Organic Matter Composition of Manure and Its Potential Impact on Plant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Ion Chromatography
2.3. Fluorescence Excitation-Emission Method (FEEM)
2.4. Pyrolysis Gas Chromatography/Mass Spectrometry (GC/MS)
2.5. Seed Germination
2.6. Chlorophyll and Carotenoid Analyses
2.7. Statistical Analysis
3. Results and Discussion
3.1. Nutrient Analysis in Water Extract
3.2. Organic Matter Characterization
3.2.1. Fluorescence Excitation-Emissions
3.2.2. Molecular Composition Analysis by Pyrolysis GC/MS
3.3. Plant Productivity
3.3.1. Chlorophyll Concentration
3.3.2. Germination Index
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richardson, A. A new world ordure? Thoughts on the use of humanure in developed cities. City 2012, 16, 700–712. [Google Scholar] [CrossRef]
- Drangert, J. Fighting the urine blindness to provide more sanitation options. Water SA-Pretoria 1998, 24, 157–164. [Google Scholar]
- Park, J.; Chon, K.; Cho, J. Science Walden: New horizons of combined ecological sanitation with separated urine/feces and treatment wetlands. Desalin. Water Treat. 2015, 54, 1353–1360. [Google Scholar] [CrossRef]
- Carey, R.O.; Migliaccio, K.W. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef]
- Chapra, S.C.; Boehlert, B.; Fant, C.; Bierman, V.J., Jr.; Henderson, J.; Mills, D.; Mas, D.M.; Rennels, L.; Jantarasami, L.; Martinich, J. Climate change impacts on harmful algal blooms in US freshwaters: A screening-level assessment. Environ. Sci. Technol. 2017, 51, 8933–8943. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; Hall, N.S.; Rossignol, K.L.; Joyner, A.R.; Zhu, G.; Qin, B. Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: Implications for controlling eutrophication and harmful algal blooms. J. Freshw. Ecol. 2015, 30, 5–24. [Google Scholar] [CrossRef]
- Gerba, C.P.; Smith, J.E. Sources of Pathogenic Microorganisms and Their Fate during Land Application of Wastes the opinions expressed in this article are those of the authors and do not necessarily reflect those of the USEPA. J. Environ. Qual. 2005, 34, 42–48. [Google Scholar]
- Knudsen, L.G.; Phuc, P.D.; Hiep, N.T.; Samuelsen, H.; Jensen, P.K.; Dalsgaard, A.; Raschid-Sally, L.; Konradsen, F. The fear of awful smell: Risk perceptions among farmers in Vietnam using wastewater and human excreta in agriculture. Southeast Asian J. Trop. Med. Public Health 2008, 39, 341. [Google Scholar]
- Bai, F.; Wang, X. Nitrogen-retaining property of compost in an aerobic thermophilic composting reactor for the sanitary disposal of human feces. Front. Environ. Sci. Eng. China 2010, 4, 228–234. [Google Scholar] [CrossRef]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of slow release crystal fertilizer from wastewaters through struvite crystallization—A review. Arabian J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef]
- Roubík, H.; Mazancová, J.; Banout, J. Current approach to manure management for small-scale Southeast Asian farmers-Using Vietnamese biogas and non-biogas farms as an example. Renew. Energy 2018, 115, 362–370. [Google Scholar] [CrossRef]
- Nasir, I.M.; Ghazi, T.I.M.; Omar, R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Eng. Life Sci. 2012, 12, 258–269. [Google Scholar] [CrossRef]
- Tiwari, S.C.; Tiwari, B.K.; Mishra, R.R. Microbial populations, enzyme activities and nitrogen-phosphorus-potassium enrichment in earthworm casts and in the surrounding soil of a pineapple plantation. Biol. Fert. Soils 1989, 8, 178–182. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 2012, 38, 57–65. [Google Scholar] [CrossRef]
- Kabeerathumma, S.; Mohankumar, C.R.; Nair, G.M.; Nair, P.G. Effect of continuous cropping of cassava with organics and inorganics on the secondary and micronutrient elements status of an Ultisol. J. Indian Soc. Soil Sci. 1993, 41, 710–713. [Google Scholar]
- Bhattacharyya, P.; Chakraborty, A.; Chakrabarti, K.; Tripathy, S.; Powell, M.A. Chromium uptake by rice and accumulation in soil amended with municipal solid waste compost. Chemosphere 2005, 60, 1481–1486. [Google Scholar] [CrossRef]
