A Research and Innovation Agenda for Zero-Emission European Cities
Abstract
:1. Introduction
Diverse Challenges and Low-carbon Solutions in Diverse Cities
2. Materials and Methods
- (1)
- The experts, composed by the authors of this paper, the members of the High-Level Panel of the European Decarbonization Pathways Initiative [3,18], and other members of the H2020 DialoguE on European Decarbonisation Strategies (DEEDS) project, decided on the categorization of the R&I actions in cities trough facilitated discussion over several meetings. Three pillars were selected to categorize future R&I actions in cities: (1) innovative technology and integration; (2) governance innovation; and (3) social innovation. For each of these pillars key R&I actions for cities to become zero carbon by 2050 are proposed. While there are clear connections in topics in these three pillars (e.g., governance needs social innovation and citizen participation), these pillars were deemed useful to categorize and divide R&I actions.
- (2)
- The authors of this paper did a structured literature search for each of these pillars targeted at (a) capturing the current state of the art in R&I for European cities’ decarbonization and (b) identifying key R&I gaps for the decarbonization challenge in the European Union´s cities. The authors of this study did not do a comprehensive literature review of all aspects of decarbonization in cities, but a targeted literature review aiming at capturing points (a) and (b) above. For instance, studies looking at which are the most promising technologies for decarbonizing a sector in cities (e.g., heat) were included, but studies going into detail for a single promising technology (e.g., geothermal heat pumps) were not comprehensively reviewed to limit the scope of the study.
- (3)
- The state-of-the-art and R&I gaps discussed above were presented and refined during several meetings, including all the “experts” defined in point 1, during regular meetings for approximately one year. At each meeting, research priorities were discussed and iteratively refined through additional targeted literature reviews and facilitated discussions.
- (4)
- Consensus was reached on the R&I priorities discussed below.
3. Research and Innovation Actions for Decarbonizing EU Cities
3.1. Key R&I Elements within Innovative Technology and Integration in Cities
3.1.1. Smart Cities
3.1.2. Circular Economy
3.1.3. Heat, Electricity, and Energy Efficiency Technologies
3.1.4. Suggested Medium-Term R&I Actions for Innovative Technology and Integration
3.2. Key R&I Elements within Governance Innovation in Cities
Suggested Medium-Term R&I Actions for Governance Innovation
3.3. Key R&I Elements within Social Innovation
Suggested Medium-Term R&I Actions for Social Innovation in Cities
4. Conclusions: From Low Carbon Achievements to Zero-Carbon Cities in 2050
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission Cities. Available online: https://ec.europa.eu/clima/policies/international/paris_protocol/cities_en (accessed on 19 September 2018).
- United Nations Paris Agreement on Climate Change. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 20 March 2019).
- European Commission Final Report of the High-Level Panel of the European Decarbonisation Pathways Initiative. 2018. Available online: https://ec.europa.eu/info/publications/final-report-high-level-panel-european-decarbonisation-pathways-initiative_en (accessed on 20 March 2019).
- Covenant of Mayors Covenant of Mayors Initiative. Available online: https://www.covenantofmayors.eu/about/covenant-initiative/origins-and-development.html (accessed on 6 December 2018).
- McDonnell, M.J.; MacGregor-Fors, I. The ecological future of cities. Science 2016, 352, 936–938. [Google Scholar] [CrossRef]
- Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 2016, 352, 940–943. [Google Scholar] [CrossRef]
- Carter, G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate change and the city: Building capacity for urban adaptation. Prog. Plan. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Ernstson, H.; van der Leeuw, S.E.; Redman, C.L.; Meffert, D.J.; Davis, G.; Alfsen, C.; Elmqvist, T. Urban Transitions: On Urban Resilience and Human-Dominated Ecosystems. Ambio 2010, 39, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, B.; Fath, B.D. Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation. Environ. Pollut. 2014, 190, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Voytenko, Y.; Evans, J.; Schliwa, G. Urban living labs for sustainability and low carbon cities in Europe: Towards a research agenda. J. Clean. Prod. 2016, 123, 45–54. [Google Scholar] [CrossRef]
- Anderson, J.E.; Wulfhorst, G.; Lang, W. Energy analysis of the built environment—A review and outlook. Renew. Sustain. Energy Rev. 2015, 44, 149–158. [Google Scholar] [CrossRef]
- UN New Urban Agenda. 2017. Available online: https://www.un.org/sustainabledevelopment/blog/2016/10/newurbanagenda/ (accessed on 20 March 2019).
