J.; Cute, I.; Leaver, C.; Dalton, H. Introduction. Sustainable agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 445–446. [Google Scholar] [CrossRef] [Green Version]
- Sayer, J.; Cassman, K.G. Agricultural innovation to protect the environment. Proc. Natl. Acad. Sci. USA 2013, 110, 8345–8348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production systems. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cui, Z.; Zhang, W. Managing nutrient for both food security and environmental sustainability in China: An experiment for the world. Front. Agric. Sci. Eng. 2014, 1, 53–61. [Google Scholar]
- Wheller, T.; Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soils and sustainable agriculture: A review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Fifth Assessment Report “Climate Change 2014: Mitigation of Climate Change” Working Group III and the 39th Session of the IPCC Berlin, Germany; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Simpson, D.; Arneth, A.; Mills, G.; Solberg, S.; Uddling, J. Ozone—The persistent menace: Interactions with N cycle and climate change. Curr. Opin. Environ. Sustain. 2014, 9–10, 9–19. [Google Scholar]
- Satterthwaite, D.; McGranahan, G.; Tacoli, C.M. Urbanization and its implication for food and farming. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2809–2820. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.L.; Wu, L.; Ye, Y.L.; Ma, W.Q.; Chen, X.P.; Zhang, F.S. Trade–offs between high yields and greenhouse gas emissions in irrigation wheat cropland in China. Biogeosciences 2014, 11, 2287–2294. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, Z.; Fan, M.; Zhang, W.; Chen, X.; Jiang, R. Integrated soil–crop system management: Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J. Environ. Qual. 2011, 40, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Nature 2009, 324, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Germer, J.; Sauerborn, J.; Asch, F.; de Boer, J.; Schreiber, J.; Weber, G.; Müller, J. Skyfarming an ecological innovation to enhance global food security. J. Consum. Prot. Food Safety 2011, 6, 237–251. [Google Scholar] [CrossRef]
- Macrae, R.J.; Henning, J.; Hill, S.B. Strategies to overcome barriers to the development of sustainable agriculture in Canada: The role of agribusiness. J. Agric. Environ. Ethics 1993, 1, 21–51. [Google Scholar] [CrossRef]
- Xu, L.; Marinova, D.; Guo, X. Resilience thinking: A renewed system approach for sustainability science. Sustain. Sci. 2014, 10, 123–138. [Google Scholar] [CrossRef]
- Denyar, R. Integrated crop management (ICM). Pest Manag. Sci. 2000, 56, 945–946. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.L. Assessment of canola crop lodging under elevated temperatures for adaptation to climate change. Agric. For. Meteorol. 2018, 248, 329–338. [Google Scholar] [CrossRef]
- Kesavan, P.C.; Swaminathan, M.S. Strategies and models for agricultural sustainability in developing Asian countries. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 877–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Leudeling, E.; Kindt, R.; Huth, N.I.; Koenig, K. Agroforestry systems in a changing climate—challenges in projecting future performance. Curr. Opin. Environ. Sustain. 2014, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kadam, N.; Xiao, G.; Melgar, R.; Bahuguna, R.; Quinones, C.; Tamilselvan, A.; Prasad, P. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv. Agric. 2014, 127, 111–156. [Google Scholar]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Trans. R. Soc. B Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powlson, D.S.; Gregory, P.J.; Whalley, W.R.; Quinton, J.N.; Hopkins, D.W.; Whitmore, A.P.; Hirsch, P.R.; Goulding, K.W.T. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 2011, 36, 72–87. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin–Molina, C.; Parras–Alcantara, L.; Jordan, A.; Cerda, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar]
- The World Bank. Sustainable Land Management: Challenges, Opportunities, and Trade–Offs; World Bank: Washington, DC, USA, 2006; pp. 1–30. Available online: https://openknowledge.worldbank.org/handle/10986/7132 (accessed on 1 December 2014).