- Timsina, J.; Connor, D.J. Productivity and management of rice–wheat cropping systems: Issues and challenges. Field Crops Res. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- Schmidt, L.; Merbach, W. Response of soil C and N content to fertilization-results of long-term trials at Halle/S., Germany. Arch. Agron. Soil Sci. 2004, 50, 49–58. [Google Scholar] [CrossRef]
- Leite, L.F.; Madari, B.E. Soil organic matter: Brazilian perspectives. Dyn. Soil Dyn. Plant 5 2011, 1, 1–6. [Google Scholar]
- Singh, S.; Inamdar, S.; Mitchell, M.; McHale, P. Seasonal pattern of dissolved organic matter (DOM) in watershed sources: Influence of hydrologic flow paths and autumn leaf fall. Biogeochemistry 2014, 118, 321–337. [Google Scholar] [CrossRef]
- Jewitt, S. Poo gurus? Researching the threats and opportunities presented by human waste. Appl. Geogr. 2011, 31, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J. The Humanure Handbook; Jenkings Publishing: Grove City, PA, USA, 2005. [Google Scholar]
- Park, J. Movements in perception on human feces for transition sanitation design, using convergence of science and arts. Ph.D. Thesis, Ulsan National Institute of Science and Technology, Ulsan, Korea, 14 February 2017. [Google Scholar]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Zucconi, F. Evaluating toxicity of immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148C, 350–382. [Google Scholar]
- He, Z.; Ohno, T. Fourier transform infrared and fluorescence spectral features of organic matter in conventional and organic dairy manure. J. Environ. Qual. 2012, 41, 911–919. [Google Scholar] [CrossRef]
- Honeycutt, C.; Hunt, J.; Griffin, T.; He, Z.; Larkin, R. Determinants and Processes of Manure Nitrogen Availability, Environmental Chemistry of Animal Manure; Nova Science Publishers: New York, NY, USA, 2011; pp. 201–224. [Google Scholar]
- Iglesias Jiménez, E.; Pérez García, V. Determination of maturity indices for city refuse composts. Agric. Ecosyst. Environ. 1992, 38, 331–343. [Google Scholar] [CrossRef]
- Chanyasak, V.; Kubota, H. Carbon/organic nitrogen ratio in water extract as measure of composting degradation. J. Ferment. Technol. 1981, 59, 215–219. [Google Scholar]
- Li-Xian, Y.; Guo-Liang, L.; Shi-Hua, T.; Gavin, S.; Zhao-Huan, H. Salinity of animal manure and potential risk of secondary soil salinization through successive manure application. Sci. Total Environ. 2007, 383, 106–114. [Google Scholar] [CrossRef]
- Bhandari, A.; Ladha, J.; Pathak, H.; Padre, A.; Dawe, D.; Gupta, R. Yield and soil nutrient changes in a long-term rice-wheat rotation in India. Soil Sci. Soc. Am. J. 2002, 66, 162–170. [Google Scholar] [CrossRef]
- Huang, G.F.; Wong, J.W.C.; Wu, Q.T.; Nagar, B.B. Effect of C/N on composting of pig manure with sawdust. Waste Manag. 2004, 24, 805–813. [Google Scholar] [CrossRef]
- Canellas, L.P.; Spaccini, R.; Piccolo, A.; Dobbss, L.B.; Okorokova-Façanha, A.L.; de Araújo Santos, G.; Olivares, F.L.; Façanha, A.R. Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Sci. 2009, 174, 611–620. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Ourry, A.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; San Francisco, S.; Baigorri, R.; Cruz, F. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil 2012, 359, 297–319. [Google Scholar] [CrossRef]
- Lulakis, M.D.; Petsas, S.I. Effect of humic substances from vine-canes mature compost on tomato seedling growth. Bioresour. Technol. 1995, 54, 179–182. [Google Scholar] [CrossRef]
- Rauthan, B.; Schnitzer, M. Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 1981, 63, 491–495. [Google Scholar] [CrossRef]
- Senesi, N. Composted materials as organic fertilizers. Sci. Total Environ. 1989, 81, 521–542. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Nebbioso, A.; Piccolo, A. Molecular characterization of dissolved organic matter (DOM): A critical review. Anal. Bioanal. Chem. 2013, 405, 109–124. [Google Scholar] [CrossRef]