- Kammen, D.M.; Sunter, D.A. City-integrated renewable energy for urban sustainability. Science 2016, 352, 922–928. [Google Scholar] [CrossRef]
- Hoornweg, D.; Sugar, L.; Trejos Gómez, C.L. Cities and greenhouse gas emissions: Moving forward. Environ. Urban. 2011, 23, 207–227. [Google Scholar] [CrossRef]
- Kennedy, C.A.; Ibrahim, N.; Hoornweg, D. Low-carbon infrastructure strategies for cities. Nat. Clim. Chang. 2014, 4, 343–346. [Google Scholar] [CrossRef]
- Bai, X.; Dawson, R.J.; Ürge-Vorsatz, D.; Delgado, G.C.; Barau, A.S.; Dhakal, S.; Dodman, D.; Leonardsen, L.; Masson-Delmotte, V.; Roberts, D.C.; et al. Six research priorities for cities and climate change. Nature 2018, 555, 23. [Google Scholar] [CrossRef] [PubMed]
- Engström, R.E.; Howells, M.; Destouni, G. Water impacts and water-climate goal conflicts of local energy choices—Notes from a Swedish perspective. Proc. IAHS 2018, 376, 25–33. [Google Scholar] [CrossRef]
- European Commission High-Level Panel of the European Decarbonisation Pathways Initiative. Available online: http://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetail&groupID=3459 (accessed on 16 January 2019).
- Latvakoski, J.; Mäki, K.; Ronkainen, J.; Julku, J.; Koivusaari, J.; Latvakoski, J.; Mäki, K.; Ronkainen, J.; Julku, J.; Koivusaari, J. Simulation-Based Approach for Studying the Balancing of Local Smart Grids with Electric Vehicle Batteries. Systems 2015, 3, 81–108. [Google Scholar] [CrossRef]
- De Ferreira, A.C.; Fuso-nerini, F. A Framework for Implementing and Tracking Circular Economy in Cities: The Case of Porto. Sustainability 2019. Accepted for publication. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy—From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Ellen, M.; Company, M. Towards the Circular Economy: Accelerating the scale-up across global supply chains. World Econ. Forum 2014, 1–64. [Google Scholar]
- EUR-LEX Energy Performance of Buildings Directive. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/;ELX_SESSIONID=FZMjThLLzfxmmMCQGp2Y1s2d3TjwtD8QS3pqdkhXZbwqGwlgY9KN!2064651424?uri=CELEX:32010L0031 (accessed on 19 September 2018).
- European Commission EU Buildings Factsheets. Available online: https://ec.europa.eu/energy/en/eu-buildings-factsheets (accessed on 19 September 2018).