- Dumanski, J.; Peiretti, R. Modern concepts of soil conservation. Int. Soil Water Conserv. Res. 2013, 1, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Acosta–Martínez, V.; Cotton, J. Lasting effects of soil health improvements with management changes in cotton–based cropping systems in a sandy soil. Biol. Fertil. Soils 2017, 53, 533–546. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Coleman, K. The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur. J. Soil Sci. 2008, 59, 400–413. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barre, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Adv. Agron. 2011, 112, 103–143. [Google Scholar]
- Saleh–Lakha, S.; Miller, M.; Campbell, R.G.; Schneider, K.; Elahimanesh, P.; Hart, M.M.; Trevors, J.T. Microbial gene expression in soil: Methods, applications and challenges. J. Microb. Methods 2005, 63, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, L.E.; Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 2017, 5, e3098. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C.; Levy, M.C.; Gleick, P.H. Maladaptation to drought: A case report from California, USA. Sustain. Sci. 2014, 10, 491–501. [Google Scholar] [CrossRef]
- Maghari, B.M.; Ardekani, A.M. Genetically Modified Foods and Social Concerns. Avicenna J. Med. Biotechnol. 2011, 3, 109–117. [Google Scholar] [PubMed]
- Esilaba, A.; Byalebeka, J.; Delve, R.; Okalebo, J.; Ssenyange, D.; Mbalule, M.; Ssali, H. On farm testing of integrated nutrient management strategies in eastern Uganda. Agric. Syst. 2005, 86, 144–165. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Chen, X.; Vitousek, P. An experiment for the world. Nature 2013, 497, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Zang, H.; Blagodatskaya, E.; Wang, J.; Xu, X.; Kuzyakov, Y. Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses. Biol. Fertil. Soils 2017, 53, 419–429. [Google Scholar] [CrossRef]
- Wu, W. Sustainable crop rotation for improving crop productivity and environmental safety: A book review. J. Clean. Prod. 2018, 176, 555–556. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, Z.; Chen, X.; Ju, X.; Shen, J.; Chen, Q.; Liu, X.; Zhang, W.; Mi, G.; Fan, M. Integrated nutrient management for food security and environmental quality in China. Adv. Agric. 2012, 116, 1–40. [Google Scholar]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nhamo, N.; Kyalo, G.; Dinheiro, V. Exploring Options for Lowland Rice Intensification under Rain–fed and Irrigated Ecologies in East and Southern Africa: The Potential Application of Integrated Soil Fertility Management Principles. Adv. Agric. 2014, 128, 181–219. [Google Scholar]
- Edmeades, D.; Robson, M.; Dewes, A. Setting the standard for nutrient management plans. In Adding to the Knowledge Base for the Nutrient Manager; Occasional Report No. 24; Currie, L.D., Christensen, C.L., Eds.; Fertilizer & Lime Research Centre, Massey University: Palmerston North, New Zealand, 2011; Available online: http://flrc.massey.ac.nz/publications.html (accessed on December 2015).