- Jiang, T.; Kaal, J.; Liang, J.; Zhang, Y.; Wei, S.; Wang, D.; Green, N.W. Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC–MS and thermally assisted hydrolysis and methylation. Sci. Total Environ. 2017, 603–604, 461–471. [Google Scholar] [CrossRef]
- Nendza, M. Activity and Effects Parameters, Structure—Activity Relationships in Environmental Sciences; Springer: Berlin/Heidelberg, Germany, 1998; pp. 47–61. [Google Scholar]
- Bowers, J. Food Theory and Applications; Pearson: Harlow, UK, 1992. [Google Scholar]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Alscher, R.G.; Cumming, J.R. Stress Responses in Plants: Adaptation and Acclimation Mechanisms; Wiley-Liss: New York, NY, USA, 1990. [Google Scholar]
- Jodice, R. Chemical and biological parameters for evaluating compost quality. In Proceedings of the International Symposium on Compost Production and Use, San Michele all’Adige, Italy, 20–23 June 1989; pp. 20–23. [Google Scholar]
DOC (mg C/L) | DTN (mg N/L) | C/N Ratio | |
---|---|---|---|
HM | 1.70 (±0.5) | 1.70 (±0.7) | 1.00 (±0.0) |
CNM | 62.0 (±1.2) | 14.1 (±0.9) | 4.41 (±0.1) |
PM | 37.0 (±2.0) | 11.8 (±1.2) | 3.15 (±0.8) |
HMO | 5.80 (±0.7) | 2.40 (±0.5) | 2.42 (±0.4) |
CM | 1.20 (±0.5) | 0.63 (±0.4) | 1.94 (±1.4) |
p-value* | 0.00 | 0.00 | 0.03 |
Post-hoc results | CNM > PM > HMO > (HM, CM) | CNM > PM > HMO > (HM, CM) | CNM > PM > HMO > CM > HM |
Chlorophyll a (mg/g dw) | Chlorophyll b (mg/g dw) | Total Chlorophyll (mg/g dw) | Total Carotenoids (mg/g dw) | |
---|---|---|---|---|
HM | 2.64 (±0.03) | 1.33 (±0.07) | 3.97 (±0.04) | 2.34 (±0.08) |
CNM | 2.63 (±0.05) | 1.30 (±0.05) | 3.94 (±0.03) | 2.28 (±0.09) |
PM | 3.41 (±0.08) | 1.64 (±0.05) | 5.05 (±0.07) | 2.81 (±0.03) |
HMO | 3.69 (±0.12) | 1.85 (±0.09) | 5.55 (±0.10) | 2.88 (±0.08) |
CM | 2.96 (±0.07) | 1.34 (±0.06) | 4.30 (±0.05) | 2.24 (±0.05) |
p-value* | 0.00 | 0.00 | 0.00 | 0.00 |
Post-hoc results | HMO > PM > CM > (HM, CNM) | HMO > PM > CM > (HM, CNM) | HMO > PM > CM > (HM, CNM) | (HMO, PM) > (HM, CNM, CM) |
No. Germinations (ea) | Average Weight (mg) | Average Root Length (cm) | |
---|---|---|---|
Control | 35 (±1) | 400.4 (±30.4) | 8.3 (±0.6) |
HM | 34 (±2) | 447.1 (±25.7) | 6.2 (±0.3) |
CNM | 39 (±1) | 326.6 (±20.2) | 8.4 (±0.9) |
PM | 36 (±2) | 405.5 (±35.2) | 6.1 (±1.2) |
HMO | 38 (±1) | 406.8 (±22.8) | 7.4 (±0.8) |
CM | 31 (±1) | 611.6 (±43.5) | 7.3 (±1.0) |
p-value* | 0.00 | 0.00 | 0.02 |
Post-hoc results | (CNM, PM, HMO) > (Control, HM, CM) | CM > HM > (Control, CNM, HMO, PM) | - |
Germination Percentage (%) | Relative Length of the Root (Treatment/Control) | Germination Index (%) | |
---|---|---|---|
HM | 85.0 (±2.9) | 0.75 (±0.01) | 72.6 (±0.3) |
CNM | 97.5 (±1.4) | 1.01 (±0.02) | 112.6 (±2.1) |
PM | 90.0 (±2.9) | 0.73 (±0.05) | 75.3 (±6.6) |
HMO | 95.0 (±1.4) | 0.89 (±0.02) | 96.6 (±1.9) |
CM | 77.5 (±1.4) | 0.88 (±0.03) | 77.7 (±3.1) |
p-value* | 0.00 | 0.00 | 0.02 |
Post-hoc results | (CNM, PM, HMO) > (HM, CM) | (CNM, HMO) > (HM, PM, CM) | (CNM, HMO) > (HM, PM, CM) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Cho, K.H.; Ligaray, M.; Choi, M.-J. Organic Matter Composition of Manure and Its Potential Impact on Plant Growth. Sustainability 2019, 11, 2346. https://doi.org/10.3390/su11082346
Park J, Cho KH, Ligaray M, Choi M-J. Organic Matter Composition of Manure and Its Potential Impact on Plant Growth. Sustainability. 2019; 11(8):2346. https://doi.org/10.3390/su11082346
Chicago/Turabian StylePark, Jongkwan, Kyung Hwa Cho, Mayzonee Ligaray, and Mi-Jin Choi. 2019. "Organic Matter Composition of Manure and Its Potential Impact on Plant Growth" Sustainability 11, no. 8: 2346. https://doi.org/10.3390/su11082346
APA StylePark, J., Cho, K. H., Ligaray, M., & Choi, M. -J. (2019). Organic Matter Composition of Manure and Its Potential Impact on Plant Growth. Sustainability, 11(8), 2346. https://doi.org/10.3390/su11082346