- Hirschberg, S.; Wiemer, S.; Burgherr, P. Energy from the Earth: Deep Geothermal as a Resource for the Future? Vdf Hochschulverlag AG (An der ETH Zurich): Zurich, Switzerland, 2014. [Google Scholar]
- Rhodes, R.A.W. Understanding Governance: Policy Networks, Governance, Reflexivity and Accountability; Open University Press: Buckingham, UK, 1997. [Google Scholar]
- Walker, G.; Tweed, F.; Whittle, R. A framework for profiling the characteristics of risk governance in natural hazard contexts. Nat. Hazards Earth Syst. Sci. 2014, 14, 155–164. [Google Scholar] [CrossRef]
- IRGC. Risk Governance: Towards an Integrative Apprach; International Risk Governance Council: Geneva, Switzerland, 2005. [Google Scholar]
- Castán Broto, V.; Bulkeley, H. A survey of urban climate change experiments in 100 cities. Glob. Environ. Chang. 2013, 23, 92–102. [Google Scholar] [CrossRef]
- Wilson, C.; Grubler, A.; Gallagher, K.S.; Nemet, G.F. Marginalization of end-use technologies in energy innovation for climate protection. Nat. Clim. Chang. 2012, 2, 780. [Google Scholar] [CrossRef]
- Ivanova, D.; Vita, G.; Steen-Olsen, K.; Stadler, K.; Melo, P.C.; Wood, R.; Hertwich, E.G. Mapping the carbon footprint of EU regions. Environ. Res. Lett. 2017, 12, 54013. [Google Scholar] [CrossRef]
- Frenken, K.; Schor, J. Putting the sharing economy into perspective. Environ. Innov. Soc. Trans. 2017, 23, 3–10. [Google Scholar] [CrossRef]
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S.; et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 2018, 3, 515–527. [Google Scholar] [CrossRef]
- Sahakian, M.; Wilhite, H. Making practice theory practicable: Towards more sustainable forms of consumption. J. Consum. Cult. 2013, 14, 25–44. [Google Scholar] [CrossRef]
- Melica, G.; Bertoldi, P.; Kona, A.; Iancu, A.; Rivas, S.; Zancanella, P. Multilevel governance of sustainable energy policies: The role of regions and provinces to support the participation of small local authorities in the Covenant of Mayors. Sustain. Cities Soc. 2018, 39, 729–739. [Google Scholar] [CrossRef]
- Berkhout, F. Normative expectations in systems innovation. Technol. Anal. Strateg. Manag. 2006, 18, 299–311. [Google Scholar] [CrossRef]
- Spath, P.; Rohracher, H. “Energy regions”: The transformative power of regional discourses on socio-technical futures. Res. Policy 2010, 39, 449–458. [Google Scholar] [CrossRef]
- Rowe, G.; Frewer, L.J. A Typology of Public Engagement Mechanisms. Sci. Technol. Hum. Values 2005, 30, 251–290. [Google Scholar] [CrossRef]
- Fudge, S.; Peters, M.; Woodman, B. Local authorities as niche actors: The case of energy governance in the UK. Environ. Innov. Soc. Trans. 2016, 18, 1–17. [Google Scholar] [CrossRef]
- Volken, S.; Xexakis, G.; Trutnevyte, E. Perspectives of informed citizen panel on low-carbon electricity portfolios in Switzerland and the empirical evaluation of informational material. Environ. Sci. Technol. 2018. Article AS. [Google Scholar] [CrossRef]
- van der Have, R.P.; Rubalcaba, L. Social innovation research: An emerging area of innovation studies? Res. Policy 2016, 45, 1923–1935. [Google Scholar] [CrossRef]
- Seyfang, G.; Smith, A. Grassroots innovations for sustainable development: Towards a new research and policy agenda. Environ. Politics 2007, 16, 584–603. [Google Scholar] [CrossRef]
- Martin, C.J.; Upham, P.; Budd, L. Commercial orientation in grassroots social innovation: Insights from the sharing economy. Ecol. Econ. 2015, 118, 240–251. [Google Scholar] [CrossRef]
- Choi, N.; Majumdar, S. Social entrepreneurship as an essentially contested concept: Opening a new avenue for systematic future research. J. Bus. Ventur. 2014, 29, 363–376. [Google Scholar] [CrossRef]
- Martinez, F.; O’Sullivan, P.; Smith, M.; Esposito, M. Perspectives on the role of business in social innovation. J. Manag. Dev. 2017, 36, 681–695. [Google Scholar] [CrossRef]
- Hockerts, K.; Wüstenhagen, R. When David meets Goliath: Sustainable entrepreneurship and the evolution of markets. In Social Innovation: Blurring Boundaries to Reconfigure Markets; Palgrave Macmillan: London, UK, 2011. [Google Scholar]