- Delgado, J.; Lemunyon, J. Nutrient management. In Encyclopedia of Soil Science; Lal, R., Ed.; Markel and Decker: New York, NY, USA, 2006; pp. 1157–1160. [Google Scholar]
- Dobermann, A.; Witt, C.; Dawe, D.; Abdulrachman, S.; Gines, H.; Nagarajan, R.; Satawathananont, S.; Son, T.; Tan, P.S.; Wang, G.H.; et al. Site–specific nutrient management of intensive rice cropping systems in Asia. Field Crops Res. 2002, 74, 37–66. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. A Dobermann A decade of research on improving nitrogen fertilization in rice through site–specific nitrogen management in China. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Gruhn, P.; Goletti, F.; Yudelman, M. Integrated Nutrient Management, Soil Fertility and Sustainable Agriculture: Current Issues and Future Challenges; IFRPI 2020 Vision Brief; IFRPI: Washington, DC, USA, 2000. [Google Scholar]
- Wu, W.; Ma, B.L. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 2015, 512, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Vanlauwe, B.; Zingore, S. Integrated Soil Fertility Management: An Operational Definition and Consequences for Implementation and Dissemination. Better Crops 2011, 95, 4–7. [Google Scholar] [CrossRef]
- Tabo, R.; Bationo, A.; Gerald, B.; Ndjeung, J.; Marchal, D.; Amadou, B.; Annou, M.G.; Sogodogo, D.; Taonda, J.B.S.; Hassane, O.; Diallo, M.K.; et al. Improving cereal productivity and farmers’ income using a strategic application of fertilizers in West Africa. In Advances in Integrated Soil Fertility Management in Sub–Saharan Africa: Challenges and Opportunities; Bationo, A., Waswa, B.S., Kihara, J., Kimetu, J., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 201–208. [Google Scholar]
- Li, C.; Wang, C.; Wen, X.; Qin, X.; Liu, Y.; Han, J.; Li, Y.; Liao, Y.; Wu, W. Ridge–furrow with plastic film mulching practice improves maize productivity and resource use efficiency under the wheat–maize double–cropping system in dry semi–humid areas. Field Crops Res. 2017, 203, 201–211. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.; Turner, N.; Li, X.; Niu, J.; Yang, C.; Liu, L.; Chai, Q. Ridge–Furrow Mulching Systems–An innovative Technique for boosting crop productivity in Semiarid rainfed environments. Adv. Agric. 2013, 118, 430–476. [Google Scholar]
- Li, W.; Zhuang, Q.; Wu, W.; Wen, W.; Han, J.; Liao, Y. Effects of ridge–furrow mulching on soil CO2 efflux in a maize field in the Chinese Loess Plateau. Agric. For. Meteorol. 2019, 264, 200–212. [Google Scholar] [CrossRef]
- Jennifer, P.C.; Hyun, Y.H.; Jessie, G.; Sang, Y.K.; Pil, J.K. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 2015, 91, 48–57. [Google Scholar]
- Xue, J.; Yuan, Y.; Zhang, H.; Ren, A.; Lin, W.; Sun, M.; Gao, Z.; Sun, D. Carbon footprint of dryland winter wheat under film mulching during summer–fallow season and sowing method on the Loess Plateau. Ecol. Indic 2018, 95, 12–20. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Bertaki, M. Sustainable water management in agriculture under climate change. Agric. Agric. Sci. Procedia 2015, 4, 55–98. [Google Scholar] [CrossRef]
- Najafi, P.; Tabatabaei, S.H. Effect of using subsurface drip irrigation and ET–HS model to increase WUE in irrigation of some crops. Irrig. Drain 2007, 56, 477–486. [Google Scholar] [CrossRef]
- Evans, R.G.; John Sadler, E. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Blanke, A.; Rozelle, S.; Lohmar, B.; Wang, J.; Huang, J. Water saving technology and saving water in China. Agric. Water Manag. 2007, 87, 139–150. [Google Scholar] [CrossRef]
- FAO. Three Principles of Conservation Agriculture. 2018. Available online: http://www.fao.org/conservation–agriculture/en/ (accessed on May 2018).
- Gonzalez–Sanchez, E.J.; Veroz–Gonzalez, O.; Blanco–Roldan, G.L.; Marquez–Garcia, F.; Carbonell–Bojollo, R. A renewed view of conservation agriculture and its evolution over the last decade in Spain. Soil Till Res. 2015, 146, 204–212. [Google Scholar] [CrossRef]
- FAO. Sustainable Land Management. 2018. Available online: http://www.fao.org/land–water/land/sustainable–land–management/en/ (accessed on May 2018).
- TerrAfrica. Policy and Financing for Sustainable Land Management in Sub–Saharan Africa: Lessons and Guidance for Action. 2009. Available online: http://www.terrafrica.org/wp–content/uploads/2013/resources/SLM_financing_policy_guidelines.pdf (accessed on December 2014).