- Mirvis, P.; Herrera, M.E.B.; Googins, B.; Albareda, L. Corporate social innovation: How firms learn to innovate for the greater good. J. Bus. Res. 2016, 69, 5014–5021. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Hughes, N.; Cozzi, L.; Cosgrave, E.; Howells, M.; Sovacool, B.; Tavoni, M.; Tomei, J.; Zerriffi, H.; Milligan, B. Use SDGs to guide climate action. Nature 2018, 557, 31. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Broto, V.C.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 2017, 3, 10–15. [Google Scholar] [CrossRef]
- Dobbins, A.; Fuso Nerini, F.; Deane, P.; Pye, S. Strengthening the EU response to energy poverty. Nat. Energy 2019, 4, 2–5. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Wachsmuth, D.; Cohen, D.A.; Angelo, H. Expand the frontiers of urban sustainability. Nat. News 2016, 536, 391. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.; Watkiss, P. Climate change impacts and adaptation in cities: A review of the literature. Clim. Chang. 2011, 104, 13–49. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Broad, O.; Volkart, K. Is Domestic Action Enough? Policies and Programs for the EU to Reduce Greenhouse Gas Emissions Outside of Its Borders. 2016. Available online: http://www.insightenergy.org/system/publication_files/files/000/000/054/original/HET18_GHG_outside_EU_borders_Final.pdf?1481106791 (accessed on 20 March 2019).
- Huutoniemi, K.; Klein, J.T.; Bruun, H.; Hukkinen, J. Analyzing interdisciplinarity: Typology and indicators. Res. Policy 2010, 39, 79–88. [Google Scholar] [CrossRef]
- Viable Cities Connecting the Future to Our Cities. Available online: http://viablecities.com/en/home/ (accessed on 16 January 2019).
Parameter | Stockholm | Barcelona | Warsaw |
---|---|---|---|
Population (within city boundaries) | 950,000 (2017) | 1,628,936 (2018) | 1,758,143 (2017) |
Jurisdiction | Strong mayoral powers regarding buildings, city roads, land use, and water. The city owns most of the land, and gets its financing from income taxes. | The city has strong powers and ownership over public buildings and urban land use. However, it has limited power over the city´s energy supply, and partial powers over the transport infrastructure. | Strong local government policy powers and ownership over public buildings, transport infrastructure, roads, and water systems. |
Key plans acting on decarbonization | The actions for reducing emissions in Stockholm have been centered on heating, transport, waste, electricity, and gas. The city also has a focus on testing new low-carbon solutions in selected neighborhoods, and to then expand effective ones to the whole city. | Most of the policies that will decrease emissions in Barcelona are not specifically addressed at climate change mitigation, which features as a cross-cutting issue across policies, but rather at improving the local air quality and the livability of the city. | Focus on efficiency, transportation, and public awareness. Behavioral changes were promoted through targeted incentives, which were well received by the local population. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuso Nerini, F.; Slob, A.; Ericsdotter Engström, R.; Trutnevyte, E. A Research and Innovation Agenda for Zero-Emission European Cities. Sustainability 2019, 11, 1692. https://doi.org/10.3390/su11061692
Fuso Nerini F, Slob A, Ericsdotter Engström R, Trutnevyte E. A Research and Innovation Agenda for Zero-Emission European Cities. Sustainability. 2019; 11(6):1692. https://doi.org/10.3390/su11061692
Chicago/Turabian StyleFuso Nerini, Francesco, Adriaan Slob, Rebecka Ericsdotter Engström, and Evelina Trutnevyte. 2019. "A Research and Innovation Agenda for Zero-Emission European Cities" Sustainability 11, no. 6: 1692. https://doi.org/10.3390/su11061692
APA StyleFuso Nerini, F., Slob, A., Ericsdotter Engström, R., & Trutnevyte, E. (2019). A Research and Innovation Agenda for Zero-Emission European Cities. Sustainability, 11(6), 1692. https://doi.org/10.3390/su11061692