- Winiwarter, W.; Leip, A.; Tuomisto, H.L.; Haastrup, P. A European perspective of innovations towards mitigation of nitrogen–related greenhouse gases. Curr. Opin. Environ. Sustain. 2014, 9–10, 37–45. [Google Scholar]
- McBratney, A.; Whelan, B.; Ancev, T. Future directions of precision agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Bramley, R. Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application. Crop Pasture Sci. 2009, 60, 197–217. [Google Scholar] [CrossRef]
- Hedley, C. The role of precision agriculture for improved nutrient management on farms. J. Sci. Food Agric. 2014, 95, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; Galloway, J.N.; Millar, N.; Leach, A.M. N–related greenhouse gases in North America: Innovations for sustainable future. Curr. Opin. Environ. Sustain. 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Tian, J.; Lou, Y.; Gao, Y.; Fang, H.; Liu, S.; Xu, M.; Blagodatskaya, E.; Kuzyakov, Y. Response of soil organic matter fractions and composition of microbial community to long–term organic and mineral fertilization. Biol. Fertil Soils 2017, 53, 523–532. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture—A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef]
- Prager, K. Agri–environmental collaborative for landscape management in Europe. Curr. Opin. Environ. Sustain. 2015, 12, 59–66. [Google Scholar] [CrossRef]
- Hickman, J.E.; Scholes, R.J.; Rosenstock, T.S.; Garcia–Pando, C.P.; Nyamangara, J. Assessing non–CO2 climate–forcing emissions and mitigation in sub–saharan Africa. Curr. Opin. Environ. Sustain. 2014, 9, 65–72. [Google Scholar] [CrossRef]
- Catherine, R.; John, U.; Josee, R.R.; Thaddee, B. Factors affecting performance of agricultural extension: Evidence from Democratic Republic of Congo. J. Agric. Educ. Ext. 2016, 22, 113–143. [Google Scholar]
- Dalgaard, T.; Hansen, B.; Hasler, B.; Hertel, O.; Hutching, N.J.; Jacobsen, B.H.; Jensen, L.S.; Kronvang, B.; Olesen, J.E.; Schjorrring, J.K.; et al. Policies for agricultural nitrogen management–trends, challenges and prospects for improved efficiency in Denmark. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–368. [Google Scholar] [CrossRef] [PubMed]
Trends | World | USA | China |
---|---|---|---|
Cereal harvested area | |||
Mean value (million ha) | 693.8 | 62.9 | 91.1 |
Absolute trend (million ha year−1) | 0 ns | −0.15 ** | −0.17 ** |
Relative trend (%) | 0 ns | −0.25 ** | −0.18 ** |
Cereal yield per unit area | |||
Mean value (t ha−1) | 2.53 | 4.67 | 3.72 |
Absolute trend (kg ha−1 year−1) | 44 ** | 84 ** | 90 ** |
Relative trend (%) | 1.74 ** | 1.8 ** | 2.42 ** |
Chemical fertilizers use per unit area | |||
Mean value (kg ha−1) | 87.9 | 90.6 | 342.4 |
Absolute trend (kg ha−1 year−1) | 2.08 ** | 0.31 ns | 15.94 ** |
Relative trend (%) | 2.4 ** | 0.30 ns | 4.7 ** |
Pesticide use on AGR sector per unit area | |||
Mean value (kg ha−1) | 3.49 | 2.33 | 8.43 |
Absolute trend (kg ha−1 year−1) | 0.11 ** | 0.02 ** | 1.27 ** |
Relative trend (%) | 3.07 ** | 0.82 ** | 15.1 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. https://doi.org/10.3390/su11051485
Shah F, Wu W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability. 2019; 11(5):1485. https://doi.org/10.3390/su11051485
Chicago/Turabian StyleShah, Farooq, and Wei Wu. 2019. "Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments" Sustainability 11, no. 5: 1485. https://doi.org/10.3390/su11051485
APA StyleShah, F., & Wu, W. (2019). Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability, 11(5), 1485. https://doi.org/10.3390/su11051485